CN114460008B - Wellhead foam detection device and method - Google Patents
Wellhead foam detection device and method Download PDFInfo
- Publication number
- CN114460008B CN114460008B CN202210140850.6A CN202210140850A CN114460008B CN 114460008 B CN114460008 B CN 114460008B CN 202210140850 A CN202210140850 A CN 202210140850A CN 114460008 B CN114460008 B CN 114460008B
- Authority
- CN
- China
- Prior art keywords
- pipeline
- foam
- camera module
- image
- sliding
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000006260 foam Substances 0.000 title claims abstract description 56
- 238000001514 detection method Methods 0.000 title claims abstract description 17
- 238000000034 method Methods 0.000 title claims abstract description 8
- 239000011521 glass Substances 0.000 claims abstract description 25
- 238000004519 manufacturing process Methods 0.000 claims description 9
- 238000003466 welding Methods 0.000 claims description 3
- 230000005540 biological transmission Effects 0.000 claims 1
- 230000000149 penetrating effect Effects 0.000 claims 1
- 230000001502 supplementing effect Effects 0.000 claims 1
- 238000004804 winding Methods 0.000 claims 1
- 239000002518 antifoaming agent Substances 0.000 abstract description 7
- 230000008901 benefit Effects 0.000 abstract description 6
- 239000007789 gas Substances 0.000 description 7
- 238000006073 displacement reaction Methods 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 239000004088 foaming agent Substances 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000035515 penetration Effects 0.000 description 2
- 239000013589 supplement Substances 0.000 description 2
- 238000013019 agitation Methods 0.000 description 1
- 239000006265 aqueous foam Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 239000010802 sludge Substances 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/01—Arrangements or apparatus for facilitating the optical investigation
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
Abstract
Description
技术领域Technical field
本发明涉及采气井口泡沫检测技术领域,特别涉及一种基于机器视觉的泡沫排水采气工艺中井口泡沫检测装置和方法。The invention relates to the technical field of gas production wellhead foam detection, and in particular to a wellhead foam detection device and method in a machine vision-based foam drainage gas production process.
背景技术Background technique
泡沫排水采气的基本原理,是从井口向井底注入某种能够遇水起泡的表面活性剂(起泡剂),井底积液与起泡剂接触以后,借助天然气的搅动,生成大量低密度含水泡沫。随着气泡界面的生成,液体被连续举升,泡沫柱底部的液体不断补充进来,直到井底水替净。起泡剂通过分散、减阻、洗涤等作用,使井筒积液形成泡沫,并使不溶于性污垢如泥沙和淤渣等包裹在泡沫中随气流排出,起到疏导气水通道,增产、稳产的作用。泡沫排水采气过程中,从井口出来的大量低密度含水泡沫,需要通过投放消泡剂来消除泡沫,避免泡沫进入压缩机,延长压缩机的使用寿命。The basic principle of foam drainage gas production is to inject a certain surfactant (foaming agent) that can foam when exposed to water from the wellhead to the bottom of the well. After the liquid at the bottom of the well comes into contact with the foaming agent, a large amount of low-carbon water is generated with the help of the agitation of natural gas. Density aqueous foam. As the bubble interface is generated, the liquid is continuously lifted, and the liquid at the bottom of the foam column is continuously replenished until the water at the bottom of the well is replaced. The foaming agent causes the liquid in the wellbore to form foam through dispersion, drag reduction, washing, etc., and makes insoluble dirt such as sand and sludge wrapped in the foam and discharged with the air flow, thereby clearing the gas and water channels, increasing production, The role of stabilizing production. During the process of foam drainage gas production, a large amount of low-density water-containing foam comes out of the wellhead. It is necessary to add defoaming agent to eliminate the foam to prevent the foam from entering the compressor and extend the service life of the compressor.
现有泡沫检测方法是安排人员驻扎现场,每隔一定时间从分离器进行取样,根据取样结果来调整消泡剂投放比例或排量。由于从井口出来的泡沫存在于管道中,无法直接观察到管道中的泡沫情况,从分离器取样的泡沫是囤积一段时间过后的,并非反映的是管道中实时的泡沫情况,根据从分离器取样的结果来改变消泡剂投放比例或排量并不准确,且现有加注制度对消泡剂原料消耗较大,经济效益长期无法得到改善。The existing foam detection method is to arrange for personnel to be stationed at the site, take samples from the separator at certain intervals, and adjust the proportion or displacement of defoaming agent based on the sampling results. Since the foam from the wellhead exists in the pipeline, the foam situation in the pipeline cannot be directly observed. The foam sampled from the separator is accumulated after a period of time and does not reflect the real-time foam situation in the pipeline. According to the sample taken from the separator It is not accurate to change the proportion or displacement of defoaming agent based on the results, and the existing filling system consumes a large amount of defoaming agent raw materials, and the economic benefits cannot be improved in the long term.
发明内容Contents of the invention
本发明针对现有技术的缺陷,提供了一种井口泡沫检测装置和方法。能够实时检测管道中的泡沫含量,准确指导投放消泡剂的比例或排量。In view of the shortcomings of the prior art, the present invention provides a wellhead foam detection device and method. It can detect the foam content in the pipeline in real time and accurately guide the proportion or displacement of defoaming agent.
为了实现以上发明目的,本发明采取的技术方案如下:In order to achieve the above object of the invention, the technical solutions adopted by the present invention are as follows:
一种井口泡沫检测装置,包括:玻璃管8、管道锁紧环1、环形导轨2、滑动模块、相机模块6、光源模块9、电动机10和计算机;A wellhead foam detection device, including: glass tube 8, pipe locking ring 1, annular guide rail 2, sliding module, camera module 6, light source module 9, motor 10 and computer;
玻璃管8通过焊接和采气的管道相连,管道锁紧环1为环形,其内径与玻璃管8的外径过盈配合,两个管道锁紧环1分别套入玻璃管8的两端并固定,环形导轨2的外壁上下两端点设有凸起,凸起的侧面开设一个孔洞,管道锁紧环1的外壁上下两端点也设有凸起,凸起的侧面相对应位置也开有孔洞,通过螺栓穿入孔洞将两个环形导轨2对称镜像与两个管道锁紧环1固定连接,环形导轨2内壁和外壁均设有沿环形周向布置的滑槽;The glass tube 8 is connected to the gas production pipeline through welding. The pipeline locking ring 1 is annular, and its inner diameter is an interference fit with the outer diameter of the glass tube 8. The two pipeline locking rings 1 are respectively inserted into the two ends of the glass tube 8 and Fixed, the outer wall of the annular guide rail 2 is provided with protrusions at the upper and lower end points, and a hole is opened on the side of the protrusion. The upper and lower end points of the outer wall of the pipe locking ring 1 are also provided with protrusions, and holes are also opened at corresponding positions on the side of the protrusion. , the two annular guide rails 2 are symmetrically mirrored and fixedly connected to the two pipe locking rings 1 through bolt penetration holes, and the inner and outer walls of the annular guide rails 2 are provided with chute arranged along the annular circumference;
滑动模块有两组,两组滑动模块对称镜像分别安装在两个环形导轨2上,一组滑动模块上固定安装相机模块6,另一组滑动模块上固定安装光源模块9,相机模块6和光源模块9始终保持对准玻璃管8,且相机模块6和光源模块9的镜像位置不变。There are two sets of sliding modules. The two sets of sliding modules are symmetrically installed on two annular guide rails 2. The camera module 6 is fixedly installed on one set of sliding modules, and the light source module 9, camera module 6 and light source are fixedly installed on the other set of sliding modules. The module 9 always remains aligned with the glass tube 8, and the mirror positions of the camera module 6 and the light source module 9 remain unchanged.
滑动模块通过电动机10带动绕滑槽旋转一圈;进而相机模块6拍摄玻璃管8内一圈完整的图像,电动机10、相机模块6和光源模块9通过计算机控制工作,相机模块6将拍摄的图像传输给计算机,光源模块9用于补充玻璃管8内的光线方便相机模块6拍摄,图像通过计算机的显示器11显示,计算机内安装图像处理器12,图像处理器12通过计算图像中暗处和明处的面积的比例,得到管道中的泡沫含量。The sliding module is driven by the motor 10 to rotate around the chute; then the camera module 6 captures a complete image of a circle inside the glass tube 8. The motor 10, camera module 6 and light source module 9 work under computer control, and the camera module 6 captures the captured image. Transmitted to the computer, the light source module 9 is used to supplement the light in the glass tube 8 to facilitate shooting by the camera module 6. The image is displayed through the display 11 of the computer. An image processor 12 is installed in the computer. The image processor 12 calculates the dark and bright areas in the image. The foam content in the pipe is obtained as a proportion of the area.
进一步地,所述滑动模块包括:两块圆弧连接板5、四个圆柱接头4、四个轮毂3和一根连接杆7;Further, the sliding module includes: two arc connecting plates 5, four cylindrical joints 4, four hubs 3 and a connecting rod 7;
一块圆弧连接板5一侧面的上下两端分别连接一个圆柱接头4,一个圆柱接头4上安装一个轮毂3,两个轮毂3对称分布并配合环形导轨2内壁和外壁的滑槽实现周向滑动,另一块圆弧连接板5也对称镜像安装在环形导轨2上;两块圆弧连接板5之间通过连接杆7连接;The upper and lower ends of one side of an arc connecting plate 5 are connected to a cylindrical joint 4 respectively. A hub 3 is installed on a cylindrical joint 4. The two hubs 3 are symmetrically distributed and cooperate with the chute on the inner and outer walls of the annular guide rail 2 to achieve circumferential sliding. , another arc connecting plate 5 is also installed symmetrically and mirrored on the annular guide rail 2; the two arc connecting plates 5 are connected by a connecting rod 7;
一组滑动模块的连接杆7上固定安装相机模块6,另一组滑动模块的连接杆7上固定安装光源模块9。The camera module 6 is fixedly installed on the connecting rod 7 of one group of sliding modules, and the light source module 9 is fixedly installed on the connecting rod 7 of the other group of sliding modules.
本发明还公开了一种井口泡沫检测方法,包括以下步骤:The invention also discloses a wellhead foam detection method, which includes the following steps:
电动机10带动轮毂3绕滑槽顺时针旋转一圈,使相机模块6拍摄下一圈完整的管道内泡沫状态图像,然后电动机10带动轮毂3绕滑槽逆时针旋转一圈,使线圈复位避免缠绕,显示器11将拍摄的图像进行显示,便于直接观察管道内泡沫状态,若管道内存在泡沫,则显示的图像会产生明暗不同的区域,图像处理器12通过计算图像中暗处和明处的面积的比例,可以得到管道中的泡沫含量。The motor 10 drives the hub 3 to rotate clockwise around the chute, allowing the camera module 6 to capture a complete image of the foam state in the pipe. Then the motor 10 drives the hub 3 to rotate counterclockwise around the chute to reset the coil and avoid entanglement. , the display 11 displays the captured image to facilitate direct observation of the foam state in the pipe. If there is foam in the pipe, the displayed image will produce areas with different light and dark areas. The image processor 12 calculates the area of the dark and bright areas in the image. ratio, the foam content in the pipe can be obtained.
设显示器显示的圆形面积为S,圆形面积中明处面积之和为S1。则:Assume that the circular area displayed on the monitor is S, and the sum of the bright areas of the circular area is S 1 . but:
S2=S-S1 S 2 =SS 1
式中:S2为暗处面积之和,K为管道中泡沫含量。In the formula: S 2 is the sum of the dark areas, and K is the foam content in the pipe.
与现有技术相比,本发明的优点在于:Compared with the prior art, the advantages of the present invention are:
1、通过摄像机对玻璃管进行环绕拍摄,能直接得到管道内泡沫的状态。1. By using a camera to surround the glass pipe, you can directly obtain the state of the foam in the pipe.
2、通过对拍摄图像进行处理,能够实现管道内泡沫含量的实时显示。2. By processing the captured images, the foam content in the pipeline can be displayed in real time.
3、通过泡沫含量的多少,指导投放对应排量和比例的消泡剂,降低成本,提高经济效益。3. Based on the foam content, the defoaming agent with corresponding displacement and proportion is guided to reduce costs and improve economic benefits.
附图说明Description of the drawings
图1为本发明实施例井口泡沫检测装置剖面结构示意图;Figure 1 is a schematic cross-sectional structural diagram of a wellhead foam detection device according to an embodiment of the present invention;
图2为本发明实施例井口泡沫检测装置结构示意图;Figure 2 is a schematic structural diagram of a wellhead foam detection device according to an embodiment of the present invention;
图3为本发明实施例显示器显示的图像示意图;Figure 3 is a schematic diagram of an image displayed on a display according to an embodiment of the present invention;
图中:1-管道锁紧环,2-导轨,3-轮毂,4-圆柱接头,5-圆弧连接板,6-相机模块,7-连接杆,8-玻璃管,9-光源模块,10-电动机,11-显示器,12-图像处理器。In the picture: 1-pipe locking ring, 2-guide rail, 3-hub, 4-cylindrical joint, 5-arc connecting plate, 6-camera module, 7-connecting rod, 8-glass tube, 9-light source module, 10-Motor, 11-Display, 12-Image processor.
具体实施方式Detailed ways
为使本发明的目的、技术方案及优点更加清楚明白,以下根据附图并列举实施例,对本发明做进一步详细说明。In order to make the purpose, technical solutions and advantages of the present invention more clear, the present invention will be further described in detail below based on the accompanying drawings and examples.
在本发明的描述中,需要理解的是,术语“周向”、“径向”“顺时针”、等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。In the description of the present invention, it should be understood that the orientation or positional relationship indicated by the terms "circumferential", "radial", "clockwise", etc. are based on the orientation or positional relationship shown in the drawings, and are only for convenience. The invention is described and the description is simplified without indicating or implying that the device or element referred to must have a particular orientation, be constructed and operate in a particular orientation, and therefore is not to be construed as a limitation of the invention.
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。In the present invention, unless otherwise clearly stated and limited, the terms "installation", "connection", "connection", "fixing" and other terms should be understood in a broad sense. For example, it can be a fixed connection or a detachable connection. , or integrated; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium; it can be an internal connection between two elements or an interaction between two elements. For those of ordinary skill in the art, the specific meanings of the above terms in the present invention can be understood according to specific circumstances.
如图1和2所示,一种井口泡沫检测装置,包括:玻璃管8、管道锁紧环1、环形导轨2、滑动模块、相机模块6和光源模块9,As shown in Figures 1 and 2, a wellhead foam detection device includes: glass tube 8, pipe locking ring 1, annular guide rail 2, sliding module, camera module 6 and light source module 9,
玻璃管8通过焊接和采气的管道相连,管道锁紧环1为环形,其内径与玻璃管8的外径过盈配合,两个管道锁紧环1分别套入玻璃管8的两端并固定,环形导轨2的外壁上下两端点设有凸起,凸起的侧面开设一个孔洞,管道锁紧环1的外壁上下两端点也设有凸起,凸起的侧面相对应位置也开有孔洞,通过螺栓穿入孔洞将两个环形导轨2对称镜像与两个管道锁紧环1固定连接,环形导轨2内壁和外壁均设有沿环形周向布置的滑槽;The glass tube 8 is connected to the gas production pipeline through welding. The pipeline locking ring 1 is annular, and its inner diameter is an interference fit with the outer diameter of the glass tube 8. The two pipeline locking rings 1 are respectively inserted into the two ends of the glass tube 8 and Fixed, the outer wall of the annular guide rail 2 is provided with protrusions at the upper and lower end points, and a hole is opened on the side of the protrusion. The upper and lower end points of the outer wall of the pipe locking ring 1 are also provided with protrusions, and holes are also opened at corresponding positions on the side of the protrusion. , the two annular guide rails 2 are symmetrically mirrored and fixedly connected to the two pipe locking rings 1 through bolt penetration holes, and the inner and outer walls of the annular guide rails 2 are provided with chute arranged along the annular circumference;
滑动模块有两组,一组滑动模块包括:两块圆弧连接板5、四个圆柱接头4、四个轮毂3和一根连接杆7;There are two sets of sliding modules. One set of sliding modules includes: two arc connecting plates 5, four cylindrical joints 4, four hubs 3 and a connecting rod 7;
一块圆弧连接板5一侧面的上下两端分别连接一个圆柱接头4,一个圆柱接头4上安装一个轮毂3,两个轮毂3对称分布并配合环形导轨2内壁和外壁的滑槽实现周向滑动,另一块圆弧连接板5也对称镜像安装在环形导轨2上;两块圆弧连接板5之间通过连接杆7连接;The upper and lower ends of one side of an arc connecting plate 5 are connected to a cylindrical joint 4 respectively. A hub 3 is installed on a cylindrical joint 4. The two hubs 3 are symmetrically distributed and cooperate with the chute on the inner and outer walls of the annular guide rail 2 to achieve circumferential sliding. , another arc connecting plate 5 is also installed symmetrically and mirrored on the annular guide rail 2; the two arc connecting plates 5 are connected by a connecting rod 7;
两组滑动模块对称镜像安装在环形导轨2上,一组滑动模块的连接杆7上固定安装相机模块6,另一组滑动模块的连接杆7上固定安装光源模块9,相机模块6和光源模块9始终保持对准玻璃管8的镜像位置不变。Two sets of sliding modules are installed symmetrically and mirrored on the annular guide rail 2. The camera module 6 is fixedly installed on the connecting rod 7 of one group of sliding modules, and the light source module 9, camera module 6 and light source module are fixedly installed on the connecting rod 7 of the other group of sliding modules. 9 Always keep the mirror position aligned with the glass tube 8 unchanged.
轮毂3通过电动机10带动绕滑槽旋转一圈;进而相机模块6拍摄玻璃管8内一圈完整的图像,电动机10、相机模块6和光源模块9通过计算机控制工作,相机模块6将拍摄的图像传输给计算机,光源模块9用于补充玻璃管8内的光线方便相机模块6拍摄,图像通过计算机的显示器11显示,计算机内安装图像处理器12,图像处理器12通过计算图像中暗处和明处的面积的比例,得到管道中的泡沫含量。The wheel hub 3 is driven by the motor 10 to rotate around the chute; then the camera module 6 captures a complete image of a circle inside the glass tube 8. The motor 10, camera module 6 and light source module 9 work under computer control, and the camera module 6 captures the captured image. Transmitted to the computer, the light source module 9 is used to supplement the light in the glass tube 8 to facilitate shooting by the camera module 6. The image is displayed through the display 11 of the computer. An image processor 12 is installed in the computer. The image processor 12 calculates the dark and bright areas in the image. The foam content in the pipe is obtained as a proportion of the area.
一种井口泡沫检测方法,包括以下步骤:A wellhead foam detection method includes the following steps:
电动机10带动轮毂3绕滑槽顺时针旋转一圈,使相机模块6拍摄下一圈完整的管道内泡沫状态图像,然后电动机10带动轮毂3绕滑槽逆时针旋转一圈,使线圈复位避免缠绕,显示器11将拍摄的图像进行显示,便于直接观察管道内泡沫状态,若管道内存在泡沫,则显示的图像会产生明暗不同的区域(图3),图像处理器12通过计算图像中暗处和明处的面积的比例,可以得到管道中的泡沫含量。The motor 10 drives the hub 3 to rotate clockwise around the chute, allowing the camera module 6 to capture a complete image of the foam state in the pipe. Then the motor 10 drives the hub 3 to rotate counterclockwise around the chute to reset the coil and avoid entanglement. , the display 11 displays the captured image to facilitate direct observation of the foam state in the pipe. If there is foam in the pipe, the displayed image will produce areas with different light and dark areas (Fig. 3). The image processor 12 calculates the dark and dark areas in the image. The foam content in the pipe can be obtained by measuring the ratio of the bright area.
设显示器显示的圆形面积为S,圆形面积中明处面积之和为S1。则:Assume that the circular area displayed on the monitor is S, and the sum of the bright areas of the circular area is S 1 . but:
S2=S-S1 S 2 =SS 1
式中:S2为暗处面积之和,K为管道中泡沫含量。In the formula: S 2 is the sum of the dark areas, and K is the foam content in the pipe.
本领域的普通技术人员将会意识到,这里所述的实施例是为了帮助读者理解本发明的实施方法,应被理解为本发明的保护范围并不局限于这样的特别陈述和实施例。本领域的普通技术人员可以根据本发明公开的这些技术启示做出各种不脱离本发明实质的其它各种具体变形和组合,这些变形和组合仍然在本发明的保护范围内。Those of ordinary skill in the art will realize that the embodiments described here are to help readers understand the implementation methods of the present invention, and it should be understood that the protection scope of the present invention is not limited to such specific statements and embodiments. Those of ordinary skill in the art can make various other specific modifications and combinations based on the technical teachings disclosed in the present invention without departing from the essence of the present invention, and these modifications and combinations are still within the protection scope of the present invention.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210140850.6A CN114460008B (en) | 2022-02-16 | 2022-02-16 | Wellhead foam detection device and method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210140850.6A CN114460008B (en) | 2022-02-16 | 2022-02-16 | Wellhead foam detection device and method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114460008A CN114460008A (en) | 2022-05-10 |
CN114460008B true CN114460008B (en) | 2023-11-21 |
Family
ID=81414574
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210140850.6A Active CN114460008B (en) | 2022-02-16 | 2022-02-16 | Wellhead foam detection device and method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114460008B (en) |
Citations (35)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1151748A (en) * | 1997-07-31 | 1999-02-26 | Nippon Paper Ind Co Ltd | Liquid surface imaging device and method, liquid surface state observation device and method, liquid flow rate control device and defoamer dose control device using them |
JPH11106224A (en) * | 1997-09-30 | 1999-04-20 | Toshiba Ceramics Co Ltd | Device for detecting bubble of quartz pipe |
JP2000060426A (en) * | 1998-08-20 | 2000-02-29 | Morinaga Milk Ind Co Ltd | Method for specifying average cell diameter of whipped food, method for specifying average cell diameter of whipped food manufactured continuously, and method and apparatus for continuous production of whipped food |
JP2003248382A (en) * | 2002-02-25 | 2003-09-05 | Pfu Ltd | Image carrier structure of electrophotographic device |
JP2006090743A (en) * | 2004-09-21 | 2006-04-06 | Kanto Auto Works Ltd | Device and method for inspecting inside of foam body |
EP2085763A2 (en) * | 2008-01-30 | 2009-08-05 | Palo Alto Research Center Incorporated | Obtaining Sensing Results and/or Data in Response to Object Detection |
WO2010042455A1 (en) * | 2008-10-08 | 2010-04-15 | George Howell Coffee Company, Llc | Method and apparatus for brewing coffee via universal coffee brewing chart generation |
CN101701922A (en) * | 2009-11-19 | 2010-05-05 | 西北工业大学 | A device for optical non-destructive testing of annular inner wall surface |
WO2012011438A1 (en) * | 2010-07-20 | 2012-01-26 | 日本電気硝子株式会社 | Device and method for detecting bubble in transparent tube |
JP2013044688A (en) * | 2011-08-25 | 2013-03-04 | Mutual Corp | Air bubble discrimination and examination apparatus and air bubble discrimination and examination method |
JP2013234571A (en) * | 2013-08-28 | 2013-11-21 | Taruno Kazuo | Lifetime care system |
JP2014153055A (en) * | 2013-02-04 | 2014-08-25 | Toyota Motor Corp | Air bubble inspection device and air bubble inspection method |
CN104914114A (en) * | 2015-05-22 | 2015-09-16 | 芜湖林一电子科技有限公司 | Glass tube bubble foreign matter visual inspection device |
AU2015221546A1 (en) * | 2010-11-29 | 2015-09-24 | Agilent Technologies, Inc. | Methods and systems for analyzing images of specimens processed by a programmable quantitative assay |
CN105044205A (en) * | 2015-04-17 | 2015-11-11 | 北京理工大学 | Gas-liquid two-phase flow ultrasound flexibility array detection method based on probabilistic algorithmic |
CN105334261A (en) * | 2014-07-11 | 2016-02-17 | 重庆海扶医疗科技股份有限公司 | Liquid oxygen content detection system and method |
CN105738284A (en) * | 2016-02-26 | 2016-07-06 | 东莞正扬电子机械有限公司 | Optical concentration sensor protection cover and optical concentration testing device |
CN107289856A (en) * | 2017-05-09 | 2017-10-24 | 南京理工大学 | A kind of method that pipeline dimensional orientation is measured based on cmos image sensor |
CN109211912A (en) * | 2018-08-02 | 2019-01-15 | 西南石油大学 | A kind of foam fracturing fluid prop-carrying capacity evaluating apparatus and working method |
CN109883888A (en) * | 2019-03-04 | 2019-06-14 | 常州大学 | A high temperature and high pressure foam stability and viscosity evaluation device and evaluation method |
CN110006962A (en) * | 2019-04-24 | 2019-07-12 | 重庆文理学院 | Capacitance Tomography Detection Method of Combustible Bubbles in Pipeline Sewage |
CN209861016U (en) * | 2019-08-14 | 2019-12-27 | 褚殿慧 | Annular shooting device |
CN210720183U (en) * | 2019-10-13 | 2020-06-09 | 嘉兴市环环通塑业有限公司 | Pipeline defect detection device |
JP2020101839A (en) * | 2020-04-01 | 2020-07-02 | 株式会社イノアックコーポレーション | Cleaner and method for manufacturing the same |
CN211263105U (en) * | 2019-12-18 | 2020-08-14 | 湖南菲尔斯特传感器有限公司 | Particle counter based on camera imaging method |
CN111830795A (en) * | 2020-07-15 | 2020-10-27 | 浙江启尔机电技术有限公司 | Tool and method for detecting micro-bubbles in immersion flow field of immersion lithography machine |
CN112098338A (en) * | 2020-09-14 | 2020-12-18 | 西南石油大学 | A wellhead foam content detection sensor |
CN112412438A (en) * | 2020-12-18 | 2021-02-26 | 西南石油大学 | Bottom hole accumulated liquid real-time monitoring system |
CN112485200A (en) * | 2020-11-27 | 2021-03-12 | 西南石油大学 | Modularization well head foam content detection device |
CN213021444U (en) * | 2020-06-30 | 2021-04-20 | 昆山达而远视觉自动化有限公司 | Polishing structure of square-needle bubble point detection system |
CN213121610U (en) * | 2020-09-09 | 2021-05-04 | 西南石油大学 | Parallel foam quantity automatic detection device for foam drainage gas production |
CN213933562U (en) * | 2020-08-21 | 2021-08-10 | 广州新视智能设备有限公司 | Bottle bottom shooting device and bottle bottom detection equipment |
CN214622335U (en) * | 2021-02-08 | 2021-11-05 | 南通市食品药品监督检验中心 | Aquatic product formaldehyde rapid detection device based on visible smell fingerprint technology |
WO2021260535A1 (en) * | 2020-06-22 | 2021-12-30 | Blue Cube Technology (Pty) Ltd | Apparatus and method for analysis of a moving slurry |
CN113899737A (en) * | 2021-08-12 | 2022-01-07 | 灵动智能光学(杭州)有限公司 | A method, device, electronic device and medium for detecting seabed bubbles |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002202258A (en) * | 2000-12-28 | 2002-07-19 | Bios Ikagaku Kenkyusho:Kk | Spectroscopic blood sugar level measuring instrument |
KR20030046616A (en) * | 2001-12-06 | 2003-06-18 | 삼성전자주식회사 | Micro-bubble analyzing apparatus for high-purity glass tube using laser light scattering |
WO2017143590A1 (en) * | 2016-02-26 | 2017-08-31 | 东莞正扬电子机械有限公司 | Optical density sensor protective casing and optical density testing device |
DE102018107590B4 (en) * | 2018-03-29 | 2022-08-11 | Sita Messtechnik Gmbh | foam analyzer |
-
2022
- 2022-02-16 CN CN202210140850.6A patent/CN114460008B/en active Active
Patent Citations (35)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1151748A (en) * | 1997-07-31 | 1999-02-26 | Nippon Paper Ind Co Ltd | Liquid surface imaging device and method, liquid surface state observation device and method, liquid flow rate control device and defoamer dose control device using them |
JPH11106224A (en) * | 1997-09-30 | 1999-04-20 | Toshiba Ceramics Co Ltd | Device for detecting bubble of quartz pipe |
JP2000060426A (en) * | 1998-08-20 | 2000-02-29 | Morinaga Milk Ind Co Ltd | Method for specifying average cell diameter of whipped food, method for specifying average cell diameter of whipped food manufactured continuously, and method and apparatus for continuous production of whipped food |
JP2003248382A (en) * | 2002-02-25 | 2003-09-05 | Pfu Ltd | Image carrier structure of electrophotographic device |
JP2006090743A (en) * | 2004-09-21 | 2006-04-06 | Kanto Auto Works Ltd | Device and method for inspecting inside of foam body |
EP2085763A2 (en) * | 2008-01-30 | 2009-08-05 | Palo Alto Research Center Incorporated | Obtaining Sensing Results and/or Data in Response to Object Detection |
WO2010042455A1 (en) * | 2008-10-08 | 2010-04-15 | George Howell Coffee Company, Llc | Method and apparatus for brewing coffee via universal coffee brewing chart generation |
CN101701922A (en) * | 2009-11-19 | 2010-05-05 | 西北工业大学 | A device for optical non-destructive testing of annular inner wall surface |
WO2012011438A1 (en) * | 2010-07-20 | 2012-01-26 | 日本電気硝子株式会社 | Device and method for detecting bubble in transparent tube |
AU2015221546A1 (en) * | 2010-11-29 | 2015-09-24 | Agilent Technologies, Inc. | Methods and systems for analyzing images of specimens processed by a programmable quantitative assay |
JP2013044688A (en) * | 2011-08-25 | 2013-03-04 | Mutual Corp | Air bubble discrimination and examination apparatus and air bubble discrimination and examination method |
JP2014153055A (en) * | 2013-02-04 | 2014-08-25 | Toyota Motor Corp | Air bubble inspection device and air bubble inspection method |
JP2013234571A (en) * | 2013-08-28 | 2013-11-21 | Taruno Kazuo | Lifetime care system |
CN105334261A (en) * | 2014-07-11 | 2016-02-17 | 重庆海扶医疗科技股份有限公司 | Liquid oxygen content detection system and method |
CN105044205A (en) * | 2015-04-17 | 2015-11-11 | 北京理工大学 | Gas-liquid two-phase flow ultrasound flexibility array detection method based on probabilistic algorithmic |
CN104914114A (en) * | 2015-05-22 | 2015-09-16 | 芜湖林一电子科技有限公司 | Glass tube bubble foreign matter visual inspection device |
CN105738284A (en) * | 2016-02-26 | 2016-07-06 | 东莞正扬电子机械有限公司 | Optical concentration sensor protection cover and optical concentration testing device |
CN107289856A (en) * | 2017-05-09 | 2017-10-24 | 南京理工大学 | A kind of method that pipeline dimensional orientation is measured based on cmos image sensor |
CN109211912A (en) * | 2018-08-02 | 2019-01-15 | 西南石油大学 | A kind of foam fracturing fluid prop-carrying capacity evaluating apparatus and working method |
CN109883888A (en) * | 2019-03-04 | 2019-06-14 | 常州大学 | A high temperature and high pressure foam stability and viscosity evaluation device and evaluation method |
CN110006962A (en) * | 2019-04-24 | 2019-07-12 | 重庆文理学院 | Capacitance Tomography Detection Method of Combustible Bubbles in Pipeline Sewage |
CN209861016U (en) * | 2019-08-14 | 2019-12-27 | 褚殿慧 | Annular shooting device |
CN210720183U (en) * | 2019-10-13 | 2020-06-09 | 嘉兴市环环通塑业有限公司 | Pipeline defect detection device |
CN211263105U (en) * | 2019-12-18 | 2020-08-14 | 湖南菲尔斯特传感器有限公司 | Particle counter based on camera imaging method |
JP2020101839A (en) * | 2020-04-01 | 2020-07-02 | 株式会社イノアックコーポレーション | Cleaner and method for manufacturing the same |
WO2021260535A1 (en) * | 2020-06-22 | 2021-12-30 | Blue Cube Technology (Pty) Ltd | Apparatus and method for analysis of a moving slurry |
CN213021444U (en) * | 2020-06-30 | 2021-04-20 | 昆山达而远视觉自动化有限公司 | Polishing structure of square-needle bubble point detection system |
CN111830795A (en) * | 2020-07-15 | 2020-10-27 | 浙江启尔机电技术有限公司 | Tool and method for detecting micro-bubbles in immersion flow field of immersion lithography machine |
CN213933562U (en) * | 2020-08-21 | 2021-08-10 | 广州新视智能设备有限公司 | Bottle bottom shooting device and bottle bottom detection equipment |
CN213121610U (en) * | 2020-09-09 | 2021-05-04 | 西南石油大学 | Parallel foam quantity automatic detection device for foam drainage gas production |
CN112098338A (en) * | 2020-09-14 | 2020-12-18 | 西南石油大学 | A wellhead foam content detection sensor |
CN112485200A (en) * | 2020-11-27 | 2021-03-12 | 西南石油大学 | Modularization well head foam content detection device |
CN112412438A (en) * | 2020-12-18 | 2021-02-26 | 西南石油大学 | Bottom hole accumulated liquid real-time monitoring system |
CN214622335U (en) * | 2021-02-08 | 2021-11-05 | 南通市食品药品监督检验中心 | Aquatic product formaldehyde rapid detection device based on visible smell fingerprint technology |
CN113899737A (en) * | 2021-08-12 | 2022-01-07 | 灵动智能光学(杭州)有限公司 | A method, device, electronic device and medium for detecting seabed bubbles |
Non-Patent Citations (6)
Title |
---|
Froth image feature engineering-based prediction method for concentrate ash content of coal flotation;Wen Zhiping 等;《Minerals Engineering》;第170卷;第1-10页 * |
TiH2含量对粉末冶金泡沫铝孔结构的影响;刘斌 等;《东南大学学报(自然科学版)》;第35卷(第2期);第257-260页 * |
低固相微泡沫钻井液的室内研究;陈二丁 等;《内蒙古石油化工》;第39卷(第21期);第132-135页 * |
基坑肥槽回填土渗透性试验研究;熊柱红 等;《四川建筑科学研究》;第47卷(第6期);第52-57页 * |
多孔介质中流动泡沫结构图像的实时采集与定量描述;侯健 等;《石油学报》;第33卷(第6期);第658-662页 * |
熊柱红 等.基坑肥槽回填土渗透性试验研究.《四川建筑科学研究》.2021,第47卷(第6期),第52-57页. * |
Also Published As
Publication number | Publication date |
---|---|
CN114460008A (en) | 2022-05-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110286127B (en) | Laser scale endoscopic sleeve grouting defect detection device and method | |
CN105864644B (en) | Intelligent detector for deep sea submarine pipelines and detection method | |
CN102323274B (en) | Omnidirectional imaging-based method and system for detecting inner wall of steel pipe | |
CN103115245B (en) | Pipeline detection device based on piezomagnetic effect | |
CN110672877A (en) | Underground water flow direction and flow velocity monitoring device and method | |
CN114460008B (en) | Wellhead foam detection device and method | |
CN110145653A (en) | A pipeline intelligent detection robot and detection method | |
CN104101569B (en) | A kind of monitoring water environment system | |
CN212312040U (en) | Intelligent inspection robot for comprehensive pipe rack | |
CN206635833U (en) | Detect imager in the hole of pile for prestressed pipe | |
CN111981327A (en) | A system and method for detecting and locating leaks in long-distance fluid conveying pipelines | |
CN105898236B (en) | Intelligentized digital motor drilling panorama camera device | |
CN114440053A (en) | A robot for deformation monitoring of drainage pipes | |
CN208059799U (en) | A kind of crack detection system | |
CN113775033A (en) | Method and system for checking hidden environmental hazards of underground sewage pipeline | |
KR101357810B1 (en) | capsule check system for check in tube. | |
CN209120356U (en) | Heating network moves cruising inspection system | |
CN108152300A (en) | A kind of inner wall of the pipe flaw inspection device | |
CN111059407A (en) | Robot suitable for pipeline detection | |
CN106027965A (en) | Panorama camera shooting method of intelligent digital drilling panoramic camera device | |
CN205793028U (en) | Intelligentized digital motor boring panorama camera device | |
CN209656001U (en) | A kind of Technique of Subsea Pipeline Inspection device | |
CN207279140U (en) | A kind of modularization Work machine platform for pipe with small pipe diameter water supply line | |
CN223063677U (en) | Water supply and drainage safety monitoring and collecting system | |
CN111206629A (en) | 360-degree panoramic ultrasonic pore-forming three-dimensional imaging detector |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |