JP3602167B2 - Operation control device for power plant - Google Patents

Operation control device for power plant Download PDF

Info

Publication number
JP3602167B2
JP3602167B2 JP22056494A JP22056494A JP3602167B2 JP 3602167 B2 JP3602167 B2 JP 3602167B2 JP 22056494 A JP22056494 A JP 22056494A JP 22056494 A JP22056494 A JP 22056494A JP 3602167 B2 JP3602167 B2 JP 3602167B2
Authority
JP
Japan
Prior art keywords
pressure
steam
low
header
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP22056494A
Other languages
Japanese (ja)
Other versions
JPH0882203A (en
Inventor
洋一 喜多
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP22056494A priority Critical patent/JP3602167B2/en
Publication of JPH0882203A publication Critical patent/JPH0882203A/en
Application granted granted Critical
Publication of JP3602167B2 publication Critical patent/JP3602167B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
    • Y02P80/15On-site combined power, heat or cool generation or distribution, e.g. combined heat and power [CHP] supply

Landscapes

  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)

Description

【0001】
【産業上の利用分野】
本発明は蒸気発生設備と蒸気タービンとを備えた発電プラント(以下BTGプラントと呼ぶ)において、特に増設された制御性の良い蒸気タービンと燃費効率は高いが制御性の悪い蒸気発生装置とを組合せたBTGプラントの運転制御装置に関する。
【0002】
【従来の技術】
最近、この種のBTGプラントにおいては、工場の生産量の増大に伴って使用される電力と蒸気の需要増加に対応するため、蒸気発生設備やタービン設備を増設するケースが多くなっている。
【0003】
図5はBTGプラントの一例を示す構成図である。
図5において、1は既設のオイルボイラ(OB)で、このオイルボイラ1から発生する蒸気は低圧側蒸気ヘッダ(LH)2に供給される。また、3はこの低圧側蒸気ヘッダ2よりガバナ4を介して流入する蒸気圧により回転動作して発電機5を駆動する既設の低圧蒸気タービン(ST1)で、この低圧蒸気タービン3より抽気された蒸気は抽気制御弁6を介して負荷送気ヘッダ(DH)7に送気され、また低圧蒸気タービン3より排気される蒸気は復水器8により復水される。
【0004】
一方、9は新設の石炭ボイラ(CB)で、この石炭ボイラ9から発生する蒸気は高圧側蒸気ヘッダ(HH)10に供給される。また、11はこの高圧側蒸気ヘッダ10よりガバナ12を介して流入する蒸気圧により回転動作して発電機13を駆動する新設の高圧蒸気タービン(ST2)で、この高圧蒸気タービン11より抽気された蒸気は抽気制御弁14を介して負荷送気ヘッダ(DH)7に送気され、また高圧蒸気タービン11より排気される蒸気は復水器15により復水される。
【0005】
そして、高圧側蒸気ヘッダ10と低圧側蒸気ヘッダ2との間は減圧弁(RPV)16を介して接続され、また負荷送気ヘッダ7には工場負荷で消費できない余剰蒸気を外部へ放出する蒸気放出弁(EXV)17が接続されている。
【0006】
ところで、このようなBTGプラントにあっては、石炭ボイラのように燃費効率は高いが制御性の良くない機器もある。しかし、一般的に言えば新設機器は高温、高圧、大容量の最新鋭機器であるのに対して、既設機器は低温、低圧、小用量の機器が多く、また制御性も概ね新設機器の方がよい。
【0007】
従って、増設のあったBTGプラントでは、新設機器の方が制御し易いこと、設備容量が大きく調整幅が大きいこと等の理由から、蒸気負荷変動の吸収を新設機器側で行っていることが多い。
【0008】
従来、上述したBTGプラントの運転制御装置は、既設機器及び新設機器に対して図6に示すような制御構成として運転するようにしている。
図6において、18は負荷送気ヘッダ7の蒸気圧力を圧力検出器19により検出して既設の低圧蒸気タービン3側の抽気制御弁6を制御する抽気制御器、20は負荷送気ヘッダ7の蒸気圧力を圧力検出器21により検出して新設の高圧蒸気タービン11側の抽気制御弁14を制御する抽気制御器である。
【0009】
また、22は高圧側蒸気ヘッダ10の蒸気圧力を圧力検出器23により検出して石炭ボイラ9の燃料を調節し、発生蒸気量を制御する高圧蒸気発生量制御器、24は低圧側の蒸気ヘッダ2の蒸気圧力を圧力検出器25により検出して減圧弁16を制御し、高圧側蒸気ヘッダ10から低圧側蒸気ヘッダ2に流入する蒸気量を制御する蒸気ヘッダ制御器、26は高圧側蒸気ヘッダ10の蒸気圧力を圧力検出器27により検出して蒸気放出弁17を制御する蒸気放出制御装置である。
【0010】
さらに、28は既設の低圧蒸気タービン3により駆動される発電機5の発電量を検出してガバナ4を制御する発電量制御器、29は新設の蒸気タービン11により駆動される発電機13の発電量を検出してガバナ12を制御する発電量制御器である。
【0011】
次にこのような制御構成による制御動作を図7により説明する。
工場負荷が増えると負荷送気ヘッダ7の蒸気圧力が下がり、また工場負荷が減れば負荷送気ヘッダ7の蒸気圧力が上がるが、何ずれにしても負荷送気圧を一定に保つべく低圧蒸気タービン3、高圧蒸気タービン11の抽気圧制御が働く。
【0012】
いま、制御性の良い新設タービン(ST2)側で負荷変動を吸収する場合について述べるに、図7に示すように負荷ヘッダ圧検出部Aで負荷送気ヘッダ7の蒸気圧力が検出され、抽気制御部Bにて抽気制御弁14を制御すると、高圧蒸気タービン11の抽気量が変化する。すると、発電量制御部Cでは発電機13の出力を一定にすべくガバナ12を制御し、高圧側蒸気ヘッダ10より高圧蒸気タービン11に流入する主蒸気量が変化するので、高圧側蒸気ヘッダ10の蒸気圧が変化する。
【0013】
このとき、高圧蒸気発生量制御部Dでは高圧側蒸気ヘッダ10の蒸気圧力を検出し、石炭ボイラ9の燃料を調節し、発生蒸気量を制御する。
また、高圧ヘッダ圧チェック部Eにて高圧側蒸気ヘッダ10の蒸気圧力をチェックし、その蒸気ヘッダ圧が異常に高くなったときのみ蒸気放出制御部Fにて蒸気放圧弁17を開放する。
【0014】
さらに、減圧弁16は低圧側蒸気ヘッダ2の蒸気圧力が一定になるように制御される。
ここで、工場の蒸気負荷が図8に示すように減少したとすると、高圧蒸気タービンST2及び低圧蒸気タービンST1の蒸気抽気量はそれぞれ図9に示すような時間で変化する。すなわち、高圧蒸気タービンST2の蒸気抽気量は工場の蒸気負荷の減少に応じて変化するが、低圧蒸気タービンST1の蒸気抽気量はほぼ一定の状態で推移する。
【0015】
また、このとき高圧蒸気タービンST2では抽気量の減少すると、発電量一定制御によりガバナが絞り込まれるため、高圧側蒸気ヘッダ10の蒸気圧力が上昇する。従って、新設の石炭ボイラ9は燃料調節され、蒸気発生量が減少するように制御される。
【0016】
このとき、石炭ボイラ9とオイルボイラ1から発生する蒸気発生量はそれぞれ図11に示すように変化する。すなわち、石炭ボイラ9から発生する蒸気量は燃料調節により変化するが、オイルボイラ1から発生する蒸気量は一定であり、そのトータル蒸気発生量は図10に示すようになる。
【0017】
【発明が解決しようとする課題】
しかし、このような従来のBTGプラントの運転制御装置においては、次のような問題があった。
(1)工場の蒸気負荷が減少したとき、本来ならば燃費効率の良い新設の高圧蒸気タービンを高負荷率で運用し、燃費効率の悪い既設の低圧蒸気タービンを低負荷率で運用したいが、図11に示すように燃費効率の良い石炭ボイラ9からの蒸気発生量を減少させているため、低負荷率となる。
【0018】
また、蒸気タービンの抽気量についても本来ならば燃費効率の悪いタービンの抽気量を減らしたいが、図9からも分かるように燃費効率の良い新設の高圧蒸気タービンの抽気量が減り、燃費効率の悪い低圧蒸気タービンの抽気量は一定となっている。
【0019】
これらのことから、プラント全体の運転効率が低下するという問題がある。
(2)新設された制御性が悪い石炭ボイラ9では、急激な工場の蒸気負荷の変動に追従できないため、高圧側蒸気ヘッダ10の蒸気圧力の異常上昇によりボイラやタービンがトリップし、プラントの運転継続が難しくなる。
【0020】
そこで、このような状況を回避するため、蒸気放圧弁17を制御して大気に蒸気を放出したり、タービンからの蒸気排気量を増やして復水器により水に戻したりしているが、蒸気の放出時間はボイラ発生蒸気量が負荷に見合うまで続くため、その間の蒸気放出によるエネルギーのロスは図11のハッチング部分のようになり、燃費効率の高い運転を行うことができない。
【0021】
本発明は上記のような問題点を解消するためなされたもので、その目的はプラント全体の運転効率及び燃費効率を向上させることができ発電プラントの運転制御装置を提供することにある。
【0022】
【課題を解決するための手段】
本発明は上記の目的を達成するため、制御性の良好な低圧蒸気発生装置より発生する蒸気が供給される低圧側蒸気ヘッダ及び燃費効率の低い高圧蒸気発生装置より発生する蒸気が供給される高圧側蒸気ヘッダ間を減圧弁を介して連絡し、且つ前記低圧側蒸気ヘッダより流入する蒸気圧により発電機を駆動する低圧蒸気タービンを運転すると共に、前記高圧側蒸気ヘッダより流入する蒸気圧により発電機を駆動する高圧蒸気タービンを運転し、前記低圧蒸気タービン及び高圧蒸気タービンよりそれぞれ抽気量制御弁を介して抽気された蒸気を蒸気負荷に送気する負荷送気ヘッドに供給するようにした発電プラントにおいて、前記高圧側蒸気ヘッダの蒸気圧が変化するとその蒸気圧が一定になるように前記減圧弁を制御する減圧弁制御手段と、前記低圧側蒸気ヘッダの蒸気圧が変化するとその蒸気圧が一定になるように前記低圧蒸気発生装置を制御する低圧蒸気発生量制御手段と、前記高圧蒸気タービンの抽気量制御弁を前記低圧側蒸気ヘッダの蒸気圧が一定になるように制御する抽気制御手段と、前記低圧蒸気タービンの抽気量制御弁を前記低圧蒸気タービンの抽気量と前記高圧蒸気タービンの抽気量の配分比率に応じて制御する配分制御手段とを備えたものである。
【0023】
【作用】
このような構成の発電プラントの運転制御装置にあっては、高圧側蒸気ヘッダの蒸気圧が変化すると減圧弁の開度を制御して高圧側蒸気ヘッダの蒸気圧が一定に保持され、また低圧側蒸気ヘッダの蒸気圧の変化に対しては低圧蒸気発生装置の蒸気発生量の制御により低圧側蒸気ヘッダの蒸気圧が一定に保持され、且つ負荷送気ヘッダの蒸気圧に対しては高圧蒸気タービンの抽気量制御弁の開度を負荷送気ヘッダの蒸気圧が一定範囲に保たれるように制御し、また低圧蒸気タービンの抽気量制御弁の開度を抽気量配分比率に応じて徐々に抽気量が変化するように制御すると共に、その変化分に応じて高圧蒸気タービンの抽気量制御弁の開度を制御する。
【0024】
従って、蒸気負荷の変化による負荷送気ヘッダの圧力変動の吸収が制御性の良い高圧蒸気タービンの抽気量を制御することにより速やかに行なわれる共に、高圧側蒸気ヘッダの圧力変動は制御性の良い減圧弁により行われ、また低圧側蒸気ヘッダの圧力変動は制御性の良い低圧側蒸気発生装置により行われ、その後の蒸気負荷変動吸収のために燃費効率の良い抽気量配分からのずれを負荷送気ヘッダの蒸気圧を一定に保ちつつ徐々に変化させて高圧蒸気タービンの抽気量を回復させ、燃費効率のよい高圧蒸気発生装置側に戻すことが可能となる。
【0025】
【実施例】
以下本発明の一実施例を図面を参照して説明する。
図1は本発明によるBTGプラントの運転制御装置の構成例を示すもので、図6と同一部分には同一符号を付して示す。
【0026】
図1において、20は工場の蒸気負荷の変動により変化する負荷送気ヘッダ7の蒸気圧力を圧力検出器21により検出して負荷ヘッダ蒸気圧が一定に保たれるように新設の高圧蒸気タービン11側の抽気制御弁14の開度を制御する抽気制御器である。
【0027】
また、31は高圧蒸気タービン11の抽気量変化に伴い変化する主蒸気量に応じて変化する高圧側蒸気ヘッダ10の蒸気圧力を圧力検出器23により検出して高圧側蒸気ヘッダ10の蒸気圧力が一定に保たれるように減圧弁16の開度を制御する減圧弁制御器、32は減圧弁16の制御により変化する低圧側蒸気ヘッダ2の蒸気圧力を圧力検出器25により検出して低圧側蒸気ヘッダ2の蒸気圧力が一定に保たれるようにオイルボイラ1の燃料を調節し、発生蒸気量を制御する低圧蒸気発生量制御器である。
【0028】
さらに、30は負荷送気ヘッダ7の蒸気圧力を圧力検出器19により検出して低圧蒸気タービン抽気量と高圧蒸気タービン抽気量の配分比率に基づいて低圧蒸気タービン3の抽気量を制御する配分制御器である。
【0029】
一方、26は低圧側蒸気ヘッダ2の蒸気圧力を圧力検出器33により検出し、その圧力が一定以上になると蒸気放圧弁17の開度を制御する蒸気放圧制御装置である。
【0030】
さらに、28は既設の低圧蒸気タービン3により駆動される発電機5の発電量を検出してガバナ4を制御する発電量制御器、29は新設の蒸気タービン11により駆動される発電機13の発電量を検出してガバナ12を制御する発電量制御器である。
【0031】
次にこのように構成されたBTGプラントの運転制御装置の作用を図2により説明する。
いま、図2において、工場の蒸気負荷が下がると負荷ヘッダ圧検出部Aで負荷送気ヘッダ7の蒸気圧力が検出され、高圧蒸気タービン11側の抽気制御部Bにて抽気制御弁14の開度が小さくなる方向に制御され、高圧蒸気タービン11の抽気量が減少する。このときの抽気量は高圧蒸気タービン抽気量検出部Gにより検出され、配分制御部Hにより高圧蒸気タービン11の抽気量と低圧蒸気タービン3の抽気量との配分比率に基づいて低圧蒸気タービン3の抽気量が制御される。
【0032】
また、発電量制御部Cでは発電機13の出力を一定にすべくガバナ12を制御し、高圧側蒸気ヘッダ10より高圧蒸気タービン11に流入する主蒸気量が減少するので、高圧側蒸気ヘッダ10の蒸気圧が上昇する。そして、この高圧側蒸気ヘッダ10の蒸気圧が圧力検出器により検出されると、減圧弁制御部Iにより減圧弁16の開度が大きくなる方向に制御され、高圧側蒸気ヘッダ10の蒸気圧が一定になるように低圧側蒸気ヘッダ2に蒸気が流れる。
【0033】
すると、低圧側蒸気ヘッダ2の蒸気圧が上昇し、その蒸気圧が圧力検出器により検出されると、低圧蒸気発生量制御部Jによりオイルボイラ1の燃料を調節し、蒸気発生量を制御する。
【0034】
また、このとき低圧側蒸気ヘッダ2の蒸気圧力は、低圧ヘッダ圧チェック部Kにて監視され、一定値を越えると蒸気放圧制御部Lにより蒸気放圧弁17を開放して負荷送気ヘッダ7の蒸気の一部を外部に放出する。
【0035】
ここで、工場の蒸気負荷が図8に示すように減少したとすると、高圧蒸気タービンST2及び低圧蒸気タービンST1の蒸気抽気量はそれぞれ図3に示すような時間で変化する。すなわち、高圧蒸気タービンST2の蒸気抽気量は工場の蒸気負荷変動の吸収後、速やかに運転可能な範囲で最大の値まで増大し、また燃費効率の低い低圧蒸気タービンST1の蒸気抽気量は運転可能な範囲で最小な値まで減少することが分かる。
【0036】
また、このとき石炭ボイラ9とオイルボイラ1から発生する蒸気量は図4に示すようになる。すなわち、新設の石炭ボイラ9の蒸気発生量は、高圧蒸気タービンST2の抽気量が一時的に減少した後に元の状態に戻るので、ほぼ一定に制御されるのに対して、オイルボイラ1から発生する蒸気量は負荷追従性の良い燃料調節により制御されるので、短時間で負荷変動に追従することになり、図示ハッチング部分のように少量のエネルギーのロスで済むことになる。
【0037】
このように本実施例では、蒸気負荷の変化による負荷送気ヘッダ7の圧力変動の吸収を制御性の良い高圧蒸気タービン11の抽気量を制御することにより速やかに行うと共に、高圧側蒸気ヘッダ10の圧力変動は制御性の良い減圧弁16により行い、また低圧側蒸気ヘッダ2の圧力変動は制御性の良いオイルボイラ1により行い、その後の蒸気負荷変動吸収のために燃費効率の良い抽気量配分からのずれを負荷送気ヘッダ7の蒸気圧を一定に保ちつつ徐々に変化させて高圧蒸気タービン11の抽気量を回復させ、燃費効率のよい石炭ボイラ9側に戻すようにしたものである。
【0038】
従って、蒸気負荷変動により生じる抽気量配分の効率運転点からのずれの復旧と無用な蒸気放出量の削減に寄与できるので、燃費効率の高い運転を行うことができる。
【0039】
【発明の効果】
以上述べたように本発明によれば、プラント全体の運転効率及び燃費効率を向上させることができ発電プラントの運転制御装置を提供できる。
【図面の簡単な説明】
【図1】本発明によるBTGプラントの運転制御装置の一実施例を示す構成図。
【図2】同実施例の作用を説明するための機能ブロック図。
【図3】同実施例において、高圧蒸気タービン及び低圧蒸気タービンの蒸気抽気量の変化を示す曲線図。
【図4】同実施例において、石炭ボイラとオイルボイラから発生する蒸気量の変化を示す曲線図。
【図5】BTGプラント全体の一例を示す構成図。
【図6】従来のBTGプラントの運転制御装置を示す構成図。
【図7】同運転制御装置の作用を説明するための機能ブロック図。
【図8】工場の蒸気負荷変動状態を示す曲線図。
【図9】同運転制御装置による高圧蒸気タービン及び低圧蒸気タービンの蒸気抽気量の変化を示す曲線図。
【図10】同運転制御装置による石炭ボイラとオイルボイラから発生する蒸気量のトータルを示す図。
【図11】同運転制御装置による石炭ボイラとオイルボイラから発生する蒸気量の変化を示す曲線図。
【符号の説明】
1……オイルボイラ、2……低圧側蒸気ヘッド、3……低圧蒸気タービン、4,12……ガバナ、5,13……発電機、6,14……抽気制御弁、7……負荷送気ヘッダ、8,15……復水器、9……石炭ボイラ、10……高圧側蒸気ヘッド、11……高圧蒸気タービン、16……減圧弁、17……蒸気放出弁、19,21,23,25,33……圧力検出器、20……抽気制御器、26……蒸気放出制御装置、28,29……発電量制御器、30……配分制御器、31……減圧弁制御器、32……低圧蒸気発生量制御器。
[0001]
[Industrial applications]
The present invention relates to a power plant (hereinafter, referred to as a BTG plant) equipped with a steam generating facility and a steam turbine, particularly combining an additionally installed steam turbine with good controllability and a steam generator with high fuel efficiency but poor controllability. The present invention relates to an operation control device for a BTG plant.
[0002]
[Prior art]
Recently, in this type of BTG plant, more and more steam generating equipment and turbine equipment have been added in order to respond to an increase in demand for electric power and steam used as the production volume of the factory increases.
[0003]
FIG. 5 is a configuration diagram illustrating an example of a BTG plant.
In FIG. 5, reference numeral 1 denotes an existing oil boiler (OB), and steam generated from the oil boiler 1 is supplied to a low-pressure side steam header (LH) 2. Reference numeral 3 denotes an existing low-pressure steam turbine (ST1) that rotates by the steam pressure flowing from the low-pressure side steam header 2 through the governor 4 to drive the generator 5, and is extracted from the low-pressure steam turbine 3. The steam is supplied to a load gas supply header (DH) 7 via a bleed control valve 6, and the steam exhausted from the low-pressure steam turbine 3 is condensed by a condenser 8.
[0004]
On the other hand, reference numeral 9 denotes a newly installed coal boiler (CB), and steam generated from the coal boiler 9 is supplied to a high-pressure side steam header (HH) 10. Reference numeral 11 denotes a newly installed high-pressure steam turbine (ST2) that rotates by the steam pressure flowing from the high-pressure side steam header 10 through the governor 12 to drive the generator 13, and is extracted from the high-pressure steam turbine 11. The steam is sent to a load air supply header (DH) 7 via a bleed control valve 14, and the steam exhausted from the high-pressure steam turbine 11 is condensed by a condenser 15.
[0005]
The high-pressure side steam header 10 and the low-pressure side steam header 2 are connected via a pressure reducing valve (RPV) 16, and the load air supply header 7 discharges excess steam that cannot be consumed by the factory load to the outside. The discharge valve (EXV) 17 is connected.
[0006]
By the way, in such a BTG plant, there are devices such as coal boilers that have high fuel efficiency but do not have good controllability. However, generally speaking, new equipment is a state-of-the-art equipment with high temperature, high pressure and large capacity, whereas existing equipment is often low temperature, low pressure and small dose equipment, and the controllability is generally higher for new equipment. Is good.
[0007]
Therefore, in a BTG plant that has been expanded, new equipment is often used to absorb steam load fluctuations because it is easier to control and the equipment capacity is large and the adjustment range is large. .
[0008]
Conventionally, the operation control device of the above-mentioned BTG plant operates an existing device and a newly installed device in a control configuration as shown in FIG.
In FIG. 6, reference numeral 18 denotes a bleed controller which detects the steam pressure of the load gas supply header 7 by the pressure detector 19 and controls the bleed control valve 6 of the existing low-pressure steam turbine 3. The bleed controller controls the bleed control valve 14 of the newly installed high-pressure steam turbine 11 by detecting the steam pressure by the pressure detector 21.
[0009]
Reference numeral 22 denotes a high pressure steam generation amount controller which detects the steam pressure of the high pressure side steam header 10 by a pressure detector 23 to adjust the fuel of the coal boiler 9 and controls the amount of generated steam, and 24 denotes a low pressure side steam header. 2 is a steam header controller that detects the steam pressure by the pressure detector 25 to control the pressure reducing valve 16 to control the amount of steam flowing from the high-pressure steam header 10 to the low-pressure steam header 2. This is a steam release control device that controls the steam release valve 17 by detecting the steam pressure of 10 with a pressure detector 27.
[0010]
Further, reference numeral 28 denotes a power generation controller which detects the power generation of the generator 5 driven by the existing low-pressure steam turbine 3 and controls the governor 4, and 29 denotes the power generation of the generator 13 driven by the newly installed steam turbine 11. This is a power generation amount controller that controls the governor 12 by detecting the amount.
[0011]
Next, a control operation by such a control configuration will be described with reference to FIG.
When the factory load increases, the steam pressure of the load air supply header 7 decreases, and when the factory load decreases, the steam pressure of the load air supply header 7 increases. 3. The extraction pressure control of the high-pressure steam turbine 11 operates.
[0012]
Now, a case in which the load fluctuation is absorbed on the newly-installed turbine (ST2) having good controllability will be described. As shown in FIG. 7, the load header pressure detection unit A detects the steam pressure of the load air supply header 7 and performs the bleed control. When the bleed control valve 14 is controlled in the part B, the bleed amount of the high-pressure steam turbine 11 changes. Then, the power generation controller C controls the governor 12 to keep the output of the generator 13 constant, and the amount of main steam flowing from the high-pressure steam header 10 into the high-pressure steam turbine 11 changes. Changes the vapor pressure.
[0013]
At this time, the high pressure steam generation amount control unit D detects the steam pressure of the high pressure side steam header 10, adjusts the fuel of the coal boiler 9, and controls the generated steam amount.
Further, the steam pressure of the high-pressure side steam header 10 is checked by the high-pressure header pressure check unit E, and the steam discharge control unit F opens the steam release valve 17 only when the steam header pressure becomes abnormally high.
[0014]
Further, the pressure reducing valve 16 is controlled so that the steam pressure of the low-pressure side steam header 2 becomes constant.
Here, assuming that the steam load of the factory is reduced as shown in FIG. 8, the steam extraction amounts of the high-pressure steam turbine ST2 and the low-pressure steam turbine ST1 change over time as shown in FIG. That is, the steam extraction amount of the high-pressure steam turbine ST2 changes according to the decrease in the steam load of the factory, but the steam extraction amount of the low-pressure steam turbine ST1 changes in a substantially constant state.
[0015]
Further, at this time, when the amount of extracted air in the high-pressure steam turbine ST2 decreases, the governor is narrowed down by the power generation amount constant control, so that the steam pressure of the high-pressure side steam header 10 increases. Therefore, the fuel of the newly installed coal boiler 9 is adjusted, and the amount of generated steam is controlled to be reduced.
[0016]
At this time, the amount of steam generated from the coal boiler 9 and the oil boiler 1 changes as shown in FIG. That is, although the amount of steam generated from the coal boiler 9 changes depending on the fuel adjustment, the amount of steam generated from the oil boiler 1 is constant, and the total amount of generated steam is as shown in FIG.
[0017]
[Problems to be solved by the invention]
However, such a conventional operation control device for a BTG plant has the following problems.
(1) When the steam load at the factory decreases, we would like to operate a newly installed high-pressure steam turbine with high fuel efficiency at a high load factor and an existing low-pressure steam turbine with low fuel efficiency at a low load factor. As shown in FIG. 11, since the amount of steam generated from the coal boiler 9 having good fuel efficiency is reduced, the load ratio is low.
[0018]
Also, regarding the amount of bleed air from the steam turbine, it is originally desired to reduce the amount of bleed air from the turbine with low fuel efficiency. However, as can be seen from FIG. 9, the amount of bleed air from the newly installed high-pressure steam turbine with good fuel efficiency is reduced, and the efficiency of fuel efficiency is reduced. The extraction amount of the bad low-pressure steam turbine is constant.
[0019]
For these reasons, there is a problem that the operation efficiency of the entire plant is reduced.
(2) Since the newly installed coal boiler 9 having poor controllability cannot follow a sudden change in the steam load of the factory, the boiler or turbine trips due to an abnormal rise in the steam pressure of the high-pressure steam header 10, and the plant operates. It becomes difficult to continue.
[0020]
Therefore, in order to avoid such a situation, the steam release valve 17 is controlled to release steam to the atmosphere, or the amount of steam exhausted from the turbine is increased and returned to water by a condenser. Is continued until the amount of steam generated by the boiler matches the load, and the energy loss due to the steam emission during that time is as shown by the hatched portion in FIG. 11, and it is impossible to operate with high fuel efficiency.
[0021]
The present invention has been made to solve the above-described problems, and an object of the present invention is to provide an operation control device for a power plant that can improve the operation efficiency and fuel efficiency of the entire plant.
[0022]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides a low-pressure side steam header to which steam generated from a low-pressure steam generator having good controllability is supplied and a high-pressure steam to which steam generated from a high-pressure steam generator having low fuel efficiency is supplied. A low-pressure steam turbine that communicates between the side steam headers via a pressure reducing valve and drives a generator by the steam pressure flowing from the low-pressure side steam header, and generates electricity by the steam pressure flowing from the high-pressure side steam header A high-pressure steam turbine that drives the steam generator, and supplies the steam extracted from the low-pressure steam turbine and the high-pressure steam turbine via a bleed-amount control valve to a load air supply head that supplies the steam to a steam load. A pressure reducing valve control means for controlling the pressure reducing valve such that when the steam pressure of the high pressure side steam header changes, the steam pressure becomes constant; A low-pressure steam generation amount control means for controlling the low-pressure steam generation device so that the steam pressure of the low-pressure side steam header changes when the low-pressure side steam header changes; Extraction control means for controlling the steam pressure of the low-pressure steam turbine to be constant, and distribution for controlling the extraction pressure control valve of the low-pressure steam turbine according to the distribution ratio of the extraction pressure of the low-pressure steam turbine and the extraction pressure of the high-pressure steam turbine. Control means.
[0023]
[Action]
In the operation control device of the power plant having such a configuration, when the steam pressure of the high-pressure steam header changes, the opening of the pressure reducing valve is controlled to keep the steam pressure of the high-pressure steam header constant, The steam pressure of the low-pressure side steam header is kept constant by controlling the amount of steam generated by the low-pressure steam generator with respect to the change of the steam pressure of the side steam header. The degree of opening of the bleed amount control valve of the turbine is controlled so that the vapor pressure of the load air supply header is kept within a certain range, and the degree of opening of the bleed amount control valve of the low-pressure steam turbine is gradually increased according to the bleed amount distribution ratio. The amount of bleed air is controlled so as to change, and the opening of the bleed air amount control valve of the high-pressure steam turbine is controlled in accordance with the change.
[0024]
Therefore, the pressure fluctuation of the load air supply header due to the change of the steam load is quickly absorbed by controlling the extraction amount of the high-pressure steam turbine with good controllability, and the pressure fluctuation of the high-pressure side steam header with good controllability. The pressure fluctuation of the low pressure side steam header is performed by the pressure reducing valve, and the pressure fluctuation of the low pressure side steam header is performed by the low pressure side steam generator with good controllability. By gradually changing the steam pressure of the steam header while keeping it constant, it is possible to recover the amount of bleed air from the high-pressure steam turbine and return the steam to the high-pressure steam generator with high fuel efficiency.
[0025]
【Example】
An embodiment of the present invention will be described below with reference to the drawings.
FIG. 1 shows an example of the configuration of an operation control device for a BTG plant according to the present invention, and the same parts as those in FIG.
[0026]
In FIG. 1, reference numeral 20 denotes a newly installed high-pressure steam turbine 11 which detects a steam pressure of the load air supply header 7 which changes due to a change in the steam load of the factory by a pressure detector 21 so that the load header steam pressure is kept constant. This is a bleed controller that controls the opening of the bleed control valve 14 on the side.
[0027]
The pressure detector 31 detects the steam pressure of the high-pressure steam header 10 that changes according to the main steam amount that changes in accordance with the change in the amount of extracted air of the high-pressure steam turbine 11, and detects the steam pressure of the high-pressure steam header 10. The pressure reducing valve controller 32 controls the opening of the pressure reducing valve 16 so as to be kept constant. The pressure detecting device 25 detects the steam pressure of the low pressure side steam header 2 changed by the control of the pressure reducing valve 16 by the pressure detector 25, This is a low-pressure steam generation amount controller that controls the fuel of the oil boiler 1 so that the steam pressure of the steam header 2 is kept constant and controls the amount of generated steam.
[0028]
Further, a distribution control 30 detects the steam pressure of the load air supply header 7 by the pressure detector 19 and controls the extraction amount of the low-pressure steam turbine 3 based on the distribution ratio between the low-pressure steam turbine extraction amount and the high-pressure steam turbine extraction amount. It is a vessel.
[0029]
On the other hand, reference numeral 26 denotes a steam pressure control device that detects the steam pressure of the low pressure side steam header 2 by the pressure detector 33 and controls the opening of the steam pressure relief valve 17 when the pressure becomes equal to or higher than a predetermined value.
[0030]
Further, reference numeral 28 denotes a power generation controller which detects the power generation of the generator 5 driven by the existing low-pressure steam turbine 3 and controls the governor 4, and 29 denotes the power generation of the generator 13 driven by the newly installed steam turbine 11. This is a power generation amount controller that controls the governor 12 by detecting the amount.
[0031]
Next, the operation of the operation control device of the BTG plant configured as described above will be described with reference to FIG.
Now, in FIG. 2, when the steam load of the factory decreases, the load header pressure detecting section A detects the steam pressure of the load air supply header 7, and the bleed control section B on the high pressure steam turbine 11 opens the bleed control valve 14. The degree is controlled to decrease, and the amount of bleed air from the high-pressure steam turbine 11 decreases. The amount of bleed air at this time is detected by the high-pressure steam turbine bleed air amount detection unit G, and the distribution control unit H controls the low-pressure steam turbine 3 based on the distribution ratio between the bleed air amount of the high-pressure steam turbine 11 and the low-pressure steam turbine 3. The amount of extracted air is controlled.
[0032]
The power generation control unit C controls the governor 12 to keep the output of the generator 13 constant, and the amount of main steam flowing into the high-pressure steam turbine 11 from the high-pressure steam header 10 decreases. Vapor pressure rises. When the steam pressure of the high-pressure steam header 10 is detected by the pressure detector, the opening of the pressure-reducing valve 16 is controlled by the pressure-reducing valve control unit I so that the opening degree of the pressure-reducing valve 16 increases. Steam flows to the low-pressure steam header 2 so as to be constant.
[0033]
Then, the steam pressure of the low-pressure side steam header 2 increases, and when the steam pressure is detected by the pressure detector, the fuel of the oil boiler 1 is adjusted by the low-pressure steam generation amount control unit J to control the steam generation amount. .
[0034]
At this time, the steam pressure of the low-pressure side steam header 2 is monitored by the low-pressure header pressure check unit K. When the steam pressure exceeds a predetermined value, the steam discharge pressure control unit L opens the steam discharge valve 17 to load the load gas supply header 7. Part of the steam is released to the outside.
[0035]
Here, assuming that the steam load of the factory is reduced as shown in FIG. 8, the steam extraction amounts of the high-pressure steam turbine ST2 and the low-pressure steam turbine ST1 change over time as shown in FIG. That is, the steam extraction amount of the high-pressure steam turbine ST2 increases to the maximum value within a operable range immediately after absorbing the steam load fluctuation of the factory, and the steam extraction amount of the low-pressure steam turbine ST1 with low fuel efficiency is operable. It can be seen that it decreases to the minimum value within a certain range.
[0036]
At this time, the amount of steam generated from the coal boiler 9 and the oil boiler 1 is as shown in FIG. That is, the amount of steam generated from the newly installed coal boiler 9 is controlled to be substantially constant because the amount of steam extracted from the high-pressure steam turbine ST2 temporarily returns to its original state after being temporarily reduced. Since the amount of generated steam is controlled by the fuel adjustment with good load following ability, it follows the load fluctuation in a short time, and a small amount of energy loss is required as shown by the hatched portion in the figure.
[0037]
As described above, in the present embodiment, the absorption of the pressure fluctuation of the load air supply header 7 due to the change of the steam load is promptly performed by controlling the extraction amount of the high-pressure steam turbine 11 having good controllability. Pressure fluctuation is performed by the pressure control valve 16 having good controllability, and the pressure fluctuation of the low-pressure side steam header 2 is performed by the oil boiler 1 having good controllability. Is gradually changed while keeping the vapor pressure of the load air supply header 7 constant, to recover the amount of bleed air from the high-pressure steam turbine 11 and return to the fuel-efficient coal boiler 9 side.
[0038]
Accordingly, it is possible to contribute to the recovery of the deviation of the extraction amount distribution from the efficient operation point caused by the fluctuation of the steam load and to reduce the unnecessary steam release amount, so that the operation with high fuel efficiency can be performed.
[0039]
【The invention's effect】
As described above, according to the present invention, it is possible to improve the operation efficiency and fuel efficiency of the entire plant, and to provide an operation control device for a power plant.
[Brief description of the drawings]
FIG. 1 is a configuration diagram showing one embodiment of an operation control device of a BTG plant according to the present invention.
FIG. 2 is a functional block diagram for explaining the operation of the embodiment.
FIG. 3 is a curve diagram showing changes in the amount of steam extracted by the high-pressure steam turbine and the low-pressure steam turbine in the embodiment.
FIG. 4 is a curve diagram showing a change in the amount of steam generated from a coal boiler and an oil boiler in the embodiment.
FIG. 5 is a configuration diagram showing an example of an entire BTG plant.
FIG. 6 is a configuration diagram showing a conventional operation control device for a BTG plant.
FIG. 7 is a functional block diagram for explaining the operation of the operation control device.
FIG. 8 is a curve diagram showing a steam load fluctuation state of a factory.
FIG. 9 is a curve diagram showing changes in the amount of steam extracted from the high-pressure steam turbine and the low-pressure steam turbine by the operation control device.
FIG. 10 is a diagram showing the total amount of steam generated from the coal boiler and the oil boiler by the operation control device.
FIG. 11 is a curve diagram showing a change in the amount of steam generated from a coal boiler and an oil boiler by the operation control device.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Oil boiler, 2 ... Low pressure side steam head, 3 ... Low pressure steam turbine, 4, 12 ... Governor, 5, 13 ... Generator, 6, 14 ... Bleed control valve, 7 ... Load transmission Gas header, 8, 15 condenser, 9 coal boiler, 10 high pressure side steam head, 11 high pressure steam turbine, 16 pressure reducing valve, 17 steam discharge valve, 19, 21, 23, 25, 33 ... pressure detector, 20 ... bleeding controller, 26 ... steam release control device, 28, 29 ... power generation amount controller, 30 ... distribution controller, 31 ... pressure reducing valve controller , 32 ... Low-pressure steam generation amount controller.

Claims (1)

制御性の良好な低圧蒸気発生装置より発生する蒸気が供給される低圧側蒸気ヘッダ及び燃費効率の低い高圧蒸気発生装置より発生する蒸気が供給される高圧側蒸気ヘッダ間を減圧弁を介して連絡し、且つ前記低圧側蒸気ヘッダより流入する蒸気圧により発電機を駆動する低圧蒸気タービンを運転すると共に、前記高圧側蒸気ヘッダより流入する蒸気圧により発電機を駆動する高圧蒸気タービンを運転し、前記低圧蒸気タービン及び高圧蒸気タービンよりそれぞれ抽気量制御弁を介して抽気された蒸気を蒸気負荷に送気する負荷送気ヘッダに供給するようにした発電プラントにおいて、
前記高圧側蒸気ヘッダの蒸気圧が変化するとその蒸気圧が一定になるように前記減圧弁を制御する減圧弁制御手段と、前記低圧側蒸気ヘッダの蒸気圧が変化するとその蒸気圧が一定になるように前記低圧蒸気発生装置を制御する低圧蒸気発生量制御手段と、前記高圧蒸気タービンの抽気量制御弁を前記低圧側蒸気ヘッダの蒸気圧が一定になるように制御する抽気制御手段と、前記低圧蒸気タービンの抽気量制御弁を前記低圧蒸気タービンの抽気量と前記高圧蒸気タービンの抽気量の配分比率に応じて制御する配分制御手段とを備えたことを特徴とする発電プラントの運転制御装置。
Via a pressure-reducing valve, a connection is made between a low-pressure steam header supplied with steam generated from a low-pressure steam generator with good controllability and a high-pressure steam header supplied with steam generated from a high-pressure steam generator with low fuel efficiency. Operating a low-pressure steam turbine that drives a generator with the steam pressure flowing from the low-pressure steam header, and drives a high-pressure steam turbine that drives the generator with the steam pressure flowing from the high-pressure steam header, In a power plant configured to supply the steam extracted from the low-pressure steam turbine and the high-pressure steam turbine via a bleed-amount control valve to a load air supply header that supplies a steam load,
Pressure reducing valve control means for controlling the pressure reducing valve so that the steam pressure of the high pressure side steam header changes when the steam pressure of the high pressure side steam header changes, and the steam pressure becomes constant when the steam pressure of the low pressure side steam header changes A low-pressure steam generation amount control means for controlling the low-pressure steam generation device, and a bleed control means for controlling a bleed amount control valve of the high-pressure steam turbine so that the steam pressure of the low-pressure side steam header becomes constant. An operation control device for a power plant, comprising: a distribution control unit that controls a bleed amount control valve of a low-pressure steam turbine according to a ration ratio between the bleed amount of the low-pressure steam turbine and the bleed amount of the high-pressure steam turbine. .
JP22056494A 1994-09-14 1994-09-14 Operation control device for power plant Expired - Fee Related JP3602167B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22056494A JP3602167B2 (en) 1994-09-14 1994-09-14 Operation control device for power plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22056494A JP3602167B2 (en) 1994-09-14 1994-09-14 Operation control device for power plant

Publications (2)

Publication Number Publication Date
JPH0882203A JPH0882203A (en) 1996-03-26
JP3602167B2 true JP3602167B2 (en) 2004-12-15

Family

ID=16752972

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22056494A Expired - Fee Related JP3602167B2 (en) 1994-09-14 1994-09-14 Operation control device for power plant

Country Status (1)

Country Link
JP (1) JP3602167B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2856024B1 (en) * 2012-05-04 2023-06-07 Enero Inventions Inc. Control system for allocating steam flow through elements
JP6064548B2 (en) * 2012-11-28 2017-01-25 株式会社Ihi Waste heat power generator

Also Published As

Publication number Publication date
JPH0882203A (en) 1996-03-26

Similar Documents

Publication Publication Date Title
US8463445B2 (en) Method and system for safe drum water level determination in a combined cycle operation
US6301895B1 (en) Method for closed-loop output control of a steam power plant, and steam power plant
CA2814560C (en) Method for operating a combined gas and steam turbine system, gas and steam turbine system for carrying out said method, and corresponding control device
US4353204A (en) Method of water level control for a combined cycle power plant and control system therefor
JP3602167B2 (en) Operation control device for power plant
JP4937822B2 (en) Condenser vacuum degree control system and power plant including the system
CN115930200A (en) High temperature reactor main steam pressure control system and method
JP3922008B2 (en) Control method for boiler equipment
JP2000303803A (en) Power generation system
JPH08260907A (en) Steam storing electric power plant
JP4162371B2 (en) Start-up control method for single-shaft combined power plant
JPH0932512A (en) Steam supply device of steam turbine gland seal
JPS6147293B2 (en)
JP6775070B1 (en) Power plant control device, power plant, and power plant control method
JP2949287B2 (en) Auxiliary steam extraction method for waste heat recovery boiler
JP2007177665A (en) Steam turbine plant
JPH03282102A (en) Exhaust heat recovery boiler and controller of temperature reducing device used for it
JPS6152361B2 (en)
JPH0122521B2 (en)
JPH01189404A (en) Drum water level controller
JP4417868B2 (en) Water supply system, water supply control method and apparatus
JPH0135244B2 (en)
JPH08232608A (en) Steam accumulated power generating plant
JPH0539901A (en) Method and device for automatically controlling boiler
JPS6128802B2 (en)

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040914

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040922

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081001

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081001

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091001

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101001

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees