JP3601619B2 - Common mode choke coil - Google Patents

Common mode choke coil Download PDF

Info

Publication number
JP3601619B2
JP3601619B2 JP00798795A JP798795A JP3601619B2 JP 3601619 B2 JP3601619 B2 JP 3601619B2 JP 00798795 A JP00798795 A JP 00798795A JP 798795 A JP798795 A JP 798795A JP 3601619 B2 JP3601619 B2 JP 3601619B2
Authority
JP
Japan
Prior art keywords
coil
magnetic substrate
insulator layer
common mode
insulator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP00798795A
Other languages
Japanese (ja)
Other versions
JPH08203737A (en
Inventor
一雄 堂垣内
修 加納
英一 北村
勝治 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP00798795A priority Critical patent/JP3601619B2/en
Publication of JPH08203737A publication Critical patent/JPH08203737A/en
Application granted granted Critical
Publication of JP3601619B2 publication Critical patent/JP3601619B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Coils Of Transformers For General Uses (AREA)
  • Coils Or Transformers For Communication (AREA)

Description

【0001】
【産業上の利用分野】
本発明はコモンモードチョークコイルに関する。
【0002】
【従来の技術】
従来、コモンモードチョークコイルとしては、図15に示す巻線型コイル部品41が知られている。このコイル部品41はコア42とこのコア42の胴部に巻回された線材43とで構成されている。線材43はその終端部がコア42の矩形状ベース部の端面に設けられた外部端子44にからげられている。
【0003】
また、図16に示すように、グリーンシート積層技術を利用して製造したコイル部品51も知られている。このコイル部品51はコイル導体521,522,523,524を表面に設けた磁性体グリーンシートを積層して一体的に焼成した後、外部電極56,57を形成することによって製造されている。コイル導体521〜524は磁性体グリーンシートに設けたビアホール等を介して電気的に直列に接続されたりしてコイル52を形成している。
【0004】
さらに、図17に示すコイル部品61が知られている。このコイル部品61はコイル導体を表面に設けた絶縁体グリーンシートを積層してなるコイル部62と、このコイル部62を挟着する2つの磁性体コア63,64とで構成されている。絶縁体グリーンシートには磁性体を含まない材料が用いられる。
【0005】
【発明が解決しようとする課題】
以上の従来のコイル部品のうち、図15に示したコイル部品41は、コア42を個々に成形し、コア42毎に線材43を巻回する必要があった。また、線材43と外部端子44は別素材で構成されるため半田付け等の電気的接続工程を必要とし、この工程もコイル部品毎に行わなければならなかった。この結果、コイル部品41は生産性が低く、高コストであった。また、ハンドリングの問題でコア42や線材43の寸法を小型化することにも限界があった。
【0006】
また、図16に示したコイル部品51は、多層構造によるもので、コイル導体521〜524が磁性体グリーンシート上に印刷もしくは転写で形成されるため大部分の工程が基板状態で製造され、生産性が高く、ハンドリングの問題も解決されている。コイル導体521〜524は薄くかつ細く形成することができるため小型化にも適している。しかしながら、焼成工程における磁性体グリーンシートの収縮によって、電気特性のばらつきが発生するという問題があった。また、磁性体グリーンシート毎に閉磁路が形成されるため、コイル52のインダクタンスが比較的小さくなるという問題があった。特に、この問題は、コイル部品51がトランスもしくはコモンモードチョークコイルの場合、コイル相互間の磁気的結合を低くさせ、性能を阻害する大きな原因となっていた。
【0007】
さらに、図17に示したコイル部品61は、絶縁体グリーンシートに磁性体を含まないため電磁気特性が良好であるが、別に有効な磁路を形成しなければならないという問題があった。すなわち、磁性体からなるコア63,64を別に準備する必要があった。この結果、コイル部品61は生産性が低かった。
そこで、本発明の目的は、生産性が高く、電気的特性が優れた小型のコモンモードチョークコイルを提供することにある。
【0008】
【課題を解決するための手段】
以上の目的を達成するため、本発明に係るコモンモードチョークコイルは、
(a)第1の磁性体基板と、
(b)第1の磁性体基板の表面に薄膜形成手段にて形成された、非磁性体層からなる絶縁体層とコイルパターンと引出し電極を厚み方向に積み重ねた積層体と、
(c)第1の磁性体基板との間に積層体を挟む第2の磁性体基板と、
(d)第1の磁性体基板と積層体と第2の磁性体基板からなる積層構造体の端面に設けられた外部電極とを備え、
(e)コイルパターンが少なくとも2個のコイルを構成するとともに、該コイルが絶縁体層の絶縁体で覆われ、
(f)コイルのそれぞれが、絶縁体内に絶縁体層の厚み方向に対して垂直方向に配置して絶縁体で覆われ形成された引出し電極を介して、第1の磁性体基板および第2の磁性体基板を貫通することなく、外部電極に電気的に接続していること、
を特徴とする。
【0009】
また、本発明に係るコモンモードチョークコイルは、さらに、複数のコイルのそれぞれの一方の引出し電極が同一の前記絶縁体層の上に設けられていることを特徴とする。
また、本発明に係るコモンモードチョークコイルは、厚み方向にほぼ重なって隣接するコイルパターンにおいて、第1の磁性体基板から遠いコイルパターンの導体幅が、前記第1の磁性体基板に近いコイルパターンの導体幅より狭いことを特徴とする。
【0010】
【作用】
以上の構成により、積層体が磁性体を含まないため、焼成工程における磁性体グリーンシートの収縮による電気特性のばらつきの心配がなくなる。また、磁性体グリーンシート毎に形成される閉磁路によるインダクタンスの低下も発生しない。従って、複数のコイルの電磁気的特性が良くなる。さらに、第1の磁性体基板上に、絶縁体層とコイルパターンにて構成された積層体が薄膜形成手段にて精度良く形成されるため、高精度の小型のコモンモードチョークコイルが生産される。
【0011】
そして、複数のコイルのそれぞれの一方の引出し電極を同一絶縁体層の上に設けることにより、引出し電極をそれぞれ異なる絶縁体層上に設けた場合と比較して絶縁体層の数が少なくなり、製造工程が簡単になる。さらに、厚み方向のコイルパターン間に引出し電極を設置した場合、コイルパターン間の絶縁体層が大部分2倍の厚さとなり、絶縁信頼性が向上する。
【0012】
また、厚み方向に隣接するコイルパターンにおいて、第1の磁性体基板から遠いコイルパターンの導体幅が、前記第1の磁性体基板に近いコイルパターンの導体幅より狭い場合は、仮に、隣接する二つのコイルパターン相互が位置ずれを起こしても、コイルパターン間の絶縁間隔が小さくならず、耐電圧性が低下するおそれがない。
【0013】
【実施例】
以下、本発明に係るコモンモードチョークコイルの一実施例について添付図面を参照して説明する。実施例ではコモンモードチョークコイルを単品で製造する場合について説明するが、量産の際には複数個のコモンモードチョークコイルを備えたマザー基板を使用して効率良く生産する
【0014】
図1に示すように、コモンモードチョークコイル1は、磁性体基板2,3とこの磁性体基板2,3の間に挟まれた積層体14とで構成されている。積層体14は絶縁体層4,5,6,7とコイル導体10,11と引出し電極8,9,12,13を厚み方向に積み重ねたものである。磁性体基板2,3の材料としては、フェライト等が使用される。フェライトを使用した場合、チョークコイル1は高インダクタンスで、高周波特性が優れたものになる。
【0015】
絶縁体層4の表面には引出し電極8,9が設けられ、引出し電極8,9の一方の端部は絶縁体層4の手前側の縁部に露出している。絶縁体層5の表面には渦巻状コイル導体10が設けられ、コイル導体10の一方の端部は絶縁体層5の奥側の縁部に設けられた引出し電極12に電気的に接続している。絶縁体層6の表面には渦巻状コイル導体11が設けられ、コイル導体11の一方の端部は絶縁体層6の奥側の縁部に設けられた引出し電極13に電気的に接続している。
【0016】
引出し電極8,9,12,13及びコイル導体10,11の材料としては、導電性に優れた金属、例えばAg,Pd,Cu,Alあるいはこれらの合金等が採用される。絶縁体層4〜7の材料としては、ポリイミド樹脂、エポキシ樹脂、アクリル樹脂、環状オレフィン樹脂、ベンゾシクロブテン樹脂等の樹脂あるいはSiO2等のガラス、ガラスセラミックス等が採用される。本実施例では感光性ポリイミド樹脂を使用した。ポリイミド樹脂を使用した場合、絶縁体層4〜6上に蒸着又はスパッタリングによって引出し電極8,9,12,13やコイル導体10,11を容易かつ密着性良く形成することができると共に、絶縁体層4〜7の物理的、化学的特性が良好かつ安定にできる。
【0017】
積み重ねられた状態では、引出し電極8は絶縁体層5に設けたビアホール15を介してコイル導体10に電気的に接続され、引出し電極9は絶縁体層5,6に設けたビアホール16a,16bを介してコイル導体11に電気的に接続される。コイル導体10と11は磁気的に密接に結合した一対のコイルを構成している。
【0018】
そして、磁性体基板2と3の間隔は、なるべく狭い方が磁気抵抗が低く、より大きなインダクタンスが得られる。また、コイルの巻き回数は多い方がより大きなインダクタンスが得られる。一方、チョークコイル1のサイズは小型の方が望ましく、使用材料の観点からも低コストが図れる。従って、絶縁体層4〜7の厚みは10μm以下、コイル導体10,11の導体幅は100μm以下が好ましい。コイル導体10,11の厚みは、コイル部品の仕様に合わせた直流抵抗にするため、任意に設定される。また、コイル導体10と11の位置合わせは精度良く行なわれるのが好ましい。これらの観点から、絶縁体層4〜7やコイル導体10,11や引出し電極8,9,12,13の形成にはフォトリソグラフィ等の薄膜形成手段を用いる。
【0019】
図2及び図3に示すように、コモンモードチョークコイル1の手前側端面には外部電極20,22が設けられ、奥側端面には外部電極21,23が設けられている。外部電極20,21,22,23はそれぞれ引出し電極8,12,9,13に電気的に接続されている。外部電極20〜23は蒸着、スパッタリング、無電解めっき等の手段にて形成され、チョークコイル1の端面に堅固に密着している。さらに、必要であれば、電気めっきをさらに施こして外部電極20〜23の膜厚を厚くしてもよい。図4はチョークコイル1の電気等価回路図である。
【0020】
次に、このコモンモードチョークコイル1の製造手順を図5〜図13を参照して説明する。
図5に示すように、磁性体基板2の表面に絶縁体層4を薄膜形成手段にて形成する。薄膜形成手段としては、例えばフォトリソグラフィや印刷等の方法が採用される。フォトリソグラフィの方法は、例えばスピン法、ディップ法、スプレー法、転写法等によって感光性樹脂膜を磁性体基板2の表面全面に形成した後、露光、現像して所定の絶縁体層4を得る。また、フォトリソグラフィの別の方法は、前記スピン法等によって絶縁性樹脂膜を磁性体基板2の表面全面に形成した後、感光性レジスト膜を絶縁性樹脂膜の表面に塗布し、露光、現像する。次に、感光性レジスト膜から露出した絶縁性樹脂膜の部分をエッチングして不要な部分の絶縁性樹脂膜を除去した後、感光性レジスト膜を剥離する。あるいは、前記スピン法等により得た絶縁体膜を、レーザビームによって穴明け、切断を行う。こうして磁性体基板2の表面に絶縁体層4を形成する。
【0021】
次に、絶縁体層4の表面にフォトリソグラフィ等の薄膜形成手段にて引出し電極8,9を設ける。すなわち、めっき、蒸着、スパッタリング等によって金属膜を絶縁体層4の表面全面に形成した後、感光性レジスト膜を金属膜の表面に塗布し、露光、現像する。次に、感光性レジスト膜から露出した金属膜の部分をエッチングして不要な部分の金属膜を除去した後、感光性レジスト膜を剥離する。こうして、絶縁体層4の表面に引出し電極8,9を同一工程で形成する。従って、引出し電極をそれぞれ異なる絶縁体層の表面に形成する場合と比較して、ビアホールの構造が幾分複雑になるが、積層の数が少なくなって、製造工程が簡略になり、製造コストも安価になる。
【0022】
次に、図6に示すように、フォトリソグラフィ等の薄膜形成手段にて絶縁体層5を形成する。絶縁体層5の中央部には、引出し電極8,9の一端部が露出しているビアホール15,16aが形成されている。次に、図7に示すように、絶縁体層5の表面にフォトリソグラフィ等の薄膜形成手段にてコイル導体10と引出し電極12を形成する。コイル導体10の一端部はビアホール15を介して引出し電極8の一端部に接触し、電気的に接続している。
【0023】
次に、図8に示すように、フォトリソグラフィ等の薄膜形成手段にて絶縁体層6を形成する。絶縁体層6の中央部には、ビアホール16aに連接してビアホール16bが形成され、ビアホール16bから引出し電極9の一端部が露出している。次に、図9に示すように、絶縁体層6の表面にフォトリソグラフィ等の薄膜形成手段にてコイル導体11と引出し電極13を形成する。コイル導体11の一端部はビアホール16a,16bを介して引出し電極9の一端部に接触し、電気的に接続している。
【0024】
本実施例のチョークコイル1の場合、コイル導体10と11が厚み方向に略重なった構造を採用している。ここで、コイル導体10と11の導体幅を等しく設定してもよいが、この場合、コイル導体10と11間の耐電圧信頼性に心配がある。なぜなら、絶縁体層6を形成する際、液状の絶縁性樹脂をコイル導体10のある凹凸部に塗布したとき、エッジ部分の絶縁体層6が局所的に薄くなり易いからである。図10に示すように、仮にコイル導体10と11の位置ずれが生じると、コイル導体10と11間に電位差が生じたとき、絶縁体層6の膜厚が薄く、かつ電界集中が起きるエッジ部分において、コイル導体10と11間のショートが発生し易くなる。
【0025】
そこで、この対策として、図11に示すように、磁性体基板2から遠いコイル導体11の導体幅を、磁性体基板2に近いコイル導体10の導体幅より狭く設定する。具体的には、コイル導体10,11の導体幅をそれぞれD1,D2、コイル導体10と11の最大位置ずれ寸法をP1とすると、以下の関係式を満足するように設定するのが好ましい。
【0026】
2<D1−2P1
これにより、コイル導体11は、常に絶縁体層6の膜厚が厚く、コイル導体10のエッジ部分から離れた位置に配設されることになる。この結果、コイル導体10と11間の絶縁間隔が小さくならず、耐電圧性が低下するおそれもない。
次に、図12に示すように、前記スピン法等の薄膜形成手段にて絶縁体層7を形成する。この絶縁体層7は積層体14と磁性体基板3との接着剤の機能を必要とする。絶縁体層7は単独の層で絶縁と接着の機能を持たせてもよいし、絶縁層、接着層、基材等の複合材でもよい。材料としては、ポリイミド樹脂、エポキシ樹脂、アクリル樹脂、フッ素樹脂等の樹脂あるいはガラス、ガラスセラミックス、無機セメント等が使用できる。本実施例では絶縁体層7に、積層体14と磁性体基板3との接合強度を充分に確保するために、ポリイミド樹脂のプリプレグを用いる。これは、ポリイミド樹脂の前駆物質としてのポリアミド酸ワニス等を塗布した後、加熱して揮発成分の除去と部分的なイミド化を行なったものである。もしくは、プリプレグシートを用いてもよい。次に、図13に示すように、磁性体基板3を絶縁体層7の表面に載置した後、真空ホットプレス機にセットして真空中にて熱圧着する。こうして、絶縁体層4〜7の内部に気泡のない、磁性体基板2,3と積層体14が一体化されたチョークコイル1が得られる。特に、この真空ホットプレスによる一体化は、磁性体基板2,3として比較的脆いフェライト基板を使用した場合や、広面積のマザー基板を使用して効率良く生産する場合に適している。
【0027】
こうして得られたチョークコイル1は、磁性体基板2の表面に薄膜形成手段にて積層体14を形成するので、積層体14を精度良く形成することができ、チョークコイル1の小型化を図ることができる。また、積層体14を構成する絶縁体層4〜7やコイル導体10,11、引出し電極8,9,12,13は磁性体を含まないので、複数のコイルの磁気的結合が優れたチョークコイル1を得ることができる。
【0028】
なお、本発明に係るコモンモードチョークコイルは前記実施例に限定するものではなく、その要旨の範囲内で種々に変形することができる。
図14に示すように、前記実施例において、引出し電極8,9を設けた絶縁体層4を、コイル導体10,11をそれぞれ設けた絶縁体層5,6の間に配設するものであってもよい。この場合、コイル10と11の間は絶縁体層の数が大部分において2層となり、絶縁信頼性が一層向上する。図中28,29はビアホールを表示している。
【0029】
また、前記実施例は、一つの渦巻状コイル導体にてコイルを構成しているが、複数のコイル導体をビアホールを介して電気的に直列に接続した螺旋状のコイルであってもよい。また、複数のコイルは厚み方向に重なった構造に限るものではなく、厚み方向に対して垂直な方向に並置された構造であってもよい。
また、双方の磁性体基板に積層体を形成し、それを接合してもよい。
【0030】
さらに、磁性体基板の材料としてフェライトを使用した場合、磁性体基板が多孔質になることがある。また、絶縁体層の材料としてポリイミド樹脂等を使用した場合、絶縁体層が吸水性を持つことがある。これらはいずれもコモンモードチョークコイルの信頼性を低下させ、好ましくない。そこで、防湿剤(例えば樹脂やワックス等)をフェライトやポリイミド樹脂に含浸させたり、製作されたコイル部品の表面に外部電極を残して塗布したりしてもよい。
【0031】
【発明の効果】
以上の説明で明らかなように、本発明によれば、積層体が磁性体を含まないので、複数のコイルの電磁気的特性を向上させることができる。そして、第1の磁性体基板上に絶縁体層とコイルパターンにて構成された積層体を薄膜形成手段にて精度良く形成することができるので、高精度の小型のコモンモードチョークコイルを生産することができる。
【0032】
また、複数のコイルのそれぞれの一方の引出し電極を同一絶縁体層の上に設けることにより、絶縁体層の数を減少させて製造工程を簡単にすることができる。さらに、厚み方向のコイルパターン間に引出し電極を設置した場合、コイルパターン間の絶縁体層が大部分2倍の厚さとなり、絶縁信頼性が向上する。
また、厚み方向に隣接するコイルパターンにおいて、第1の磁性体基板から遠いコイルパターンの導体幅を、第1の磁性体基板に近いコイルパターンの導体幅より狭くすることにより、仮に、隣接するコイルパターン相互が位置ずれを起こしても、コイルパターン間の耐電圧性が低下する心配のないコモンモードチョークコイルが得られる。
【図面の簡単な説明】
【図1】本発明に係るコモンモードチョークコイルの一実施例を示す分解斜視図。
【図2】図1に示したコモンモードチョークコイルの外観を示す斜視図。
【図3】図2のIII−III断面図。
【図4】図2に示したコモンモードチョークコイルの電気等価回路図。
【図5】図1に示したコモンモードチョークコイルの製造手順を示す斜視図。
【図6】図5に続く製造手順を示す斜視図。
【図7】図6に続く製造手順を示す斜視図。
【図8】図7に続く製造手順を示す斜視図。
【図9】図8に続く製造手順を示す斜視図。
【図10】厚み方向に隣接するコイルパターンの一例を示す断面図。
【図11】厚み方向に隣接するコイルパターンの他の例を示す断面図。
【図12】図9に続く製造手順を示す斜視図。
【図13】図12に続く製造手順を示す斜視図。
【図14】本発明に係るコモンモードチョークコイルの他の実施例を示す分解斜視図。
【図15】従来例を示す斜視図。
【図16】別の従来例を示す断面図。
【図17】さらに別の従来例を示す断面図。
【符号の説明】
1…コモンモードチョークコイル
2,3…磁性体基板
4,5,6,7…絶縁体層
8,9…引出し電極
10,11…コイル導体
12,13…引出し電極
14…積層体
[0001]
[Industrial applications]
The present invention relates to a common mode choke coil.
[0002]
[Prior art]
Conventionally, as a common mode choke coil , a winding type coil component 41 shown in FIG. 15 is known. The coil component 41 includes a core 42 and a wire 43 wound around the body of the core 42. The end of the wire 43 is wrapped around an external terminal 44 provided on the end face of the rectangular base of the core 42.
[0003]
Further, as shown in FIG. 16, a coil component 51 manufactured using a green sheet laminating technique is also known. The coil component 51 is manufactured by laminating magnetic green sheets provided with coil conductors 52 1 , 52 2 , 52 3 , and 52 4 on the surface and integrally firing them, and then forming external electrodes 56 and 57. ing. The coil conductors 52 1 to 52 4 are electrically connected in series via a via hole or the like provided in the magnetic green sheet to form the coil 52.
[0004]
Further, a coil component 61 shown in FIG. 17 is known. The coil component 61 includes a coil portion 62 formed by laminating an insulator green sheet having a coil conductor provided on a surface thereof, and two magnetic cores 63 and 64 sandwiching the coil portion 62. For the insulator green sheet, a material containing no magnetic material is used.
[0005]
[Problems to be solved by the invention]
Among the above-described conventional coil components, the coil component 41 shown in FIG. 15 requires the core 42 to be formed individually and the wire 43 to be wound for each core 42. Further, since the wire 43 and the external terminals 44 are made of different materials, an electrical connection step such as soldering is required, and this step has to be performed for each coil component. As a result, the productivity of the coil component 41 was low and the cost was high. Further, there is a limit in reducing the size of the core 42 and the wire 43 due to handling problems.
[0006]
The coil component 51 shown in FIG. 16 is due to the multilayer structure, most of the process for the coil conductor 52 1-52 4 is formed by printing or transferring the magnetic green sheet is produced in the substrate state High productivity and handling problems have been solved. Coil conductors 52 1-52 4 is also suitable for miniaturization because it can be thinner and thinner form. However, there has been a problem that variations in electrical characteristics occur due to shrinkage of the magnetic green sheet in the firing step. In addition, since a closed magnetic path is formed for each magnetic green sheet, there is a problem that the inductance of the coil 52 is relatively small. In particular, when the coil component 51 is a transformer or a common mode choke coil, this problem is a major cause of lowering magnetic coupling between the coils and impairing performance.
[0007]
Further, the coil component 61 shown in FIG. 17 has good electromagnetic characteristics because the insulating green sheet does not contain a magnetic material, but has a problem that an effective magnetic path must be formed separately. That is, it is necessary to separately prepare the cores 63 and 64 made of a magnetic material. As a result, the productivity of the coil component 61 was low.
Therefore, an object of the present invention is to provide a small common mode choke coil having high productivity and excellent electric characteristics.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, a common mode choke coil according to the present invention is:
(A) a first magnetic substrate;
(B) a laminate formed by stacking in the thickness direction an insulator layer made of a nonmagnetic layer, a coil pattern, and a lead electrode formed on the surface of the first magnetic substrate by a thin film forming means;
(C) a second magnetic substrate sandwiching the laminated body between the first magnetic substrate and the first magnetic substrate;
(D) an external electrode provided on an end surface of a laminated structure including the first magnetic substrate, the laminated body, and the second magnetic substrate;
(E) the coil pattern forms at least two coils, and the coils are covered with an insulator of an insulator layer;
(F) each of the coils is disposed in the insulator in a direction perpendicular to the thickness direction of the insulator layer , and is provided with a first magnetic substrate and a second magnetic substrate via an extraction electrode formed by being covered with the insulator . Electrically connected to external electrodes without penetrating the magnetic substrate,
It is characterized by.
[0009]
Also, common mode choke coil according to the present invention is further characterized in that each one of the lead electrode of the plurality of coils are provided on the same said insulator layer.
Further, in the common mode choke coil according to the present invention, in a coil pattern which is substantially overlapped in the thickness direction and adjacent to the first magnetic substrate, the conductor width of the coil pattern far from the first magnetic substrate is closer to the first magnetic substrate. The width of the conductor is smaller than the width of the conductor.
[0010]
[Action]
According to the above configuration, since the laminate does not include a magnetic material, there is no need to worry about variation in electrical characteristics due to shrinkage of the magnetic green sheet in the firing step. Further, the inductance does not decrease due to the closed magnetic path formed for each magnetic green sheet. Therefore, the electromagnetic characteristics of the plurality of coils are improved. Furthermore, a laminated body composed of an insulator layer and a coil pattern is formed on the first magnetic substrate with high precision by the thin film forming means, so that a small-sized common mode choke coil with high precision is produced. .
[0011]
And, by providing one extraction electrode of each of the plurality of coils on the same insulator layer, the number of insulator layers is reduced as compared with the case where the extraction electrodes are provided on different insulator layers, respectively. The manufacturing process is simplified. Further, when the extraction electrode is provided between the coil patterns in the thickness direction, the thickness of the insulator layer between the coil patterns is almost twice as large, and the insulation reliability is improved.
[0012]
Further, in the coil patterns adjacent in the thickness direction, if the conductor width of the coil pattern far from the first magnetic substrate is smaller than the conductor width of the coil pattern close to the first magnetic substrate, it is assumed that the adjacent two patterns are temporarily closed. Even if the two coil patterns are displaced from each other, the insulation interval between the coil patterns does not become small, and the withstand voltage does not decrease.
[0013]
【Example】
Hereinafter, an embodiment of a common mode choke coil according to the present invention will be described with reference to the accompanying drawings. In the embodiment, a case in which the common mode choke coil is manufactured as a single product will be described. However, in mass production, the mother board provided with a plurality of common mode choke coils is used to efficiently produce .
[0014]
As shown in FIG. 1, the common mode choke coil 1 is composed of magnetic substrates 2 and 3 and a laminated body 14 sandwiched between the magnetic substrates 2 and 3. The laminate 14 is formed by stacking insulator layers 4, 5, 6, 7, coil conductors 10, 11, and extraction electrodes 8, 9, 12, 13 in the thickness direction. Ferrite or the like is used as a material for the magnetic substrates 2 and 3. When ferrite is used, the choke coil 1 has high inductance and excellent high frequency characteristics.
[0015]
The extraction electrodes 8 and 9 are provided on the surface of the insulator layer 4, and one end of the extraction electrodes 8 and 9 is exposed at the front edge of the insulator layer 4. A spiral coil conductor 10 is provided on the surface of the insulator layer 5, and one end of the coil conductor 10 is electrically connected to a lead electrode 12 provided on an inner edge of the insulator layer 5. I have. A spiral coil conductor 11 is provided on the surface of the insulator layer 6, and one end of the coil conductor 11 is electrically connected to a lead electrode 13 provided on an inner edge of the insulator layer 6. I have.
[0016]
As a material of the extraction electrodes 8, 9, 12, 13 and the coil conductors 10, 11, a metal having excellent conductivity, for example, Ag, Pd, Cu, Al, or an alloy thereof is adopted. As a material of the insulator layers 4 to 7, a resin such as a polyimide resin, an epoxy resin, an acrylic resin, a cyclic olefin resin, or a benzocyclobutene resin, a glass such as SiO 2, or a glass ceramic is used. In this embodiment, a photosensitive polyimide resin is used. When a polyimide resin is used, the extraction electrodes 8, 9, 12, 13 and the coil conductors 10, 11 can be formed easily and with good adhesion on the insulating layers 4 to 6 by vapor deposition or sputtering. Physical and chemical properties of 4 to 7 can be excellent and stable.
[0017]
In the stacked state, the extraction electrode 8 is electrically connected to the coil conductor 10 through the via hole 15 provided in the insulator layer 5, and the extraction electrode 9 is connected to the via holes 16 a and 16 b provided in the insulator layers 5 and 6. It is electrically connected to the coil conductor 11 via. The coil conductors 10 and 11 constitute a pair of coils that are magnetically closely coupled.
[0018]
When the distance between the magnetic substrates 2 and 3 is as narrow as possible, the magnetic resistance is low and a larger inductance is obtained. In addition, a larger number of turns of the coil provides a larger inductance. On the other hand, the size of the choke coil 1 is desirably small, and the cost can be reduced from the viewpoint of the material used. Therefore, the thickness of the insulator layers 4 to 7 is preferably 10 μm or less, and the conductor width of the coil conductors 10 and 11 is preferably 100 μm or less. The thicknesses of the coil conductors 10 and 11 are arbitrarily set in order to provide a DC resistance according to the specifications of the coil component. It is preferable that the positioning of the coil conductors 10 and 11 be performed with high accuracy. From these viewpoints, thin film forming means such as photolithography is used for forming the insulator layers 4 to 7, the coil conductors 10 and 11, and the extraction electrodes 8, 9, 12, and 13.
[0019]
As shown in FIGS. 2 and 3, external electrodes 20 and 22 are provided on the front end face of the common mode choke coil 1, and external electrodes 21 and 23 are provided on the rear end face. The external electrodes 20, 21, 22, and 23 are electrically connected to extraction electrodes 8, 12, 9, and 13, respectively. The external electrodes 20 to 23 are formed by means such as vapor deposition, sputtering, and electroless plating, and firmly adhere to the end face of the choke coil 1. Further, if necessary, electroplating may be further performed to increase the thickness of the external electrodes 20 to 23. FIG. 4 is an electric equivalent circuit diagram of the choke coil 1.
[0020]
Next, a manufacturing procedure of the common mode choke coil 1 will be described with reference to FIGS.
As shown in FIG. 5, an insulator layer 4 is formed on the surface of the magnetic substrate 2 by a thin film forming means. As the thin film forming means, for example, a method such as photolithography or printing is employed. In the photolithography method, for example, a photosensitive resin film is formed on the entire surface of the magnetic substrate 2 by a spin method, a dipping method, a spray method, a transfer method, and the like, and then exposed and developed to obtain a predetermined insulating layer 4. . Another method of photolithography is to form an insulating resin film on the entire surface of the magnetic substrate 2 by the spin method or the like, and then apply a photosensitive resist film to the surface of the insulating resin film, and expose, develop, I do. Next, after the portion of the insulating resin film exposed from the photosensitive resist film is etched to remove unnecessary portions of the insulating resin film, the photosensitive resist film is peeled off. Alternatively, the insulator film obtained by the spin method or the like is pierced and cut by a laser beam. Thus, the insulator layer 4 is formed on the surface of the magnetic substrate 2.
[0021]
Next, extraction electrodes 8 and 9 are provided on the surface of the insulator layer 4 by thin film forming means such as photolithography. That is, after a metal film is formed on the entire surface of the insulator layer 4 by plating, vapor deposition, sputtering, or the like, a photosensitive resist film is applied to the surface of the metal film, exposed, and developed. Next, after the portion of the metal film exposed from the photosensitive resist film is etched to remove an unnecessary portion of the metal film, the photosensitive resist film is removed. Thus, the extraction electrodes 8 and 9 are formed on the surface of the insulator layer 4 in the same step. Therefore, the structure of the via hole is somewhat complicated as compared with the case where the extraction electrodes are formed on the surfaces of different insulator layers, but the number of layers is reduced, the manufacturing process is simplified, and the manufacturing cost is reduced. Become cheap.
[0022]
Next, as shown in FIG. 6, the insulator layer 5 is formed by a thin film forming means such as photolithography. Via holes 15 and 16a are formed in the center of the insulator layer 5 so that one ends of the extraction electrodes 8 and 9 are exposed. Next, as shown in FIG. 7, a coil conductor 10 and an extraction electrode 12 are formed on the surface of the insulator layer 5 by thin film forming means such as photolithography. One end of the coil conductor 10 is in contact with and electrically connected to one end of the extraction electrode 8 via the via hole 15.
[0023]
Next, as shown in FIG. 8, the insulator layer 6 is formed by a thin film forming means such as photolithography. A via hole 16b is formed at the center of the insulator layer 6 so as to be connected to the via hole 16a, and one end of the extraction electrode 9 is exposed from the via hole 16b. Next, as shown in FIG. 9, the coil conductor 11 and the extraction electrode 13 are formed on the surface of the insulator layer 6 by thin film forming means such as photolithography. One end of the coil conductor 11 contacts and is electrically connected to one end of the extraction electrode 9 via the via holes 16a and 16b.
[0024]
In the case of the choke coil 1 of the present embodiment, a structure in which the coil conductors 10 and 11 substantially overlap in the thickness direction is employed. Here, the conductor widths of the coil conductors 10 and 11 may be set equal, but in this case, there is a concern about the withstand voltage reliability between the coil conductors 10 and 11. This is because, when the insulating layer 6 is formed, when the liquid insulating resin is applied to the uneven portion of the coil conductor 10, the insulating layer 6 at the edge portion tends to be locally thin. As shown in FIG. 10, if the coil conductors 10 and 11 are displaced, when a potential difference occurs between the coil conductors 10 and 11, the edge portion where the thickness of the insulator layer 6 is small and the electric field concentration occurs is generated. In this case, a short circuit between the coil conductors 10 and 11 easily occurs.
[0025]
Therefore, as a countermeasure, as shown in FIG. 11, the conductor width of the coil conductor 11 far from the magnetic substrate 2 is set to be smaller than the conductor width of the coil conductor 10 near the magnetic substrate 2. Specifically, assuming that the conductor widths of the coil conductors 10 and 11 are D 1 and D 2 , respectively, and the maximum misalignment dimension of the coil conductors 10 and 11 is P 1 , the following relational expressions should be satisfied. preferable.
[0026]
D 2 <D 1-2 P 1
As a result, the coil conductor 11 is always disposed at a position away from the edge of the coil conductor 10 because the thickness of the insulator layer 6 is large. As a result, the insulation interval between the coil conductors 10 and 11 is not reduced, and there is no possibility that the withstand voltage is reduced.
Next, as shown in FIG. 12, the insulator layer 7 is formed by a thin film forming means such as the spin method. This insulator layer 7 needs to function as an adhesive between the laminate 14 and the magnetic substrate 3. The insulator layer 7 may have a function of insulating and bonding as a single layer, or may be a composite material such as an insulating layer, an adhesive layer, and a base material. As a material, a resin such as a polyimide resin, an epoxy resin, an acrylic resin, and a fluororesin, or glass, glass ceramic, inorganic cement, or the like can be used. In the present embodiment, a prepreg of polyimide resin is used for the insulator layer 7 in order to sufficiently secure the bonding strength between the laminate 14 and the magnetic substrate 3. In this method, a polyamide acid varnish or the like as a precursor of a polyimide resin is applied and then heated to remove volatile components and perform partial imidization. Alternatively, a prepreg sheet may be used. Next, as shown in FIG. 13, after placing the magnetic substrate 3 on the surface of the insulator layer 7, it is set on a vacuum hot press and thermocompression-bonded in vacuum. Thus, the choke coil 1 in which the magnetic substrates 2 and 3 and the laminate 14 are integrated without any bubbles inside the insulator layers 4 to 7 is obtained. In particular, the integration by vacuum hot pressing is suitable when a relatively brittle ferrite substrate is used as the magnetic substrates 2 and 3 or when a large-area mother substrate is used for efficient production.
[0027]
In the choke coil 1 thus obtained, since the laminated body 14 is formed on the surface of the magnetic substrate 2 by the thin film forming means, the laminated body 14 can be formed with high precision, and the choke coil 1 can be downsized. Can be. In addition, since the insulator layers 4 to 7, the coil conductors 10, 11, and the extraction electrodes 8, 9, 12, 13 constituting the laminated body 14 do not include a magnetic material, a choke coil having excellent magnetic coupling of a plurality of coils. 1 can be obtained.
[0028]
The common mode choke coil according to the present invention is not limited to the above embodiment, but can be variously modified within the scope of the invention.
As shown in FIG. 14, in the above embodiment, the insulator layer 4 provided with the lead electrodes 8 and 9 is disposed between the insulator layers 5 and 6 provided with the coil conductors 10 and 11, respectively. You may. In this case, the number of insulator layers is mostly two between the coils 10 and 11, and the insulation reliability is further improved. In the figure, reference numerals 28 and 29 indicate via holes.
[0029]
Further, in the above embodiment, the coil is constituted by one spiral coil conductor, but may be a helical coil in which a plurality of coil conductors are electrically connected in series via via holes. Further, the plurality of coils are not limited to the structure overlapping in the thickness direction, and may be a structure in which the coils are juxtaposed in a direction perpendicular to the thickness direction.
Alternatively, a laminate may be formed on both magnetic substrates and joined together.
[0030]
Further, when ferrite is used as the material of the magnetic substrate, the magnetic substrate may be porous. Further, when a polyimide resin or the like is used as a material of the insulator layer, the insulator layer may have water absorption. All of these undesirably reduce the reliability of the common mode choke coil . Therefore, a ferrite or a polyimide resin may be impregnated with a moisture-proofing agent (eg, resin or wax), or may be applied to the surface of the manufactured coil component while leaving the external electrode.
[0031]
【The invention's effect】
As is clear from the above description, according to the present invention, since the laminate does not include a magnetic material, the electromagnetic characteristics of a plurality of coils can be improved. Then, a laminated body composed of an insulator layer and a coil pattern can be formed on the first magnetic substrate with high accuracy by the thin film forming means, so that a small-sized common mode choke coil with high precision is produced. be able to.
[0032]
In addition, by providing one extraction electrode of each of the plurality of coils on the same insulator layer, the number of insulator layers can be reduced and the manufacturing process can be simplified. Further, when the extraction electrode is provided between the coil patterns in the thickness direction, the thickness of the insulator layer between the coil patterns is almost twice as large, and the insulation reliability is improved.
Further, in the coil pattern adjacent in the thickness direction, the conductor width of the coil pattern far from the first magnetic substrate is made narrower than the conductor width of the coil pattern near the first magnetic substrate, so that the adjacent coil pattern is temporarily provided. A common mode choke coil is obtained in which there is no concern that the withstand voltage between the coil patterns is reduced even if the patterns are displaced from each other.
[Brief description of the drawings]
FIG. 1 is an exploded perspective view showing an embodiment of a common mode choke coil according to the present invention.
FIG. 2 is a perspective view showing the appearance of the common mode choke coil shown in FIG.
FIG. 3 is a sectional view taken along the line III-III of FIG. 2;
FIG. 4 is an electric equivalent circuit diagram of the common mode choke coil shown in FIG.
FIG. 5 is an exemplary perspective view showing a procedure for manufacturing the common mode choke coil shown in FIG. 1;
FIG. 6 is a perspective view showing a manufacturing procedure following FIG. 5;
FIG. 7 is a perspective view showing a manufacturing procedure following FIG. 6;
FIG. 8 is a perspective view showing a manufacturing procedure following FIG. 7;
FIG. 9 is a perspective view showing a manufacturing procedure following FIG. 8;
FIG. 10 is a sectional view showing an example of a coil pattern adjacent in the thickness direction.
FIG. 11 is a sectional view showing another example of a coil pattern adjacent in the thickness direction.
FIG. 12 is a perspective view showing a manufacturing procedure following FIG. 9;
FIG. 13 is a perspective view showing a manufacturing procedure following FIG. 12;
FIG. 14 is an exploded perspective view showing another embodiment of the common mode choke coil according to the present invention.
FIG. 15 is a perspective view showing a conventional example.
FIG. 16 is a sectional view showing another conventional example.
FIG. 17 is a sectional view showing still another conventional example.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Common mode choke coil 2, 3 ... Magnetic substrate 4, 5, 6, 7 ... Insulator layer 8, 9 ... Leader electrodes 10, 11 ... Coil conductors 12, 13 ... Leader electrode 14 ... Laminate

Claims (3)

第1の磁性体基板と、
前記第1の磁性体基板の表面に薄膜形成手段にて形成された、非磁性体層からなる絶縁体層とコイルパターンと引出し電極を厚み方向に積み重ねた積層体と、
前記第1の磁性体基板との間に前記積層体を挟む第2の磁性体基板と、
前記第1の磁性体基板と前記積層体と前記第2の磁性体基板からなる積層構造体の端面に設けられた外部電極とを備え、
前記コイルパターンが少なくとも2個のコイルを構成するとともに、該コイルが前記絶縁体層の絶縁体で覆われ、
前記コイルのそれぞれが、前記絶縁体内に前記絶縁体層の厚み方向に対して垂直方向に配置して前記絶縁体で覆われ形成された前記引出し電極を介して、前記第1の磁性体基板および前記第2の磁性体基板を貫通することなく、前記外部電極に電気的に接続していること、
を特徴とするコモンモードチョークコイル
A first magnetic substrate,
A laminate formed by stacking an insulator layer made of a nonmagnetic layer, a coil pattern, and an extraction electrode in a thickness direction, formed on the surface of the first magnetic substrate by a thin film forming means;
A second magnetic substrate sandwiching the laminate between the first magnetic substrate,
An external electrode provided on an end face of a laminated structure including the first magnetic substrate, the laminated body, and the second magnetic substrate;
The coil pattern constitutes at least two coils, and the coils are covered with an insulator of the insulator layer,
Each of the coils is disposed in the insulator in a direction perpendicular to the thickness direction of the insulator layer , and the first magnetic substrate and the first magnetic substrate are provided through the lead electrodes formed by being covered with the insulator. Being electrically connected to the external electrode without penetrating the second magnetic substrate;
A common mode choke coil characterized by the following.
複数のコイルのそれぞれの一方の引出し電極が同一の前記絶縁体層の上に設けられていることを特徴とする請求項1記載のコモンモードチョークコイル2. The common mode choke coil according to claim 1 , wherein one extraction electrode of each of the plurality of coils is provided on the same insulator layer. 厚み方向にほぼ重なって隣接するコイルパターンにおいて、第1の磁性体基板から遠いコイルパターンの導体幅が、前記第1の磁性体基板に近いコイルパターンの導体幅より狭いことを特徴とする請求項1記載のコモンモードチョークコイルThe coil width of a coil pattern which is substantially overlapped and adjacent in the thickness direction and which is far from the first magnetic substrate is smaller than the conductor width of a coil pattern which is close to the first magnetic substrate. 2. The common mode choke coil according to 1 .
JP00798795A 1995-01-23 1995-01-23 Common mode choke coil Expired - Lifetime JP3601619B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00798795A JP3601619B2 (en) 1995-01-23 1995-01-23 Common mode choke coil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00798795A JP3601619B2 (en) 1995-01-23 1995-01-23 Common mode choke coil

Publications (2)

Publication Number Publication Date
JPH08203737A JPH08203737A (en) 1996-08-09
JP3601619B2 true JP3601619B2 (en) 2004-12-15

Family

ID=11680782

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00798795A Expired - Lifetime JP3601619B2 (en) 1995-01-23 1995-01-23 Common mode choke coil

Country Status (1)

Country Link
JP (1) JP3601619B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007201022A (en) * 2006-01-24 2007-08-09 Murata Mfg Co Ltd Electronic component
US7408435B2 (en) 2006-11-01 2008-08-05 Tdk Corporation Coil component
US7414508B2 (en) 2005-10-05 2008-08-19 Tdk Corporation Common mode choke coil and method of manufacturing the same
US7619500B1 (en) 2008-05-16 2009-11-17 Tdk Corporation Common mode filter

Families Citing this family (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6356181B1 (en) 1996-03-29 2002-03-12 Murata Manufacturing Co., Ltd. Laminated common-mode choke coil
JP3615024B2 (en) 1997-08-04 2005-01-26 株式会社村田製作所 Coil parts
JP3712163B2 (en) * 1997-12-18 2005-11-02 株式会社村田製作所 Coil parts design method
JP2001044754A (en) 1999-07-26 2001-02-16 Niigata Seimitsu Kk Lc oscillator
JP3724405B2 (en) 2001-10-23 2005-12-07 株式会社村田製作所 Common mode choke coil
JP2004040001A (en) * 2002-07-05 2004-02-05 Taiyo Yuden Co Ltd Coil component and circuit device
JP3827311B2 (en) * 2003-02-26 2006-09-27 Tdk株式会社 Manufacturing method of common mode choke coil
US20040263309A1 (en) 2003-02-26 2004-12-30 Tdk Corporation Thin-film type common-mode choke coil and manufacturing method thereof
JP4370817B2 (en) 2003-06-09 2009-11-25 Tdk株式会社 Ferrite substrate manufacturing method
JP2005044834A (en) * 2003-07-22 2005-02-17 Mitsubishi Materials Corp Laminated common mode choke coil and its manufacturing method
US7145427B2 (en) 2003-07-28 2006-12-05 Tdk Corporation Coil component and method of manufacturing the same
JP2005159222A (en) 2003-11-28 2005-06-16 Tdk Corp Thin film common mode filter and thin film common mode filter array
JP4477345B2 (en) 2003-11-28 2010-06-09 Tdk株式会社 Thin film common mode filter and thin film common mode filter array
JP2005217268A (en) 2004-01-30 2005-08-11 Tdk Corp Electronic component
JP4610226B2 (en) 2004-04-28 2011-01-12 Tdk株式会社 Coil parts
JP2006041081A (en) * 2004-07-26 2006-02-09 Mitsubishi Materials Corp Composite common mode choke coil and manufacturing method therefor
JP2006041320A (en) * 2004-07-29 2006-02-09 Kyocera Corp Laminated inductor
JP4339777B2 (en) 2004-11-10 2009-10-07 Tdk株式会社 Common mode choke coil
US7091816B1 (en) 2005-03-18 2006-08-15 Tdk Corporation Common-mode choke coil
JP2006286884A (en) 2005-03-31 2006-10-19 Tdk Corp Common mode choke coil
JP4507950B2 (en) * 2005-03-31 2010-07-21 Tdk株式会社 Common mode choke coil
EP1884964B1 (en) 2005-05-20 2012-12-26 Murata Manufacturing Co., Ltd. Multilayer balun transformer
JP4844045B2 (en) 2005-08-18 2011-12-21 Tdk株式会社 Electronic component and manufacturing method thereof
JP4293626B2 (en) 2005-08-26 2009-07-08 Tdk株式会社 Common mode filter
US20090295526A1 (en) 2006-03-29 2009-12-03 Hideto Mikami Coil Component and Its Manufacturing Method
JP4518103B2 (en) * 2007-05-21 2010-08-04 Tdk株式会社 Common mode choke coil
JP5073373B2 (en) 2007-06-08 2012-11-14 Tdk株式会社 Common mode choke coil
JP4770809B2 (en) * 2007-07-30 2011-09-14 Tdk株式会社 Common mode choke coil and manufacturing method thereof
JP4609466B2 (en) * 2007-09-05 2011-01-12 Tdk株式会社 Manufacturing method of multilayer electronic component
JP4683026B2 (en) 2007-09-07 2011-05-11 Tdk株式会社 Common mode choke coil and manufacturing method thereof
JP4831101B2 (en) * 2008-03-26 2011-12-07 Tdk株式会社 Multilayer transformer component and manufacturing method thereof
JP4734428B2 (en) * 2008-09-30 2011-07-27 Tdk株式会社 Composite electronic component and its connection structure
US8422190B2 (en) 2008-09-30 2013-04-16 Tdk Corporation Composite electronic device, manufacturing method thereof, and connection structure of composite electronic device
JP4609569B2 (en) * 2008-11-06 2011-01-12 Tdk株式会社 Common mode choke coil connection structure
JP2011071457A (en) 2008-12-22 2011-04-07 Tdk Corp Electronic component and manufacturing method of electronic component
JP4835699B2 (en) 2009-01-22 2011-12-14 Tdk株式会社 High-speed digital transmission circuit
JP5029726B2 (en) 2010-05-21 2012-09-19 Tdk株式会社 Common mode noise filter
US8999807B2 (en) * 2010-05-27 2015-04-07 Semiconductor Components Industries, Llc Method for manufacturing a semiconductor component that includes a common mode choke and structure
US8766401B2 (en) 2010-10-01 2014-07-01 Semiconductor Components Industries, Llc Method of manufacturing a semiconductor component and structure
JP6019551B2 (en) * 2011-08-18 2016-11-02 株式会社村田製作所 Manufacturing method of common mode choke coil
JP5673837B2 (en) 2011-08-31 2015-02-18 株式会社村田製作所 Electronic component and manufacturing method thereof
KR101541570B1 (en) 2011-09-30 2015-08-04 삼성전기주식회사 Coil Parts And Method of Manufacturing The Same
KR101514491B1 (en) * 2011-12-08 2015-04-23 삼성전기주식회사 Coil Parts And Method of Manufacturing The Same
WO2013108862A1 (en) 2012-01-20 2013-07-25 株式会社村田製作所 Coil component
US20130271251A1 (en) * 2012-04-12 2013-10-17 Cyntec Co., Ltd. Substrate-Less Electronic Component
KR101792274B1 (en) 2012-08-08 2017-11-01 삼성전기주식회사 Filter for Removing Noise
US9209132B2 (en) 2013-07-26 2015-12-08 Semiconductor Components Industries, Llc Semiconductor component and method of manufacture
US9111758B2 (en) 2013-08-09 2015-08-18 Semiconductor Components Industries, Llc Semiconductor component and method of manufacture
US9431385B2 (en) 2013-08-09 2016-08-30 Semiconductor Components Industries, Llc Semiconductor component that includes a common mode filter and method of manufacturing the semiconductor component
JP6172119B2 (en) * 2014-11-10 2017-08-02 株式会社村田製作所 Common mode choke coil
CN108022733A (en) * 2016-10-28 2018-05-11 三星电机株式会社 Common-mode filter and its manufacture method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7414508B2 (en) 2005-10-05 2008-08-19 Tdk Corporation Common mode choke coil and method of manufacturing the same
JP2007201022A (en) * 2006-01-24 2007-08-09 Murata Mfg Co Ltd Electronic component
US7408435B2 (en) 2006-11-01 2008-08-05 Tdk Corporation Coil component
US7619500B1 (en) 2008-05-16 2009-11-17 Tdk Corporation Common mode filter

Also Published As

Publication number Publication date
JPH08203737A (en) 1996-08-09

Similar Documents

Publication Publication Date Title
JP3601619B2 (en) Common mode choke coil
US8050045B2 (en) Electronic component and method of manufacturing the same
US8325003B2 (en) Common mode filter and method of manufacturing the same
JP3686908B2 (en) Multilayer coil component and manufacturing method thereof
KR890004585B1 (en) Microcoil assembly
JP5874199B2 (en) Coil component and manufacturing method thereof
KR20140137306A (en) Coil component and manufacturing method thereof
JP2006286934A (en) Common mode choke coil
JPH05101938A (en) Laminate type coil and fabrication thereof
WO2006008878A1 (en) Coil component
US20180286566A1 (en) Electronic component
JP3274695B2 (en) Flat type transformer
JP2001313212A (en) Laminated coil and its manufacturing method
JP3152088B2 (en) Manufacturing method of coil parts
JP2003332141A (en) Chip common mode choke coil
JPH056829A (en) Thin transformer
JP2003197428A (en) Chip-type common mode choke coil
JPH04242911A (en) Manufacture of electronic parts
EP0484558B1 (en) High frequency coil and method of manufacturing the same
JP2002359115A (en) Chip type common mode choke coil
JPH07142256A (en) Stacked printed coil and its manufacture
JP2001126925A (en) Laminate inductor
JPH07135114A (en) Multilayered printed coil and its manufacture
JP4287063B2 (en) Manufacturing method of common mode choke coil
US20230230737A1 (en) Multilayer coil component

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040809

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040915

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071001

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081001

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091001

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101001

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101001

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111001

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121001

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131001

Year of fee payment: 9

EXPY Cancellation because of completion of term