JP3601226B2 - Gravure firing ink - Google Patents

Gravure firing ink Download PDF

Info

Publication number
JP3601226B2
JP3601226B2 JP518797A JP518797A JP3601226B2 JP 3601226 B2 JP3601226 B2 JP 3601226B2 JP 518797 A JP518797 A JP 518797A JP 518797 A JP518797 A JP 518797A JP 3601226 B2 JP3601226 B2 JP 3601226B2
Authority
JP
Japan
Prior art keywords
weight
parts
gravure
ink
fired
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP518797A
Other languages
Japanese (ja)
Other versions
JPH10199331A (en
Inventor
恵一 中尾
恭重 清水
涼 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP518797A priority Critical patent/JP3601226B2/en
Publication of JPH10199331A publication Critical patent/JPH10199331A/en
Application granted granted Critical
Publication of JP3601226B2 publication Critical patent/JP3601226B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Conductive Materials (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)
  • Paints Or Removers (AREA)
  • Inks, Pencil-Leads, Or Crayons (AREA)
  • Ceramic Capacitors (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、各種電子機器に用いられる積層セラミックコンデンサ、積層バリスタ、積層圧電セラミック部品等のセラミック電子部品をグラビア印刷方法で製造する際に用いるグラビア焼成インキに関するものであり、特にグラビア印刷された後にセラミック生積層体内部に数百層埋め込まれた後に、800℃以上の高温で焼成されるグラビア焼成インキに関するものである。
【0002】
【従来の技術】
従来、グリーンシートの上に電極パターンを印刷する際には、スクリーン印刷方法が広く用いられていた。しかしこの場合、版の伸びがあるため、特公平8−8200号公報ではセラミックグリーンシート上に直接グラビア印刷するセラミック電子部品の製造方法が提案されている。
【0003】
また特公平5−25381号公報では、グリーンシート上への電極の付与手段として、ベースフィルム上に形成されたグラビア印刷パターンを転写すること(グラビアコータを用いて電極を直接グリーンシート上に印刷すると、グリーンシートの膨潤やダメージが発生するという課題が発生するため)が提案されている。
【0004】
さらに米国特許5,101,319号公報や特開平2−58397号公報ではフィルム上に電極をグラビア印刷することが提案されているが、そこに用いることができ、800℃以上の高温で焼成できる有効なグラビアインキは提案されていなかった。
【0005】
【発明が解決しようとする課題】
従来のグラビアインキでは、紙やフィルムの上に画像を印刷するために用いられており、その主成分としては顔料が用いられており、セラミック電子部品用の電極材料には使えない。また従来のグラビアインキ製造方法で各種電極粉末を分散しても、金属粉の比重のため沈殿が著しく、実用に耐えるものではなかった。そのためセラミック電子部品の電極材料の印刷には、スクリーン印刷方法が広く用いられていた。
【0006】
本発明は、800℃以上の高温で焼成できる、スクリーン焼成インキに代わる新しいグラビア焼成インキを提案するものであり、グリーンシートに直接グラビア印刷してもグリーンシートを膨潤させることがなく、また直接ベースフィルム上にグラビア印刷できるため、このグラビア印刷された電極パターンを他のセラミック積層体上に転写したり、前記グラビア印刷された電極パターン上にセラミックスラリーを塗布し、セラミック生シートの内部に埋め込むことも可能とするものである。
【0007】
【課題を解決するための手段】
この課題を解決するために本発明は、800℃以上で焼成可能なグラビア電極インキを提案するもので、10ポイズ以下でかつ20μm以上の金属凝集体が無く分散され、グラビア印刷後にセラミック生積層体内部に組み込まれ、800℃以上の高温で焼成でき、このグラビア電極インキを用いることで、できあがったセラミック電子部品の信頼性を改善し、コストダウンが図れる。
【0008】
【発明の実施の形態】
本発明の請求項1に記載の発明は、樹脂4重量部に対して40重量部以外90重量部以下の金属粉末と30重量部以上70重量部以下の溶剤が分散されたグラビアインキにおいて、粘度は10ポイズ以下でかつ20μm以上の金属凝集体が無く、グラビア印刷後にセラミック生積層体内部に組み込まれ、800℃以上の高温で焼成されるグラビア焼成インキとしたものであり、低粘度にすることでグラビア印刷適性を改善し、20μm以上の金属凝集体を無くすことで印刷パターンの高精度化、長時間の印刷安定性、積層セラミック電子部品の信頼性を向上させるという作用を有する。
【0009】
請求項2に記載の発明は、樹脂4重量部に対して40重量部以上90重量部以下の金属粉末と30重量部以上70重量部以下の溶剤が分散されたグラビアインキにおいて、樹脂はセルロース樹脂、少なくとも5重量部以上の石油系溶剤及びアルコール系溶剤を含み、粘度は10ポイズ以下でかつ20μm以上の金属凝集体が無く、グラビア印刷後にセラミック生積層体内部に組み込まれ、800℃以上の高温で焼成されるグラビア焼成インキであり、セラミック生シートの上に直接グラビア印刷した場合のセラミック生シートの膨潤や再溶解を防止するという作用により積層セラミック電子部品の歩留まりを高められる。
【0010】
請求項3に記載の発明は、樹脂4重量部に対して40重量部以上90重量部以下の金属粉末と30重量部以上70重量部以下の溶剤が分散されたグラビアインキにおいて、樹脂は水溶性樹脂、溶剤は水を少なくとも5重量部以上含み、粘度は10ポイズ以下でかつ20μm以上の金属凝集体が無く、グラビア印刷後にセラミック生積層体内部に組み込まれ、800℃以上の高温で焼成されるグラビア焼成インキであり、その有機溶剤使用量を少なくすることでグラビア印刷時の作業環境を改善し、有害物質の使用量を削減するという作用を有する。
【0011】
請求項4に記載の発明は、樹脂4重量部に対して40重量部以上90重量部以下の金属粉末と30重量部以上70重量部以下の溶剤が分散されたグラビアインキにおいて、添加剤としてカルボン酸を0.1重量部以上含み、粘度は10ポイズ以下でかつ20μm以上の金属凝集体が無く分散され、セラミック生積層体内部に組み込んだ後、800℃以上の高温で焼成されるグラビア焼成インキとしたものであり、グラビア焼成インキが保存中に沈殿したり再凝集することを防止する。このため安定して積層セラミック電子部品を製造できる。
【0012】
請求項5に記載の発明は、樹脂4重量部に対して40重量部以上90重量部以下の金属粉末と30重量部以上70重量部以下の溶剤と可塑剤8重量部以下が分散されたグラビアインキにおいて、可塑剤はフタル酸エステルもしくは多価アルコール系であり、粘度は10ポイズ以下でかつ20μm以上の金属凝集体が無く、グラビア印刷後にセラミック生積層体内部に組み込まれ、800℃以上の高温で焼成されるグラビア焼成インキであり、こうした可塑剤を添加することで、グラビア印刷された塗膜の保存性や安定性を増加させられ、これを用いて製造したセラミック電子部品の信頼性を高められる。
【0013】
以下に、本発明の具体例を説明する。
【0014】
(実施の形態1)
グラビアインキとしてはブチラール樹脂4重量部に対して粒径2μm以下のニッケル粉末50重量部、エタノールとトルエンよりなる混合溶剤40重量部を加え、市販のビーズミルを用いて10ポイズ以下の粘度に分散させグラビアインキを作製した。またニッケル粒子の凝集体が無いように、分散条件を最適化した。この結果、できあがったグラビア焼成インキの粒度分布を測定したが、10μm以上の凝集体は観察されなかった(以下発明インキ1と呼ぶ)。こうして作製したグラビアインキを用いて、焼成インキとしての特性を有するか調べた。
【0015】
ここで焼成インキとは、乾燥インキ塗膜が複数層、セラミック生積層体中に埋め込まれ、800℃以上の高温で焼成して作製したセラミック電子部品において、所定の信頼性を満足できるものである。一般のグラビアインキやグラビア電極インキでは、高温で焼成した場合、金属粉末の酸化により導電性が無くなってしまうことが課題であった。
【0016】
セラミックグリーンシートとしては、セラミック粉末及びバインダーよりなるセラミック誘電体層をベースフィルム上に25μmの厚みに塗布したものを用いた。そしてこのセラミックグリーンシート上に前記グラビアインキを、市販のグラビア印刷機を用いて印刷した後、前記セラミックグリーンシート上にグラビア印刷された内部電極パターンが交互に所定寸法だけずれるようにセットし、100層を積層機により自動積層し、所定形状に切断、焼成、外部電極を形成して積層セラミックコンデンサを作製し、その歩留まり及び信頼性を測定したところ、非常に高い歩留まり及び高信頼性を得ることができた。
【0017】
また比較のため、市販のビーズミルを用い、20ポイズのグラビアインキ(従来インキ1)を作製し、同様に積層セラミックコンデンサの試作を試みた。まず従来インキ1を2リットル用いて、連続的にセラミックグリーンシート上に連続的にグラビア印刷したところ、ベースフィルムからセラミック誘電体層が剥離する問題が発生した。この不良原因は従来インキ1の高速印刷時のタック(粘着力)が、ベースフィルムとセラミック誘電体層との接着力より高くなったため、発生した現象であった。一方、粘度を10ポイズ以下に落とした、発明インキ1ではこうした問題は発生しなかった。
【0018】
次に比較のため、20μm程度の凝集体を含むグラビアインキ(従来インキ2)を作製し、同様に積層セラミックコンデンサを作製した。従来インキ2は、粘度を10ポイズ以下に設定した。このインキを2リットル用いて、連続的にセラミックグリーンシート上に連続的にグラビア印刷したが、ベースフィルムからセラミック誘電体層が剥離する等の問題は発生しなかった。
【0019】
そこで所定枚数グラビア印刷した後、前記セラミックグリーンシート上にグラビア印刷された内部電極パターンが交互に所定寸法だけずれるようにセットし、100層を積層機により自動積層し、所定形状に切断、焼成、外部電極を形成して積層セラミックコンデンサを作製し、その歩留まり及び信頼性を測定したところ、発明インキ1に比べ、非常に悪い結果しか得られなかった。
【0020】
そこで各積層セラミックコンデンサの断面をSEM(走査型電子顕微鏡)観察したところ、発明インキ1には観察されなかった電極層の厚みバラツキ(ニッケル粒子の凝集体)が、従来インキ2では多数発見された。このためこのニッケル凝集体が、製品の歩留まり及び信頼性を劣化させた原因と考えられた。
【0021】
(実施の形態2)
グラビアインキとしてはブチラール樹脂4重量部に対して粒径2μm以下のニッケル粉末50重量部、石油系溶剤とトルエンよりなる混合溶剤40重量部を加え、市販のビーズミルを用いて10ポイズ以下の粘度に分散させグラビアインキを作製した。またニッケル粒子の凝集体が無いように、分散条件を最適化した。この結果、できあがったグラビア焼成インキの粒度分布を測定したが、10μm以上の凝集体は観察されなかった(以下発明インキ2と呼ぶ)。
【0022】
セラミックグリーンシートとしては、セラミック粉末及びバインダーよりなるセラミック誘電体層をベースフィルム上に5μmの厚みに塗布したものを用いた。そしてこのセラミックグリーンシート(薄層グリーンシートと呼ぶ)上に前記グラビアインキを、市販のグラビア印刷機を用いて印刷した後、前記セラミックグリーンシート上にグラビア印刷された内部電極パターンが交互に所定寸法だけずれるようにセットし、100層を積層機により自動積層し、所定形状に切断、焼成、外部電極を形成して積層セラミックコンデンサを作製し、この歩留まり及び信頼性を測定したところ、高い歩留まり及び高信頼性を得ることができた。
【0023】
なお、ここで用いたセラミック生シートの場合、石油系溶剤はこのセラミック生シートを膨潤・再溶解させることは無かった。このように、被印刷体となるセラミック生シートを膨潤・再溶解させない溶剤を混合溶剤に加えることができる。
【0024】
また比較のために、発明インキ1を40重量部を加え、前記薄層グリーンシート上に印刷し、同様に積層セラミックコンデンサを製造したが、その歩留まり及び信頼性は低かった。この原因は、発明インキ1中の溶剤成分が薄層グリーンシートを溶解し、層間ショート等の不良率を増加させたためであった。
【0025】
(実施の形態3)
グラビアインキとしてはポバール樹脂4重量部に対して粒径2μm以下のPd粉末50重量部、水及びアルコール系溶剤よりなる混合溶剤40重量部を加え、市販のビーズミルを用いて10ポイズ以下の粘度に分散させグラビアインキを作製した。またPd粒子の凝集体が無いように、分散条件を最適化した。この結果、できあがったグラビア焼成インキの粒度分布を測定したが、10μm以上の凝集体は観察されなかった(以下発明インキ3と呼ぶ)。
【0026】
このように水溶性樹脂と、水を5重量部以上含ませることで、水系のグラビア焼成インキを作製することができた。こうして作製したグラビアインキは、臭気を低減し、有機溶剤の使用量を低減できたため、消防法の面からも望ましいものであった。また各種グリーンシートに対しても十分な印刷適性が得られた。
【0027】
セラミックグリーンシートとしては、セラミック粉末及びバインダーよりなるセラミック誘電体層をベースフィルム上に5μmの厚みに塗布したものを用いた。そしてこのセラミックグリーンシート(薄層グリーンシートと呼ぶ)上に前記グラビアインキを、市販のグラビア印刷機を用いて印刷した後、前記セラミックグリーンシート上にグラビア印刷された内部電極パターンが交互に所定寸法だけずれるようにセットし、100層を積層機により自動積層し、所定形状に切断、焼成、外部電極を形成して積層セラミックコンデンサを作製し、その歩留まり及び信頼性を測定したところ、高い歩留まり及び高信頼性を得ることができた。
【0028】
また比較のために、発明インキ1を40重量部加え、前記薄層グリーンシート上に印刷し、同様に積層セラミックコンデンサを製造したが、その歩留まり及び信頼性は低かった。この原因は、発明インキ1中の溶剤成分が薄層グリーンシートを溶解し、層間ショート等の不良率を増加させたためであった。
【0029】
(実施の形態4)
グラビアインキとしてはセルロース樹脂4重量部に対して粒径2μm以下の凝集性の比較的強いニッケル粉末50重量部(大量生産されている安価なものを使用)、水及びアルコール系溶剤よりなる混合溶剤40重量部を加え、市販のビーズミルを用いて10ポイズ以下の粘度に分散させグラビアインキを作製した。またニッケル粒子の凝集体が無いように、分散条件を最適化した。この結果、できあがったグラビア焼成インキの粒度分布を測定したが、10μm以上の凝集体は観察されなかったが、試作したインキロットの中には24時間静置後に、前記凝集性ニッケル粉末が沈殿、凝集するものもあった。
【0030】
そこで、各種添加剤を検討したが、セラミック生シートに対する積層性を劣化させたり、焼成の残さが積層セラミックコンデンサの信頼性を劣化させた。そこでその外の材料も検討した結果、カルボン酸を0.1重量部以上含ませることで、凝集・沈殿させやすい金属粉に対しても、グラビア焼成インキとしてのポットライフを3ヶ月以上にすることができた。なおカルボン酸としては、用いる金属粉末によっても異なるが、脂肪酸、ジカルボン酸、トリカルボン酸等の熱分解性の優れたものが望ましい。
【0031】
(実施の形態5)
グラビアインキとしてはセルロース樹脂4重量部に対して粒径0.3μm以下の凝集性の非常に高いニッケル粉末50重量部、混合溶剤40重量部を加え、市販のビーズミルを用いて10ポイズ以下の粘度に分散させグラビアインキを作製した。しかし市販のビーズミルを用いると、前記ニッケル粒子が鱗片(フレーク)状に変形し、このグラビアインキを用いて作製した積層セラミックコンデンサの信頼性が低くなった。そのためフレークを発生させないようロールやニーダを用いて高粘度でニッケル粉末を分散し、その後、溶剤及び樹脂を添加して、再度10ポイズ以下の粘度に希釈した。この状態で第2の分散を行い、更に所定の孔径(もしくは粒子保持能)のろ過材を通すことで、凝集体を除去した。
【0032】
なお、ろ過材の孔径としては、使用するグリーンシートの厚みの2倍以下、もしくは使用する金属粉末の20倍以下であることが望ましい。また、ろ過材を適当に選び、加圧することで、ろ過材の詰まり(ケーキの発生)を防止しながら、その生産性を増加させられる。なお第2の分散に、メディアを用いる場合、メディアの直径は2mm以下のものが望ましい。メディアに5mm以上の大きなものを用いた場合、特に0.5μm以下の金属粉末の場合、金属粉末同士が潰れて凝集体を作る場合がある。
【0033】
(実施の形態6)
被印刷体であるセラミック生シートやベースフィルムに対する、グラビア焼成インキの塗膜安定性を改善するためには、グラビアインキの乾燥塗膜の内部応力を緩和する必要がある。特に金属粉末の粒径が小さくなった場合、グラビアインキとして印刷された後、その塗膜が次第に自体が固くなり、セラミック生シートやベースフィルムから剥離したり、塗膜自体に割れが発生しやすくなる。
【0034】
一般的にセラミック生シートに含まれる可塑剤が、前記グラビア印刷された塗膜の柔軟性を高める働きを行うが、ロットによっては剥離や割れ等の不良が発生した。この場合、グラビア焼成インキに可塑剤としてフタル酸エステルもしくは多価アルコールを添加することで、前記不良を低減できる。なお可塑剤の添加量は、樹脂量の200%以下で、少ないほど望ましい。
【0035】
なおグラビア焼成インキに用いる金属粉末としては、銅、ニッケル、パラジウム、銀のいずれか単体もしくは混合物もしくは合金等のセラミック電子部品の電極材料を用いることができる。また積層セラミックコンデンサの内部電極へ、本グラビア焼成インキを用いる場合、電極塗膜の厚みは2μm以下が望まれ、この場合の金属粉末の粒径は1μm以下、特に0.5μm以下が望ましい。それ以外の積層セラミック電子部品の場合、一般的に4〜10μm程度の大きな金属粉末を用いることができるが、このような粒子はグラビア印刷には適さず、粒径としては2μm以下のものが本発明のグラビア焼成インキ用電極粉末として望ましい。
【0036】
なおグラビア焼成インキを用いて作製したセラミック生積層体の焼成温度は、セラミック材料の焼結温度に左右されるが、800℃〜1400℃の間が望ましい。
【0037】
またグラビア焼成インキ中の凝集体は、主に金属粉末から構成されており、これが積層や焼成の際に、できあがったセラミック電子部品の信頼性や歩留まりを落としてしまう。一般のセラミック電子部品用のグラビア焼成インキ中の凝集体は、20μm以上を除去すればよい。積層セラミックコンデンサの内部電極に、本発明のグラビア焼成インキを用いる場合は、10μm以上(セラミック生シートの厚みより小さい)の凝集体を無くすことが望ましい。
【0038】
そのための手段としては、各種混練・分散機器を用いたインキ化、ろ紙やメンブランフィルターを用いた高精度ろ過等を組み合わせることができる。なお、凝集体の有無に関しては、市販の粒度分布計、JISに規格されているグランドメータ、塗膜のSEM観察、ろ過時の流量変化(ろ過材の詰まり)等により、容易に判断できる。特に本発明では、10ポイズ以下のインキであるため、ろ過する場合、圧力損失が少なく、従来のスクリーンインキでは不可能であったような10μm以下の高精度ろ過が容易になる。
【0039】
また本グラビア焼成インキは、セラミック生シート上に直接印刷してもよいし、ベースフィルム上に直接印刷した後に他のセラミック生シートやセラミック生積層体表面に熱転写してもよい。またグラビア焼成インキの粘度範囲は、10ポイズ以下0.1ポイズ以上が望ましいが、これは被印刷体や塗布厚みにより最適値は異なる。しかし、10ポイズより高い粘度のインキに関しては、グラビア版の表面に形成されたセルからインキが転写されないため、本発明のグラビア焼成インキとしては適さない。
【0040】
【発明の効果】
以上のように本発明によれば、異なる材料からなるセラミック生シートや、ベースフィルムに対しても、焼成後に高信頼性を持たせられるグラビア焼成インキを得られるという有利な効果が得られる。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a gravure firing ink used when a ceramic electronic component such as a multilayer ceramic capacitor, a multilayer varistor, and a multilayer piezoelectric ceramic component used in various electronic devices is manufactured by a gravure printing method, particularly after gravure printing. The present invention relates to a gravure fired ink that is fired at a high temperature of 800 ° C. or more after several hundred layers are embedded in a ceramic green laminate.
[0002]
[Prior art]
Conventionally, when printing an electrode pattern on a green sheet, a screen printing method has been widely used. However, in this case, since the plate is stretched, Japanese Patent Publication No. 8-8200 proposes a method of manufacturing a ceramic electronic component in which gravure printing is performed directly on a ceramic green sheet.
[0003]
In Japanese Patent Publication No. 5-25381, as a means for providing an electrode on a green sheet, a gravure printing pattern formed on a base film is transferred (when an electrode is directly printed on a green sheet using a gravure coater). However, there is a problem that swelling and damage of the green sheet occur).
[0004]
Furthermore, U.S. Pat. No. 5,101,319 and Japanese Unexamined Patent Publication No. 2-58397 propose gravure printing of electrodes on a film, which can be used therefor and can be fired at a high temperature of 800 DEG C. or more. No effective gravure ink has been proposed.
[0005]
[Problems to be solved by the invention]
Conventional gravure inks are used for printing an image on paper or film, and a pigment is used as a main component thereof, and cannot be used as an electrode material for ceramic electronic components. Further, even if various electrode powders are dispersed by the conventional gravure ink production method, sedimentation is remarkable due to the specific gravity of the metal powder , which is not practical. Therefore, a screen printing method has been widely used for printing an electrode material of a ceramic electronic component.
[0006]
The present invention proposes a new gravure baking ink which can be baked at a high temperature of 800 ° C. or more, replacing the screen baking ink. The gravure printing does not swell the green sheet even if it is directly printed on the green sheet. Since gravure printing can be performed on a film, this gravure printed electrode pattern is transferred onto another ceramic laminate, or a ceramic slurry is applied on the gravure printed electrode pattern and embedded in a ceramic raw sheet. Is also possible.
[0007]
[Means for Solving the Problems]
In order to solve this problem, the present invention proposes a gravure electrode ink that can be fired at 800 ° C. or more. The gravure electrode ink is dispersed without metal aggregates of 10 poise or less and 20 μm or more. The gravure electrode ink can be incorporated inside and fired at a high temperature of 800 ° C. or more. By using this gravure electrode ink, the reliability of the completed ceramic electronic component can be improved and the cost can be reduced.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
The invention according to claim 1 of the present invention relates to a gravure ink in which 90 parts by weight or less of metal powder and 30 parts by weight or more and 70 parts by weight or less of a solvent are dispersed with respect to 4 parts by weight of a resin. Is a gravure fired ink that is 10 poise or less, has no metal aggregate of 20 μm or more, is incorporated into the ceramic laminate after gravure printing, and is fired at a high temperature of 800 ° C. or more, and has a low viscosity. Has the effect of improving the suitability for gravure printing and eliminating the metal aggregates of 20 μm or more, thereby improving the accuracy of the printing pattern, long-time printing stability, and improving the reliability of the multilayer ceramic electronic component.
[0009]
The invention according to claim 2 is a gravure ink in which 40 parts by weight to 90 parts by weight of a metal powder and 30 parts by weight to 70 parts by weight of a solvent are dispersed with respect to 4 parts by weight of a resin. , look containing at least 5 parts by weight or more of the petroleum-based solvents and alcohol-based solvent, a viscosity of 10 poise or less and no 20μm or more metal aggregates, embedded within the ceramic raw laminate after gravure printing, above 800 ° C. A gravure firing ink that is fired at a high temperature. The effect of preventing swelling and re-dissolution of the ceramic green sheet when directly gravure printed on the ceramic green sheet can increase the yield of the multilayer ceramic electronic component.
[0010]
According to a third aspect of the present invention, in a gravure ink in which 40 to 90 parts by weight of a metal powder and 30 to 70 parts by weight of a solvent are dispersed with respect to 4 parts by weight of a resin, the resin is soluble in water. The resin and the solvent contain at least 5 parts by weight of water, have a viscosity of 10 poise or less, have no metal aggregate of 20 μm or more, are incorporated in the ceramic green laminate after gravure printing, and are fired at a high temperature of 800 ° C. or more. A gravure firing ink, which has the effect of improving the working environment during gravure printing and reducing the use of harmful substances by reducing the amount of organic solvent used.
[0011]
According to a fourth aspect of the present invention, there is provided a gravure ink in which 40 to 90 parts by weight of a metal powder and 30 to 70 parts by weight of a solvent are dispersed with respect to 4 parts by weight of a resin. A gravure fired ink containing 0.1 parts by weight or more of an acid, having a viscosity of 10 poises or less and having no metal aggregates of 20 μm or more, dispersed without being incorporated in a ceramic green laminate, and then fired at a high temperature of 800 ° C. or more. This prevents the gravure fired ink from settling or reaggregating during storage. Therefore, a multilayer ceramic electronic component can be stably manufactured.
[0012]
According to a fifth aspect of the present invention, there is provided a gravure in which 40 to 90 parts by weight of a metal powder , 30 to 70 parts by weight of a solvent and 8 parts by weight of a plasticizer are dispersed with respect to 4 parts by weight of a resin. In the ink, the plasticizer is a phthalic acid ester or a polyhydric alcohol system, has a viscosity of 10 poise or less, has no metal aggregate of 20 μm or more, is incorporated into the ceramic green laminate after gravure printing, and has a high temperature of 800 ° C. or more. A gravure firing ink that is fired in .The addition of such a plasticizer increases the preservability and stability of gravure printed coatings, and improves the reliability of ceramic electronic components manufactured using this. Can be
[0013]
Hereinafter, specific examples of the present invention will be described.
[0014]
(Embodiment 1)
As a gravure ink, 50 parts by weight of nickel powder having a particle diameter of 2 μm or less and 40 parts by weight of a mixed solvent composed of ethanol and toluene are added to 4 parts by weight of butyral resin, and dispersed to a viscosity of 10 poise or less using a commercially available bead mill. A gravure ink was prepared. In addition, the dispersion conditions were optimized so that there was no aggregate of nickel particles. As a result, the particle size distribution of the completed gravure fired ink was measured, but no aggregate having a size of 10 μm or more was observed ( hereinafter referred to as Inventive Ink 1). Using the gravure ink thus produced, it was examined whether or not it had the properties as a baked ink.
[0015]
Here, the baked ink is a ceramic electronic component produced by embedding a plurality of layers of a dry ink coating film in a ceramic green laminate and firing it at a high temperature of 800 ° C. or more, and can satisfy predetermined reliability. . A problem with conventional gravure inks and gravure electrode inks is that when fired at a high temperature, conductivity is lost due to oxidation of the metal powder.
[0016]
As the ceramic green sheets, those obtained by applying a ceramic dielectric layer made of a ceramic powder and a binder to a thickness of 25 μm on a base film were used. Then, after printing the gravure ink on the ceramic green sheet using a commercially available gravure printing machine, the gravure printing is set such that the internal electrode patterns gravure printed on the ceramic green sheet are alternately shifted by a predetermined dimension. The layers are automatically laminated by a laminating machine, cut into a predetermined shape, fired, and external electrodes are formed to produce a multilayer ceramic capacitor. When the yield and reliability are measured, a very high yield and high reliability are obtained. Was completed.
[0017]
For comparison, a 20-poise gravure ink (conventional ink 1) was prepared using a commercially available bead mill, and a trial production of a multilayer ceramic capacitor was attempted in the same manner. First, when 2 liters of the conventional ink 1 was used to continuously perform gravure printing on a ceramic green sheet continuously, there was a problem that the ceramic dielectric layer was separated from the base film. The cause of this defect was a phenomenon that occurred because the tack (adhesive strength) of the conventional ink 1 during high-speed printing became higher than the adhesive strength between the base film and the ceramic dielectric layer. On the other hand, such a problem did not occur in Invention Ink 1 in which the viscosity was reduced to 10 poise or less.
[0018]
Next, for comparison, a gravure ink (conventional ink 2) containing an aggregate of about 20 μm was prepared, and a multilayer ceramic capacitor was similarly prepared. The viscosity of the conventional ink 2 was set to 10 poise or less. Using 2 liters of this ink, continuous gravure printing was continuously performed on a ceramic green sheet, but no problem such as peeling of the ceramic dielectric layer from the base film occurred.
[0019]
Therefore, after a predetermined number of gravure printing, the gravure-printed internal electrode patterns on the ceramic green sheets are set so as to be alternately shifted by a predetermined dimension, 100 layers are automatically laminated by a laminating machine, cut into a predetermined shape, fired, An external electrode was formed to produce a multilayer ceramic capacitor, and its yield and reliability were measured. As a result, very poor results were obtained as compared with Inventive Ink 1.
[0020]
Then, when the cross section of each multilayer ceramic capacitor was observed by SEM (scanning electron microscope), many variations in the thickness of the electrode layer (aggregates of nickel particles) that were not observed in the inventive ink 1 were found in the conventional ink 2. . For this reason, it was considered that this nickel aggregate deteriorated the yield and reliability of the product.
[0021]
(Embodiment 2)
As a gravure ink, 50 parts by weight of nickel powder having a particle diameter of 2 μm or less and 40 parts by weight of a mixed solvent composed of a petroleum solvent and toluene are added to 4 parts by weight of a butyral resin, and the viscosity is reduced to 10 poise or less using a commercially available bead mill. It was dispersed to produce a gravure ink. In addition, the dispersion conditions were optimized so that there was no aggregate of nickel particles. As a result, the particle size distribution of the completed gravure fired ink was measured, but no aggregate having a size of 10 μm or more was observed (hereinafter referred to as Inventive Ink 2).
[0022]
As the ceramic green sheets, those obtained by applying a ceramic dielectric layer composed of a ceramic powder and a binder to a thickness of 5 μm on a base film were used. The gravure ink is printed on this ceramic green sheet (called a thin green sheet) by using a commercially available gravure printing machine, and then the internal electrode patterns gravure printed on the ceramic green sheet alternately have a predetermined size. It was set so as to be shifted only, 100 layers were automatically laminated by a laminating machine, cut into a predetermined shape, fired, and external electrodes were formed to produce a multilayer ceramic capacitor. The yield and reliability were measured. High reliability was obtained.
[0023]
In the case of the ceramic green sheet used here, the petroleum solvent did not swell and redissolve the ceramic green sheet. In this manner, a solvent that does not swell and re-dissolve the ceramic green sheet to be printed can be added to the mixed solvent.
[0024]
For comparison, 40 parts by weight of the inventive ink 1 was added and printed on the thin green sheet, and a multilayer ceramic capacitor was similarly manufactured. However, the yield and reliability were low. This was because the solvent component in Inventive Ink 1 dissolved the thin green sheet and increased the defective rate such as interlayer short-circuit.
[0025]
(Embodiment 3)
As a gravure ink, 50 parts by weight of a Pd powder having a particle diameter of 2 μm or less and 40 parts by weight of a mixed solvent composed of water and an alcohol-based solvent are added to 4 parts by weight of a poval resin, and the viscosity is reduced to 10 poises or less using a commercially available bead mill. It was dispersed to produce a gravure ink. In addition, the dispersion conditions were optimized so that there was no aggregate of Pd particles. As a result, the particle size distribution of the completed gravure fired ink was measured, but no aggregate having a size of 10 μm or more was observed (hereinafter referred to as Invention Ink 3).
[0026]
By including the water-soluble resin and water in an amount of 5 parts by weight or more, an aqueous gravure fired ink could be produced. The gravure ink thus produced was desirable from the standpoint of the Fire Service Law because it reduced odor and reduced the amount of organic solvent used. Also, sufficient printability was obtained for various green sheets.
[0027]
As the ceramic green sheets, those obtained by applying a ceramic dielectric layer composed of a ceramic powder and a binder to a thickness of 5 μm on a base film were used. The gravure ink is printed on this ceramic green sheet (called a thin green sheet) by using a commercially available gravure printing machine, and then the internal electrode patterns gravure printed on the ceramic green sheet alternately have a predetermined size. It was set so as to be shifted only, 100 layers were automatically laminated by a laminating machine, cut into a predetermined shape, fired, external electrodes were formed to produce a multilayer ceramic capacitor, and its yield and reliability were measured. High reliability was obtained.
[0028]
For comparison, 40 parts by weight of the inventive ink 1 was added and printed on the thin green sheet, and a multilayer ceramic capacitor was similarly manufactured. However, the yield and reliability were low. This was because the solvent component in Inventive Ink 1 dissolved the thin green sheet and increased the defective rate such as interlayer short-circuit.
[0029]
(Embodiment 4)
A gravure ink is a mixed solvent composed of 50 parts by weight of a relatively cohesive nickel powder having a particle size of 2 μm or less with respect to 4 parts by weight of a cellulose resin (use a mass-produced inexpensive powder), water and an alcohol-based solvent. 40 parts by weight were added, and dispersed to a viscosity of 10 poise or less using a commercially available bead mill to prepare a gravure ink. In addition, the dispersion conditions were optimized so that there was no aggregate of nickel particles. As a result, the particle size distribution of the completed gravure fired ink was measured, but no aggregates of 10 μm or more were observed. However, after standing for 24 hours in the prototype ink lot, the cohesive nickel powder was precipitated. Some aggregated.
[0030]
Then, various additives were examined, but the laminability to the green ceramic sheet was degraded, and the residue of firing deteriorated the reliability of the laminated ceramic capacitor. Therefore, as a result of examining other materials, the pot life as a gravure firing ink was set to 3 months or more even for metal powders that easily aggregate and precipitate by including carboxylic acid at 0.1 parts by weight or more. Was completed. The carboxylic acid, which varies depending on the metal powder used, is preferably a fatty acid, dicarboxylic acid, tricarboxylic acid or the like having excellent thermal decomposability.
[0031]
(Embodiment 5)
As a gravure ink, 50 parts by weight of a very cohesive nickel powder having a particle diameter of 0.3 μm or less and 40 parts by weight of a mixed solvent are added to 4 parts by weight of a cellulose resin, and a viscosity of 10 poise or less is obtained using a commercially available bead mill. To prepare a gravure ink. However, when a commercially available bead mill was used, the nickel particles were deformed into scales (flakes), and the reliability of the multilayer ceramic capacitor manufactured using this gravure ink was lowered. Therefore, the nickel powder was dispersed with a high viscosity using a roll or a kneader so as not to generate flakes, and then a solvent and a resin were added to dilute the powder again to a viscosity of 10 poise or less. In this state, the second dispersion was performed, and the aggregate was removed by passing through a filter having a predetermined pore size (or a particle retaining ability).
[0032]
The pore size of the filter is desirably not more than twice the thickness of the green sheet to be used or not more than 20 times the metal powder to be used. In addition, by appropriately selecting the filter medium and applying pressure, the productivity of the filter medium can be increased while preventing clogging of the filter medium (formation of cake). When a medium is used for the second dispersion, the diameter of the medium is desirably 2 mm or less. When a large medium having a size of 5 mm or more is used as the medium, particularly in the case of metal powder having a size of 0.5 μm or less, the metal powders may be crushed to form an aggregate.
[0033]
(Embodiment 6)
In order to improve the coating stability of the gravure fired ink with respect to the ceramic raw sheet or base film to be printed, it is necessary to reduce the internal stress of the dried coating film of the gravure ink. In particular, when the particle size of the metal powder is reduced, after being printed as a gravure ink, the coating gradually hardens itself, peels off from the raw ceramic sheet or base film, and is liable to crack in the coating itself. Become.
[0034]
Generally, a plasticizer contained in the ceramic green sheet functions to enhance the flexibility of the gravure-printed coating film, but depending on the lot, defects such as peeling and cracking have occurred. In this case, the failure can be reduced by adding a phthalic acid ester or a polyhydric alcohol as a plasticizer to the gravure fired ink. The amount of the plasticizer is 200% or less of the amount of the resin, and the smaller the amount, the better.
[0035]
As the metal powder used for the gravure firing ink, an electrode material of a ceramic electronic component such as any one of copper, nickel, palladium, and silver or a mixture or an alloy thereof can be used. When the present gravure baked ink is used for the internal electrodes of the multilayer ceramic capacitor, the thickness of the electrode coating is desirably 2 μm or less, and in this case, the particle diameter of the metal powder is desirably 1 μm or less, particularly desirably 0.5 μm or less. In the case of other multilayer ceramic electronic components, a large metal powder of generally about 4 to 10 μm can be used, but such particles are not suitable for gravure printing, and those having a particle size of 2 μm or less are generally used. It is desirable as the electrode powder for gravure baking ink of the invention.
[0036]
Note firing temperature of the ceramic green laminate prepared by using a gravure firing ink will depend on the sintering temperature of the ceramic material, desirably between 800 ° C. to 1400 ° C..
[0037]
Agglomerates in the gravure firing ink are mainly composed of metal powders, which lower the reliability and yield of the completed ceramic electronic component during lamination and firing. Aggregates in a gravure fired ink for general ceramic electronic components may be removed by 20 μm or more. When the gravure fired ink of the present invention is used for the internal electrodes of the multilayer ceramic capacitor, it is desirable to eliminate aggregates of 10 μm or more (less than the thickness of the ceramic green sheet).
[0038]
As means for that purpose, it is possible to combine ink formation using various kneading / dispersing devices, high-precision filtration using filter paper or a membrane filter, or the like. The presence or absence of agglomerates can be easily determined by using a commercially available particle size distribution meter, a JIS-standard ground meter, SEM observation of the coating film, a change in flow rate during filtration (clogging of filtration material), and the like. Particularly, in the present invention, since the ink is 10 poise or less, when filtering, the pressure loss is small, and high-precision filtration of 10 μm or less, which is impossible with a conventional screen ink, is facilitated.
[0039]
The gravure fired ink may be directly printed on a ceramic raw sheet, or may be directly printed on a base film and then thermally transferred to another ceramic raw sheet or a ceramic raw laminate surface. The viscosity range of the gravure baking ink is desirably 10 poise or less and 0.1 poise or more, but the optimum value varies depending on the printing medium and the applied thickness. However, ink having a viscosity higher than 10 poise is not suitable as the gravure fired ink of the present invention since the ink is not transferred from the cells formed on the surface of the gravure plate.
[0040]
【The invention's effect】
As described above, according to the present invention, there is obtained an advantageous effect that a gravure fired ink having high reliability after firing can be obtained even for a ceramic green sheet and a base film made of different materials.

Claims (5)

樹脂4重量部に対して40重量部以外90重量部以下の金属粉末と30重量部以上70重量部以下の溶剤が分散されたグラビアインキにおいて、粘度は10ポイズ以下でかつ20μm以上の金属凝集体が無く、グラビア印刷後にセラミック生積層体内部に組み込まれ、800℃以上の高温で焼成されるグラビア焼成インキ。In a gravure ink in which 90 parts by weight or less of a metal powder and 40 parts by weight or more and 70 parts by weight or less of a solvent are dispersed with respect to 4 parts by weight of a resin, a metal aggregate having a viscosity of 10 poises or less and 20 μm or more is dispersed. A gravure fired ink which is incorporated into a ceramic green laminate after gravure printing and fired at a high temperature of 800 ° C. or higher. 樹脂4重量部に対して40重量部以上90重量部以下の金属粉末と30重量部以上70重量部以下の溶剤が分散されたグラビアインキにおいて、樹脂はセルロース樹脂、少なくとも5重量部以上の石油系溶剤及びアルコール系溶剤を含み、粘度は10ポイズ以下でかつ20μm以上の金属凝集体が無く、グラビア印刷後にセラミック生積層体内部に組み込まれ、800℃以上の高温で焼成されるグラビア焼成インキ。In a gravure ink in which 40 to 90 parts by weight of a metal powder and 30 to 70 parts by weight of a solvent are dispersed with respect to 4 parts by weight of a resin, the resin is a cellulose resin, and at least 5 parts by weight of a petroleum-based resin. A gravure fired ink containing a solvent and an alcohol-based solvent, having a viscosity of 10 poise or less and having no metal aggregate of 20 μm or more, being incorporated into a ceramic green laminate after gravure printing, and firing at a high temperature of 800 ° C. or more. 樹脂4重量部に対して40重量部以上90重量部以下の金属粉末と30重量部以上70重量部以下の溶剤が分散されたグラビアインキにおいて、樹脂は水溶性樹脂、溶剤は水を少なくとも5重量部以上含み、粘度は10ポイズ以下でかつ20μm以上の金属凝集体が無く、グラビア印刷後にセラミック生積層体内部に組み込まれ、800℃以上の高温で焼成されるグラビア焼成インキ。In a gravure ink in which 40 parts by weight to 90 parts by weight of metal powder and 30 parts by weight to 70 parts by weight of a solvent are dispersed with respect to 4 parts by weight of a resin, the resin is a water-soluble resin, and the solvent is at least 5 parts by weight of water. A gravure fired ink which contains at least 10 parts by weight , has a viscosity of 10 poise or less, has no metal aggregate of 20 μm or more, is incorporated into the ceramic green laminate after gravure printing, and is fired at a high temperature of 800 ° C. or more. 樹脂4重量部に対して40重量部以上90重量部以下の金属粉末と30重量部以上70重量部以下の溶剤が分散されたグラビアインキにおいて、添加剤としてカルボン酸を0.1重量部以上含み、粘度は10ポイズ以下でかつ20μm以上の金属凝集体が無く分散され、セラミック生積層体内部に組み込んだ後、800℃以上の高温で焼成されるグラビア焼成インキ。In a gravure ink in which 40 to 90 parts by weight of a metal powder and 30 to 70 parts by weight of a solvent are dispersed with respect to 4 parts by weight of a resin, a carboxylic acid as an additive contains 0.1 or more parts by weight of a carboxylic acid. A gravure firing ink that has a viscosity of 10 poise or less and is dispersed without metal aggregates of 20 μm or more, is incorporated into the ceramic green laminate, and is fired at a high temperature of 800 ° C. or more. 樹脂4重量部に対して40重量部以上90重量部以下の金属粉末と30重量部以上70重量部以下の溶剤と可塑剤8重量部以下が分散されたグラビアインキにおいて、可塑剤はフタル酸エステルもしくは多価アルコール系であり、粘度は10ポイズ以下でかつ20μm以上の金属凝集体が無く、グラビア印刷後にセラミック生積層体内部に組み込まれ、800℃以上の高温で焼成されるグラビア焼成インキ。In a gravure ink in which 40 parts by weight to 90 parts by weight of metal powder , 30 parts by weight to 70 parts by weight of a solvent and 8 parts by weight of a plasticizer are dispersed with respect to 4 parts by weight of a resin, the plasticizer is a phthalic acid ester. Alternatively, a gravure firing ink which is a polyhydric alcohol type, has a viscosity of 10 poise or less, has no metal aggregate of 20 μm or more, is incorporated into the ceramic green laminate after gravure printing, and is fired at a high temperature of 800 ° C. or more.
JP518797A 1997-01-16 1997-01-16 Gravure firing ink Expired - Fee Related JP3601226B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP518797A JP3601226B2 (en) 1997-01-16 1997-01-16 Gravure firing ink

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP518797A JP3601226B2 (en) 1997-01-16 1997-01-16 Gravure firing ink

Publications (2)

Publication Number Publication Date
JPH10199331A JPH10199331A (en) 1998-07-31
JP3601226B2 true JP3601226B2 (en) 2004-12-15

Family

ID=11604231

Family Applications (1)

Application Number Title Priority Date Filing Date
JP518797A Expired - Fee Related JP3601226B2 (en) 1997-01-16 1997-01-16 Gravure firing ink

Country Status (1)

Country Link
JP (1) JP3601226B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101205448B1 (en) * 2010-06-22 2012-11-27 엘에스전선 주식회사 Gravure Ink Composition Comprising Graphite Nanoparticle

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4547724B2 (en) * 1998-10-20 2010-09-22 Tdk株式会社 Method for manufacturing internal electrode paste
JP4051861B2 (en) * 2000-06-12 2008-02-27 株式会社村田製作所 Method for manufacturing thick film forming paste, thick film forming paste, and filtration device
CN1310259C (en) * 2001-04-20 2007-04-11 松下电器产业株式会社 Method for producing electronic parts, and member for production thereof
US8178188B2 (en) 2001-04-20 2012-05-15 Panasonic Corporation Base layer for manufacturing an electronic component by an etching process
JP2012097219A (en) * 2010-11-04 2012-05-24 Sony Corp Conductive ink, method of preparing the same, and method of preparing transparent conductive film
JP7023042B2 (en) 2015-11-04 2022-02-21 株式会社ノリタケカンパニーリミテド Method of forming conductive paste and conductor film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101205448B1 (en) * 2010-06-22 2012-11-27 엘에스전선 주식회사 Gravure Ink Composition Comprising Graphite Nanoparticle

Also Published As

Publication number Publication date
JPH10199331A (en) 1998-07-31

Similar Documents

Publication Publication Date Title
KR100734783B1 (en) Conductive paste for multilayer ceramic electronic component and method for producing multilayer unit for multilayer ceramic electronic component
KR100867253B1 (en) Paste for exfoliation layer and method for fabricating stack type electronic components
JP4066525B2 (en) Electrode ink manufacturing method and ceramic electronic component manufacturing method using the same
CN104769044B (en) Electroconductive paste composition
JP3831748B2 (en) Green sheet paint, green sheet, green sheet paint production method, green sheet production method and electronic component production method
KR20060050376A (en) Paste for exfoliation layer and fabrication method for stack type electronic components
KR102241054B1 (en) Paste for internal electrode of laminated ceramic capacitor, and laminated ceramic capacitor
KR100734785B1 (en) Conductive paste for multilayer ceramic electronic component and method for producing multilayer unit for multilayer ceramic electronic component
JP2003187638A (en) Conductive paste for gravure printing and its manufacturing method as well as laminated ceramic electronic component
JP3601226B2 (en) Gravure firing ink
JP2011091083A (en) Multilayer ceramic electronic component and method of manufacturing the same, flat conductive fine powder for multilayer ceramic electronic component, and flat conductive fine powder dispersant liquid for multilayer ceramic electronic component
JP3180718B2 (en) Gravure electrode ink, method of manufacturing the same, and method of manufacturing multilayer ceramic electronic component
JP3935980B2 (en) Precious metal-containing resinate paste for the production of internal electrodes for ceramic multilayer capacitors
JP2004084055A (en) Nickel flake for multilayer ceramic capacitor electrode
KR100769470B1 (en) Dielectric paste for multilayer ceramic electronic component and method for producing multilayer unit for multilayer ceramic electronic component
CN100408513C (en) Coating material for green sheet, green sheet, process for producing green sheet and process for producing electronic part
KR100807636B1 (en) Conductive paste for electrode layer of multilayer ceramic electronic component and method for producing multilayer unit for multilayer ceramic electronic component
JPH10214520A (en) Conductive paste
JP4640028B2 (en) Release layer paste and method for manufacturing multilayer electronic component
JP2005097326A (en) Conductive ink for gravure printing, and laminated ceramic electronic component
JP4635445B2 (en) Method for producing aqueous nickel electrode ink, aqueous nickel electrode ink produced thereby, and method for producing multilayer ceramic capacitor using the same
KR20050120693A (en) Coating composition for green sheet, green sheet, method for producing green sheet, and method for producing electronic component
JPH07197103A (en) Method for coating surface of metallic powder with metallic compound
KR100568282B1 (en) Additive for Dieletric Composition of Multi-Layer Ceramic Capacitor, Method of Manufacturing Thereof and Method of Manufacturing Dieletric Composition Slurry of Multi-Layer Ceramic Capacitor
JP4653971B2 (en) Nickel-containing paste for internal electrodes

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040831

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040913

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071001

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081001

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091001

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101001

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111001

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121001

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131001

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees