JP4653971B2 - Nickel-containing paste for internal electrodes - Google Patents

Nickel-containing paste for internal electrodes Download PDF

Info

Publication number
JP4653971B2
JP4653971B2 JP2004160126A JP2004160126A JP4653971B2 JP 4653971 B2 JP4653971 B2 JP 4653971B2 JP 2004160126 A JP2004160126 A JP 2004160126A JP 2004160126 A JP2004160126 A JP 2004160126A JP 4653971 B2 JP4653971 B2 JP 4653971B2
Authority
JP
Japan
Prior art keywords
nickel
paste
internal electrodes
weight
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004160126A
Other languages
Japanese (ja)
Other versions
JP2005340666A (en
Inventor
健次郎 渡邉
耕司 紫竹
健 佐藤
明人 吉井
公憲 横山
昌広 北村
秀機 高松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Namics Corp
Niigata Prefecture
Original Assignee
Namics Corp
Niigata Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Namics Corp, Niigata Prefecture filed Critical Namics Corp
Priority to JP2004160126A priority Critical patent/JP4653971B2/en
Publication of JP2005340666A publication Critical patent/JP2005340666A/en
Application granted granted Critical
Publication of JP4653971B2 publication Critical patent/JP4653971B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Ceramic Capacitors (AREA)
  • Conductive Materials (AREA)

Description

本発明は、積層セラミックコンデンサ(以下、「MLCC」という)の内部電極用ニッケル含有ペーストに関する。また、本発明は、該ペーストを用いて形成したMLCCの内部電極、及びに該内部電極を備えたMLCCに関する。   The present invention relates to a nickel-containing paste for internal electrodes of a multilayer ceramic capacitor (hereinafter referred to as “MLCC”). The present invention also relates to an MLCC internal electrode formed using the paste, and an MLCC provided with the internal electrode.

近年、電子機器の小型軽量化に伴い、それに実装されるチップ部品も小型化、薄型化が進展している。チップ部品の一つであるMLCCについても同様であり、誘電体層と同様に、内部電極層に対しても一層の薄膜化が要求されている。   In recent years, along with the reduction in size and weight of electronic devices, chip components mounted thereon have been reduced in size and thickness. The same applies to MLCC, which is one of the chip components, and a thinner film is required for the internal electrode layer as well as the dielectric layer.

一般に、MLCCの内部電極の形成には、溶剤に、バインダである高分子材料と金属粒子とを分散させた導電ペーストが用いられる。導電ペーストに配合する金属粒子については、内部電極の薄膜化の要求に応えるべく、湿式化学還元法やCVD法等による微粒化が研究されている。しかし、安価な卑金属であり、内部電極の構成要素として特に注目されるニッケルについては、約0.2μmまでの粒子径のニッケル粒子が開発されているものの、当該ニッケル粒子を配合した導電ペーストにより、電極としての特性を保持するサブミクロン(1μm以下)の薄膜を形成するのは困難である(特許文献1〜3参照)。   In general, a conductive paste in which a polymer material as a binder and metal particles are dispersed in a solvent is used to form the internal electrode of the MLCC. As for the metal particles blended in the conductive paste, atomization by a wet chemical reduction method, a CVD method, or the like has been studied in order to meet the demand for thinning the internal electrodes. However, for nickel, which is an inexpensive base metal and has attracted particular attention as a component of the internal electrode, although nickel particles having a particle size of up to about 0.2 μm have been developed, the conductive paste containing the nickel particles It is difficult to form a submicron (1 μm or less) thin film that retains characteristics as an electrode (see Patent Documents 1 to 3).

また、内部電極の形成には、金属有機酸塩を有機溶媒に溶解させた導電ペーストも用いられる。このような導電ペーストの場合は、焼成により金属が析出してくるので、予め金属の微粒化処理をする必要がない。しかし、ニッケルについては、アミン系溶剤が用いられているため、焼成時に有害ガスの発生が避けられない(特許文献4参照)。
特開2001−023852号公報 特開2003−129107号公報 特開2000−178601号公報 特開平10−72673号公報
For the formation of the internal electrode, a conductive paste in which a metal organic acid salt is dissolved in an organic solvent is also used. In the case of such a conductive paste, metal is deposited by firing, so that it is not necessary to perform metal atomization treatment in advance. However, since an amine solvent is used for nickel, generation of harmful gases is unavoidable during firing (see Patent Document 4).
JP 2001-023852 A JP 2003-129107 A JP 2000-178601 A Japanese Patent Laid-Open No. 10-72673

本発明の目的は、上記のような状況に対応して、焼成による有害ガスの発生を避けることができ、かつ電極としての特性を保持するサブミクロン(1μm以下)の薄膜を形成できる、内部電極用ニッケル含有ペーストを提供することである。また、本発明は、該ペーストを用いて形成した内部電極、及びに該内部電極を備えたMLCCを提供することを目的とする。   An object of the present invention is to cope with the above-described situation, an internal electrode that can avoid generation of harmful gas due to firing and can form a submicron (1 μm or less) thin film that retains the characteristics as an electrode. A nickel-containing paste is provided. Another object of the present invention is to provide an internal electrode formed using the paste and an MLCC provided with the internal electrode.

本発明は、(a)酢酸ニッケル、及び(b)テトラエチレングリコールを配合してなる、内部電極用ニッケル含有ペーストに関する。また、本発明は、(a)酢酸ニッケル、及び(b)テトラエチレングリコールを含む、内部電極用ニッケル含有ペーストに関する。さらに、本発明は、これらのペーストを用いて形成した内部電極、及びに該内部電極を備えたMLCCに関する。   The present invention relates to a nickel-containing paste for internal electrodes, comprising (a) nickel acetate and (b) tetraethylene glycol. Moreover, this invention relates to the nickel containing paste for internal electrodes containing (a) nickel acetate and (b) tetraethylene glycol. Furthermore, the present invention relates to an internal electrode formed using these pastes and an MLCC provided with the internal electrode.

本発明のペーストは、アミン系溶剤を必須としないため、焼成による有害ガスの発生を避けることができ、かつ電極としての特性を保持するサブミクロン(1μm以下)の薄膜を形成できる。本発明のペーストを用いて形成した内部電極は、薄膜化の要求に応えるものであり、また該内部電極層を備えたMLCCは、チップ部品の小型化、薄型化に対応するものである。   Since the paste of the present invention does not require an amine solvent, generation of harmful gases due to firing can be avoided, and a submicron (1 μm or less) thin film that retains the properties as an electrode can be formed. The internal electrode formed using the paste of the present invention meets the demand for thinning, and the MLCC provided with the internal electrode layer is suitable for miniaturization and thinning of chip parts.

本発明のペーストにおける、(a)酢酸ニッケルは、酢酸ニッケル無水物、酢酸ニッケル四水和物、又はこれらの混合物をいう。本発明のペーストにおける、(b)テトラエチレングリコールは、(a)酢酸ニッケル100重量部に対して、(b)テトラエチレングリコールは30〜200重量部が好ましく、より好ましくは40〜120重量部である。   In the paste of the present invention, (a) nickel acetate refers to nickel acetate anhydride, nickel acetate tetrahydrate, or a mixture thereof. In the paste of the present invention, (b) tetraethylene glycol is preferably (a) 100 parts by weight of nickel acetate, and (b) tetraethylene glycol is preferably 30 to 200 parts by weight, more preferably 40 to 120 parts by weight. is there.

本発明のペースト中では、少なくとも一部では(a)酢酸ニッケルに、(b)テトラエチレングリコールのOH基が配位していると考えられ、焼成によってこの配位が分解し、さらにニッケルカーバイドの形態を経て、(a)酢酸ニッケル由来のニッケル微粒子が析出して、サブミクロンの薄膜の形成が可能となると考えられる。なお、焼成温度が高温になるにつれ、析出するニッケル微粒子の融着や粒成長が進行し、場合によっては薄膜に空隙を生ずることもあるため、かかるペーストは、500℃〜1250℃の焼成温度で使用することが好ましい。   In the paste of the present invention, at least in part, (a) nickel acetate is considered to be coordinated with (b) OH group of tetraethylene glycol, and this coordination is decomposed by firing, and further, nickel carbide It is considered that (a) nickel fine particles derived from nickel acetate are deposited, and a submicron thin film can be formed. In addition, as the firing temperature becomes higher, the fusion and grain growth of the precipitated nickel fine particles progress, and in some cases, voids may be formed in the thin film. Therefore, such a paste has a firing temperature of 500 ° C. to 1250 ° C. It is preferable to use it.

ただし、本発明のペーストに(c)ニッケル粒子を添加することにより、1200℃以上の焼成温度でも好ましく使用することができる。(c)ニッケル粒子を添加したペーストでは、(c)ニッケル粒子間を、より微細な(a)酢酸ニッケル由来のニッケル微粒子が結合した構造の薄膜が形成されるため、高温の焼成温度でも空隙が生じにくく、導電性の確保を図ることができるためである。(c)ニッケル粒子は、球状、りん片状、針状等、どのような形状でもよいが、好ましくは、球状であり、平均粒子寸法は、0.05〜0.6μmが好ましく、0.075〜0.4μmがより好ましく、特に好ましくは0.1〜0.2μmである。なお、ここで平均粒子寸法とは、球状の場合は粒子径、りん片状の場合は粒子薄片の長径、針状の場合は長さのそれぞれ平均をいう。かかる(c)ニッケル粒子を添加したペーストは、800〜1300℃の焼成温度で、好ましく使用することができる。   However, by adding (c) nickel particles to the paste of the present invention, it can be preferably used even at a firing temperature of 1200 ° C. or higher. (C) In the paste to which nickel particles are added, a thin film having a structure in which (c) nickel fine particles derived from (a) nickel acetate are bonded between the nickel particles is formed. This is because it is difficult to occur and the conductivity can be ensured. (C) The nickel particles may have any shape such as a spherical shape, a flake shape, and a needle shape, but are preferably spherical and have an average particle size of 0.05 to 0.6 μm, preferably 0.075. More preferably, it is -0.4 micrometer, Most preferably, it is 0.1-0.2 micrometer. Here, the average particle size means the average of the particle diameter in the case of a sphere, the long diameter of a particle flake in the case of flakes, and the length in the case of needles. The paste to which (c) nickel particles are added can be preferably used at a firing temperature of 800 to 1300 ° C.

なお、本発明のペーストに(c)ニッケル粒子を添加することのもう一つのメリットは、焼成時の薄膜全体の収縮を抑制し、デラミネーションの発生を防止しやすくなる点である。これは、一つには、(c)ニッケル粒子を配合することにより、ペースト中のニッケル含有率(ペーストの全重量に占める、ニッケル金属換算量の割合)を上昇させることができることに起因する。本発明のペーストは、酢酸ニッケルの溶解性の点から、ニッケル含有率を、例えば、8〜30重量%、好ましくは10〜26重量%とすることができるが、(c)ニッケル粒子を添加することにより、ニッケル含有率をコントロールし、例えば、20〜50重量%、好ましくは30〜50重量%とすることが容易にできる。   Another advantage of adding (c) nickel particles to the paste of the present invention is that the shrinkage of the entire thin film during firing is suppressed and the occurrence of delamination can be easily prevented. This is due in part to the fact that the nickel content in the paste (ratio of nickel metal equivalent to the total weight of the paste) can be increased by blending (c) nickel particles. The paste of the present invention can have a nickel content of, for example, 8 to 30% by weight, preferably 10 to 26% by weight, from the viewpoint of solubility of nickel acetate, but (c) nickel particles are added. Therefore, the nickel content can be controlled, for example, 20 to 50% by weight, preferably 30 to 50% by weight.

本発明のペーストは、(d)エタノールを含むことができる。(b)テトラエチレングリコールは、沸点327℃と揮発しにくいため、MLCCの生産に適した速乾性を付与するために、(d)エタノールを含むことが好ましい。全ペースト中のエタノールは、10〜80重量%であることが好ましく、より好ましくは、20〜60重量%である。   The paste of the present invention can contain (d) ethanol. (B) Tetraethylene glycol is hard to volatilize at a boiling point of 327 ° C., and therefore (d) ethanol is preferably included in order to provide quick drying properties suitable for MLCC production. It is preferable that ethanol in the whole paste is 10 to 80% by weight, and more preferably 20 to 60% by weight.

本発明のペーストは、本発明の効果を損なわない範囲で、慣用の添加剤等を含むことができる。   The paste of this invention can contain a conventional additive etc. in the range which does not impair the effect of this invention.

本発明のペーストは、各成分を、例えば、ライカイ機、ポットミル、三本ロールミル、回転式混合機、二軸ミキサー等を用いて、混合し、攪拌することによって、均一に分散させることにより製造することができる。攪拌時間は、特に限定されないが、例えば、15分〜8時間とすることができる。また、攪拌温度も特に限定されないが、例えば、15〜35℃とすることができる。本発明のペーストは、各成分を、一度に混合・攪拌して製造することもできる。また(c)ニッケル粒子を添加したペーストを調製する場合は、(a)酢酸ニッケル及び(b)テトラエチレングリコールを含む有機ペーストを調製した後、(c)ニッケル粒子をさらに混合・攪拌して製造することもできる。また、(c)ニッケル粒子は、乾燥凝集しやすいため、分散剤(例えば、少量のエチルセルロースなどの有機樹脂成分)を使用して、事前に分散処理してもよい。   The paste of the present invention is produced by uniformly dispersing each component by mixing and stirring, for example, using a laika machine, a pot mill, a three-roll mill, a rotary mixer, a twin screw mixer or the like. be able to. Although stirring time is not specifically limited, For example, it can be 15 minutes-8 hours. Moreover, although stirring temperature is not specifically limited, For example, it can be 15-35 degreeC. The paste of the present invention can also be produced by mixing and stirring each component at once. Moreover, when preparing the paste which added (c) nickel particle, after preparing the organic paste containing (a) nickel acetate and (b) tetraethylene glycol, it manufactured by further mixing and stirring (c) nickel particle. You can also Moreover, since (c) nickel particles are easy to dry and agglomerate, they may be dispersed in advance using a dispersant (for example, a small amount of an organic resin component such as ethyl cellulose).

本発明のペーストは、MLCCの内部電極の形成に使用することができる。MLCCは、例えば、ポリエチレンテレフタレートフィルム等の基材に、1)チタン酸バリウム粒子等を含む誘電体ペーストを塗布・印刷し、乾燥させ、誘電体層を得る;2)次いで、該誘電体層上に本発明のペーストを所望の厚さで塗布・印刷し、乾燥させる;3)続いて、1)と2)の工程を、所望の積層回数が得られるまで反覆し、その際、反覆の終わりには誘電体層が形成されるようにする;4)このようにして得られた未焼成の積層体を、基材から外し、切断して積層チップを作製した後、焼成を行う;5)その後、焼成後の積層体に外部電極を形成してMLCCとする。   The paste of the present invention can be used for forming an internal electrode of MLCC. MLCC is, for example, applied to a substrate such as a polyethylene terephthalate film, 1) a dielectric paste containing barium titanate particles, etc. is printed and dried to obtain a dielectric layer; 2) Next, on the dielectric layer The paste of the present invention is applied / printed at a desired thickness, dried, and dried; 3) Subsequently, the steps 1) and 2) are repeated until the desired number of times of lamination is obtained, and at the end of the repetition A dielectric layer is formed; 4) The unfired laminate obtained in this way is removed from the substrate, cut to produce a laminated chip, and then fired; 5) Thereafter, external electrodes are formed on the fired laminate to obtain MLCC.

本発明のペーストを塗布・印刷するにあたっては、厚みを2〜5μmとすることができ、これにより、焼成後の薄膜の厚さは通常、0.3〜1μmとなり、サブミロンの薄膜を形成することができる。ただし、内部電極に要求される特性に応じて、塗布・印刷の厚みをこれ以外の範囲とすることも可能であり、例えば、1〜20μm、好ましくは2〜10μmにすることができる。なお、塗布・印刷の手段は、特に限定されず、例えば、スクリーン印刷、カレンダー印刷、インクジェット印刷等が挙げられる。   In applying and printing the paste of the present invention, the thickness can be set to 2 to 5 μm, whereby the thickness of the thin film after firing is usually 0.3 to 1 μm, and a submylon thin film is formed. Can do. However, the thickness of the coating / printing can be set to other ranges depending on the characteristics required for the internal electrode, and can be, for example, 1 to 20 μm, preferably 2 to 10 μm. The application / printing means is not particularly limited, and examples thereof include screen printing, calendar printing, and ink jet printing.

本発明のペーストを塗布・印刷した後、乾燥させるにあたっては、例えば、70〜100℃で乾燥させることができる。乾燥は、完全に乾燥している場合の他、次工程の実施が可能な程度に乾燥している場合も含む。上述のように、(d)エタノールを含ませることにより、速乾性を確保することができ、この場合は、乾燥時間の目安を50〜70℃、3〜5分間とすることができる。   In applying and printing the paste of the present invention and then drying, for example, it can be dried at 70 to 100 ° C. Drying includes not only complete drying but also drying to the extent that the next step can be performed. As described above, (d) the ethanol can be included to ensure quick drying, and in this case, the standard drying time can be 50 to 70 ° C. and 3 to 5 minutes.

本発明のペーストを焼成するにあたっては、焼成温度を、500〜1250℃とすることが好ましく、より好ましくは、800〜1200℃とすることができる。MLCCに使用するセラミックシートによっては、1100℃以上の高温での焼成を必要とするものもあるが、このような場合に対応して、本発明のペーストは、焼成温度を1100〜1200℃とできることが本発明の有利な点である。なお、上述のとおり、(c)ニッケル粒子を添加したペーストは、800〜1300℃の焼成温度でも好ましく使用することができ、より好ましくは、900〜1300℃、特に好ましくは1100〜1300℃の焼成温度である。   In firing the paste of the present invention, the firing temperature is preferably 500 to 1250 ° C, more preferably 800 to 1200 ° C. Some ceramic sheets used for MLCC require firing at a high temperature of 1100 ° C. or higher, but in response to such cases, the paste of the present invention can be fired at 1100-1200 ° C. Is an advantage of the present invention. In addition, as mentioned above, the paste added with (c) nickel particles can be preferably used even at a firing temperature of 800 to 1300 ° C., more preferably 900 to 1300 ° C., and particularly preferably 1100 to 1300 ° C. Temperature.

本発明のペーストにより、形成される薄膜の体積抵抗率を15×10-5Ω・cm以下とすることができ、好ましくは2×10-5〜15×10-5Ω・cm、より好ましくは2×10-5〜8×10-5Ω・cmの範囲とすることができ、MLCCの内部電極に好適である。特に、(c)ニッケル粒子を添加したペーストにより、デラミネーションの発生等を防止しやすく、MLCCの内部電極に好適である。 With the paste of the present invention, the volume resistivity of the formed thin film can be reduced to 15 × 10 −5 Ω · cm or less, preferably 2 × 10 −5 to 15 × 10 −5 Ω · cm, more preferably It can be in the range of 2 × 10 −5 to 8 × 10 −5 Ω · cm, and is suitable for the internal electrode of MLCC. In particular, (c) the paste to which nickel particles are added is easy to prevent the occurrence of delamination and is suitable for the internal electrode of MLCC.

以下、実施例及び比較例によって、本発明を更に詳細に説明する。本発明は、これらの実施例によって限定されるものではない。   Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples. The present invention is not limited by these examples.

実施例1
表1に示す組成で、酢酸ニッケル四水和物とテトラエチレングリコールを混合し、攪拌しながら120℃、1時間加熱して、実施例1のペーストを得た。
実施例2
表1に示す組成で、酢酸ニッケル四水和物とテトラエチレングリコールを混合し、攪拌しながら120℃、1時間加熱して、ペーストとし、その後、ニッケル粒子(川鉄鉱業製、平均粒子径0.2μmの球状粉末)を分散混合して、実施例2のペーストを得た。
比較例1
表1に示す組成で、ニッケル粒子(川鉄鉱業製、平均粒子径0.2μmの球状粉末)をエチルセルロースをバインダーに使用して三本ロールで分散処理を実施し、石油系炭化水素系溶剤とテルピオネールの混合溶剤に分散させて比較例1のペーストを得た。
Example 1
With the composition shown in Table 1, nickel acetate tetrahydrate and tetraethylene glycol were mixed and heated at 120 ° C. for 1 hour with stirring to obtain a paste of Example 1.
Example 2
In the composition shown in Table 1, nickel acetate tetrahydrate and tetraethylene glycol are mixed, heated with stirring at 120 ° C. for 1 hour to obtain a paste, and then nickel particles (manufactured by Kawatetsu Mining Co., Ltd., average particle size of 0.1 mm). 2 μm spherical powder) was dispersed and mixed to obtain a paste of Example 2.
Comparative Example 1
The composition shown in Table 1 was used to disperse nickel particles (manufactured by Kawatetsu Mining Co., Ltd., spherical powder with an average particle size of 0.2 μm) with three rolls using ethyl cellulose as a binder, and a petroleum hydrocarbon solvent and tellurium. A paste of Comparative Example 1 was obtained by dispersing in a mixed solvent of pioneer.

実施例1〜2、比較例1のペーストを、スクリーン印刷〔ステンレスメッシュ(400メッシュ)、乳剤厚み5μm〕でPETフィルム上に厚み4μmで印刷した後、70℃に保持したホットプレート上で加熱し、乾燥させた。   The pastes of Examples 1 and 2 and Comparative Example 1 were printed on a PET film with a thickness of 4 μm by screen printing (stainless steel mesh (400 mesh), emulsion thickness 5 μm), and then heated on a hot plate maintained at 70 ° C. , Dried.

次いで、乾燥後の試料を、高真空加熱炉(ニッカトー製VTS−420−9)に入れ、300Paに減圧して炉内を窒素に置換した後、1リットル/分の窒素気流中で、400℃/時間で昇温し、所定の焼成温度で30分間保持した後、自然冷却させた。ピーク温度を500〜1300℃の範囲で変化させ、得られた試料について、光干渉式表面形状測定装置(WYKO製NT3300)を用いて、薄膜の厚みを測定した。また、デジタルマルチメーター(KEITHLEY社製 モデル2001マルチメーター)を用いて抵抗値を測定し、下記式より、体積低効率を求めた。
体積抵抗率=R×W×t/L
R:抵抗値〔Ω〕 t:厚み〔μm〕
W:パターン幅 30mm L:パターン長さ 1mm
Next, the dried sample was put into a high vacuum heating furnace (VTS-420-9 manufactured by Nikkato), the pressure was reduced to 300 Pa, and the inside of the furnace was replaced with nitrogen, and then at 400 ° C. in a nitrogen stream of 1 liter / min. The temperature was raised at a time / hour, held at a predetermined firing temperature for 30 minutes, and then naturally cooled. The peak temperature was changed in the range of 500 to 1300 ° C., and the thickness of the thin film was measured for the obtained sample using an optical interference surface shape measuring device (NT3300 manufactured by WYKO). Moreover, the resistance value was measured using a digital multimeter (Model 2001 multimeter manufactured by KEITHLEY), and the volume low efficiency was obtained from the following formula.
Volume resistivity = R x W x t / L
R: resistance value [Ω] t: thickness [μm]
W: Pattern width 30 mm L: Pattern length 1 mm

Figure 0004653971
Figure 0004653971

表1に示されるように、実施例1及び2のペーストを使用した薄膜はサブミクロン(1μm)の厚さであり、抵抗値・体積低効率も良好であった。また、実施例2のペーストには、ニッケル粒子が添加されており、1300℃の焼成温度でも抵抗値・体積低効率が極めて良好なサブミクロンの薄膜が得られた。また、実施例2のペーストは、エタノールを含むため、印刷後の乾燥時間が5分であり、生産性も良好であった。
一方、比較例1の従来のニッケル粒子を分散させた導電ペーストは、いずれの焼成温度においても1μm超の厚さであり、900℃まで焼成温度が上がらないと抵抗値が低下しなかった。
As shown in Table 1, the thin film using the pastes of Examples 1 and 2 had a thickness of submicron (1 μm) and good resistance value and low volume efficiency. Further, nickel particles were added to the paste of Example 2, and a submicron thin film with extremely good resistance value and low volumetric efficiency was obtained even at a firing temperature of 1300 ° C. Moreover, since the paste of Example 2 contained ethanol, the drying time after printing was 5 minutes, and the productivity was also good.
On the other hand, the conductive paste in which the conventional nickel particles of Comparative Example 1 were dispersed had a thickness exceeding 1 μm at any firing temperature, and the resistance value did not decrease unless the firing temperature increased to 900 ° C.

本発明のペーストは、焼成による有害ガスの発生を避けることができ、かつ電極としての特性を保持するサブミクロン(1μm以下)の薄膜を形成でき、本発明のペーストを用いて形成した内部電極は、薄膜化の要求に応えるものである。該内部電極層を備えたMLCCは、チップ部品の小型化、薄型化に対応するものであり、産業上の極めて有用なものである。   The paste of the present invention can avoid generation of harmful gas due to firing and can form a submicron (1 μm or less) thin film that retains the characteristics as an electrode. The internal electrode formed using the paste of the present invention is In response to the demand for thin film. The MLCC provided with the internal electrode layer is very useful in the industry because it corresponds to the miniaturization and thinning of chip parts.

Claims (8)

(a)酢酸ニッケル100重量部に対して、(b)テトラエチレングリコールを30〜200重量部配合してなる、内部電極用ニッケル含有ペースト。 (A) A nickel-containing paste for internal electrodes, comprising 30 to 200 parts by weight of (b) tetraethylene glycol based on 100 parts by weight of nickel acetate. (a)酢酸ニッケル100重量部に対して、(b)テトラエチレングリコールを30〜200重量部含む、内部電極用ニッケル含有ペースト。 (A) Nickel-containing paste for internal electrodes containing 30 to 200 parts by weight of tetraethylene glycol with respect to 100 parts by weight of nickel acetate. さらに、(d)エタノールを含む、請求項1又は2記載の内部電極用ニッケル含有ペースト。 Furthermore, the nickel containing paste for internal electrodes of Claim 1 or 2 containing (d) ethanol. さらに、(c)ニッケル粒子を含む、請求項1〜のいずれか1項の内部電極用ニッケル含有ペースト。 Furthermore, the nickel containing paste for internal electrodes of any one of Claims 1-3 containing (c) nickel particle | grains. (c)成分が、平均粒子径0.05〜0.6μmの球状粉末である、請求項記載の内部電極用ニッケル含有ペースト。 The nickel-containing paste for internal electrodes according to claim 4 , wherein the component (c) is a spherical powder having an average particle size of 0.05 to 0.6 μm. ペーストの全重量に占める(a)成分及び(c)成分のニッケル換算量の割合であるニッケル含有率が、20〜50重量%である、請求項又は記載の内部電極用ニッケルペースト。 The nickel paste for internal electrodes according to claim 4 or 5 , wherein the nickel content, which is a ratio of the nickel equivalent amount of the component (a) and the component (c) to the total weight of the paste, is 20 to 50% by weight. 請求項1〜のいずれか1項記載の内部電極用ニッケル含有ペーストを用いて形成した、内部電極。 The internal electrode formed using the nickel-containing paste for internal electrodes according to any one of claims 1 to 6 . 請求項記載の内部電極を備えた、積層セラミックコンデンサ。 A multilayer ceramic capacitor comprising the internal electrode according to claim 7 .
JP2004160126A 2004-05-28 2004-05-28 Nickel-containing paste for internal electrodes Expired - Lifetime JP4653971B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004160126A JP4653971B2 (en) 2004-05-28 2004-05-28 Nickel-containing paste for internal electrodes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004160126A JP4653971B2 (en) 2004-05-28 2004-05-28 Nickel-containing paste for internal electrodes

Publications (2)

Publication Number Publication Date
JP2005340666A JP2005340666A (en) 2005-12-08
JP4653971B2 true JP4653971B2 (en) 2011-03-16

Family

ID=35493854

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004160126A Expired - Lifetime JP4653971B2 (en) 2004-05-28 2004-05-28 Nickel-containing paste for internal electrodes

Country Status (1)

Country Link
JP (1) JP4653971B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4924812B2 (en) * 2006-12-19 2012-04-25 住友金属鉱山株式会社 Nickel film forming coating solution, nickel film and method for producing the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001023852A (en) * 1999-07-06 2001-01-26 Murata Mfg Co Ltd Laminated ceramic electronic component
JP2002117720A (en) * 2000-10-10 2002-04-19 Namics Corp Metallic paste
JP2003510774A (en) * 1999-09-29 2003-03-18 インスティトゥート フィア ノイエ マテリアーリエン ゲマインニュッツィゲ ゲゼルシャフト ミット ベシュレンクタ ハフトゥンク Methods and compositions for printing supports
JP2004124237A (en) * 2002-10-07 2004-04-22 Nippon Paint Co Ltd Nickel colloidal solution and its production method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3355832B2 (en) * 1994-12-08 2002-12-09 三菱マテリアル株式会社 Circuit pattern forming method and its paste

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001023852A (en) * 1999-07-06 2001-01-26 Murata Mfg Co Ltd Laminated ceramic electronic component
JP2003510774A (en) * 1999-09-29 2003-03-18 インスティトゥート フィア ノイエ マテリアーリエン ゲマインニュッツィゲ ゲゼルシャフト ミット ベシュレンクタ ハフトゥンク Methods and compositions for printing supports
JP2002117720A (en) * 2000-10-10 2002-04-19 Namics Corp Metallic paste
JP2004124237A (en) * 2002-10-07 2004-04-22 Nippon Paint Co Ltd Nickel colloidal solution and its production method

Also Published As

Publication number Publication date
JP2005340666A (en) 2005-12-08

Similar Documents

Publication Publication Date Title
JP5569747B2 (en) Gravure printing conductive paste used for multilayer ceramic capacitor internal electrode
JP5772621B2 (en) Conductive paste for internal electrodes
JP2012174797A5 (en)
WO2020137290A1 (en) Conductive paste, electronic component, and laminated ceramic capacitor
JP2010056290A (en) Conductive paste for laminated ceramic capacitor internal electrode
JP2024032861A (en) Conductive paste, electronic component, and multilayer ceramic capacitor
JP7405098B2 (en) Conductive paste, electronic components, and multilayer ceramic capacitors
CN113396458B (en) Conductive paste, electronic component, and multilayer ceramic capacitor
JP5630363B2 (en) Conductive paste and method for producing the same
WO2020153101A1 (en) Electroconductive paste, substrate equipped with electroconductive film, and method for manufacturing substrate equipped with electroconductive film
JP4653971B2 (en) Nickel-containing paste for internal electrodes
JP3527822B2 (en) Conductive paste
JP6533371B2 (en) Paste for laminated ceramic capacitor internal electrode, method of manufacturing the same, and conductive film obtained by paste for laminated ceramic capacitor internal electrode
JP6791194B2 (en) Multilayer ceramic capacitor internal electrode paste and its manufacturing method
JP2007063060A (en) Coating material for ceramic green sheet and its manufacturing method, ceramic green sheet, and electronic component provided with the same
JPH07197103A (en) Method for coating surface of metallic powder with metallic compound
JP7143875B2 (en) Multilayer ceramic capacitor internal electrode paste and its manufacturing method
JP5459952B2 (en) Method for manufacturing dielectric ceramic material
CN113242774A (en) Silver paste
JP2016076627A (en) Internal electrode material for multilayer ceramic capacitor
JP6901227B1 (en) Copper ink and conductive film forming method
JP5459951B2 (en) Method for producing ceramic slurry
JP2009037974A (en) Nickel paste
JP2006351348A (en) Manufacturing method of conductive paste, and manufacturing method of laminated ceramic electronic components
JP2005079504A (en) Metal resinate composition for inner electrode

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070528

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070802

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100914

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101130

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101220

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4653971

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131224

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term