JP3600723B2 - Vacuum pump unit for insulating gas recovery - Google Patents

Vacuum pump unit for insulating gas recovery Download PDF

Info

Publication number
JP3600723B2
JP3600723B2 JP04831598A JP4831598A JP3600723B2 JP 3600723 B2 JP3600723 B2 JP 3600723B2 JP 04831598 A JP04831598 A JP 04831598A JP 4831598 A JP4831598 A JP 4831598A JP 3600723 B2 JP3600723 B2 JP 3600723B2
Authority
JP
Japan
Prior art keywords
vacuum pump
brine
main circuit
pressure
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP04831598A
Other languages
Japanese (ja)
Other versions
JPH11247760A (en
Inventor
渡辺  誠
寛 砂原
孝 松坂
順明 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Carrier Corp
Original Assignee
Toshiba Carrier Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Carrier Corp filed Critical Toshiba Carrier Corp
Priority to JP04831598A priority Critical patent/JP3600723B2/en
Publication of JPH11247760A publication Critical patent/JPH11247760A/en
Application granted granted Critical
Publication of JP3600723B2 publication Critical patent/JP3600723B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Drying Of Gases (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、SF6ガス等の絶縁ガスをトランス等の絶縁ガス封入機器から回収するための絶縁ガス回収用真空ポンプユニットに関するものである。
【0002】
【従来の技術】
SF6(六フッ化イオウ)ガスは、耐熱性、電気絶縁性に優れておりトランス等の封入機器内に絶縁ガスとして封入されるが、封入機器の補修や点検などの際には、封入機器から回収する必要がある。
【0003】
従来のSF6ガス回収装置は、トランス等の封入機器内の絶縁ガスを真空ポンプを用いて吸引するものである。この真空ポンプは、油回転式の大排気量の真空ポンプや空冷式の真空ポンプが使用されている。
【0004】
【発明が解決しようとする課題】
しかしながら、油回転式の真空ポンプは、油にSF6ガスが混入する問題があり、空気冷却式では、収納容器の関係から、大きな容量の装置を使用できないため、小排気量のものしか使用できないため、大気圧以下のガス回収に時間がかかる問題がある。
【0005】
また水冷式の真空ポンプもあるが、このポンプは水道水等の冷却水配管が必要であり、場所によっては水道水を確保できない問題がある。
【0006】
そこで本発明は、上記課題を解決し、水道水等の冷却水源がなくても真空ポンプを効果的に冷却できる絶縁ガス回収用真空ポンプユニットを提供することを目的とする。
【0007】
【課題を解決するための手段】
上記目的を達成するために、請求項1の発明は、入口側からの絶縁ガスを、真空ポンプを介して圧縮機側と連結される出口側に送る主回路と、真空ポンプのバイパス回路とを備えると共に、入口側のガス圧力を検知し、圧力が所定より高いとき主回路をバイパスさせてバイパス回路に切り換え、低いとき主回路の真空ポンプに切り換える流路切換手段と、真空ポンプをブラインにより冷却するポンプ冷却手段とを備え、さらに該ポンプ冷却手段が、真空ポンプに設けられた熱交換器と、ブラインタンクと、ブラインタンク内の液を冷却する冷凍機と、ブラインタンク内の冷却液を熱交換器に供給するブライン循環路とからなる絶縁ガス回収用真空ポンプユニットである。
【0011】
請求項の発明は、絶縁ガス封入機器とを連結する入口側接続口と、圧縮機側とを連結する出口側接続口との間に、圧力調整弁、真空ポンプ、クッションタンクが接続される主回路と、主回路の真空ポンプをバイパスするバイパス回路と、入口側からのガスを主回路又はバイパス回路の一方に流すように切り換える流路切換弁と、入口側のガス圧力を検出し、所定圧力より高いときバイパス回路へ、低いときは主回路に切り換える流路切換弁を制御する圧力検知手段と、真空ポンプをブラインで冷却するポンプ冷却手段とを備え、さらに該ポンプ冷却手段が、真空ポンプに設けられた熱交換器と、ブラインタンクと、ブラインタンク内の液を冷却する冷凍機と、ブラインタンク内の冷却液を熱交換器に供給するブライン循環路とからなり、これらを同一のケーシング内に収容した絶縁ガス回収用真空ポンプユニットである。
【0012】
請求項の発明は、ケーシング内の底部に真空ポンプ、冷却手段のブラインタンク、クッションタンクを配置し、上部にポンプ冷却手段の冷凍機、ケーシングの前面に、制御盤を配置した請求項記載の絶縁ガス回収用真空ポンプユニットである。
【0013】
【発明の実施の形態】
以下、本発明の好適一実施の形態を添付図面に基づいて詳述する。
【0014】
先ず、図2により絶縁ガス回収用真空ポンプユニットの回路を説明する。
【0015】
図2に示すように、絶縁ガス封入機器に接続された接続ホース11Aと連結する入口側接続口12Aと、図示しない圧縮機ユニット側との接続ホース11Bを連結する出口側接続口12Bとの間に、ブラインで冷却するブライン式の真空ポンプ13、クッションタンク14、逆止弁15が接続された主回路16が設けられ、真空ポンプ13とクッションタンク14の間の主回路16と並行にバイパス回路17が接続される。
【0016】
この主回路16とバイパス回路17の分岐部には、それぞれ流路切換電磁弁18a,18bが接続されて流路切換手段18が構成され、その上流側に絶縁ガスの圧力を検出する圧力計20と、その検出ガス圧力によりバイパス回路17と主回路16を切り換えるべく流路切換電磁弁18a,18bを開閉するための制御手段として圧力スイッチ21が設けられる。
【0017】
真空ポンプ13の上流側の主回路16には、主回路16が異常高圧となったときに開放する安全弁23が接続される。
【0018】
真空ポンプ13には、並列に圧力バランス用電磁弁25が接続され、さらに真空ポンプ13と並行に、真空ポンプ13へ送られるガスの圧力が所定以上となったとき開いてガスをバイパスさせる圧力調整弁27が接続される。
【0019】
真空ポンプ13には、ポンプ冷却手段28が接続される。
【0020】
このポンプ冷却手段28は、真空ポンプ13に設けた熱交換器29と、ブラインタンク30と、ブラインタンク30内の液を冷却する冷凍機31と、ブラインタンク30内の冷却液を熱交換器29に供給するブライン循環路32からなる。
【0021】
冷凍機31は、ブラインタンク30内に設けた熱交換コイル33と冷媒配管34で接続され、その冷媒配管34に電磁開閉弁35が接続されて構成される。
【0022】
ブライン循環路32は、ブラインタンク30と熱交換器29とを接続し、そのブライン循環路32にブライン循環ポンプ37が接続されて構成される。
【0023】
この図2に示した真空ポンプユニットは、図1に示すようにケーシング10に収容される。
【0024】
図1において、(a)は平面図であり、(b)は正面図、(c)は右側面図である。
【0025】
図1(a)、(b)、(c)に示すように、ケーシング10の底部には、真空ポンプ13、ブラインタンク30、クッションタンク14が設置され、上部に冷凍機31が配置される。
【0026】
ケーシング10の前面には、図2で説明した入口側接続口12Aと出口側接続口12Bが配置されると共に圧力計20が配置される。
【0027】
またケーシング10の前面には制御盤40が設けられ、その制御盤40に運転/停止やリセットなどを行う操作ボタン42と真空ポンプ13や冷凍機31の運転状態、大気圧に対する正圧回収運転や負圧回収運転などを点滅や色で表示する表示ランプ44が設けられる。
【0028】
次に図2により、回収運転を説明する。
【0029】
トランスなどの絶縁ガス封入機器からの絶縁ガスを回収する際には、接続ホース11Aを封入機器に接続し、その接続ホース11Aを入口側接続口12Aに連結する。また出口側接続口12Bは接続ホース11Bにて圧縮ユニット(図示せず)に接続する。
【0030】
制御電源がONとなり、絶縁ガスが入口側接続口12Aから主回路16に流入して回収運転を行うが、この回収運転初期は、封入機器内のガス圧が高いため、制御手段である圧力スイッチ21で、流路切換手段18のバイパス回路17側の流路切換電磁弁18bを開、主回路16側の流路切換電磁弁18aを閉として、回収ガスをバイパス回路17に流れるようになし、そのガスを出口側接続口12Bより圧縮機ユニット側に流して正回収運転を行う。
【0031】
その後、ガス圧が設定圧、例えば大気圧近くまで下がったなら、流路切換手段18にて、主回路16側に切り換え、真空ポンプ13の吸引力により、封入機器内の絶縁ガスを吸い込み、圧縮して出口側接続口12Bより圧縮機ユニット側に流して負圧回収運転を行う。
【0032】
この正負回収運転の状況は、図1(b)に示した制御盤40の表示ランプ44にて確認することができる。
【0033】
この回収運転中、冷凍機31にてブラインタンク30の液が冷却され、その冷却液が、真空ポンプ13の熱交換器29に流されて真空ポンプ13が冷却され、その発熱を抑えることができる。
【0034】
なお圧縮機ユニットに送られた回収ガスは、圧縮され、その後、液化ユニットで冷却されて液化され、貯留タンクに貯蔵される。この貯留タンクに貯蔵された回収液は、その後、気化ユニットにて加熱されてガス化されて、封入機器に戻されることとなる。
【0035】
【発明の効果】
以上要するに本発明によれば、トランス等の絶縁ガス封入機器から絶縁ガスを回収するにおいて、真空ポンプに、真空ポンプを冷却する熱交換器、ブラインタンク、ブラインタンク内の冷却液を冷却する冷凍機、及び冷却液を循環するブライン循環路からなるブライン式のポンプ冷却手段を設けることで、水道水等の冷却水源がなくても、移動可能なユニットとすることができると共に設定圧力により正圧回収と真空ポンプを用いた負圧回収を自動運転できるので操作性がよい。
【図面の簡単な説明】
【図1】本発明の一実施の形態を示す真空ポンプユニットの外観図である。
【図2】本発明の一実施の形態を示す真空ポンプユニットの回路図である。
【符号の説明】
13 真空ポンプ
16 主回路
17 バイパス回路
18 流路切換手段
28 ポンプ冷却手段
31 冷凍機
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a vacuum pump unit for recovering insulating gas for recovering insulating gas such as SF6 gas from an insulating gas sealing device such as a transformer.
[0002]
[Prior art]
SF6 (sulfur hexafluoride) gas has excellent heat resistance and electrical insulation properties and is sealed as an insulating gas in encapsulation equipment such as transformers. Need to be collected.
[0003]
The conventional SF6 gas recovery device sucks an insulating gas in a sealed device such as a transformer using a vacuum pump. As the vacuum pump, an oil rotary type vacuum pump with a large displacement or an air-cooled vacuum pump is used.
[0004]
[Problems to be solved by the invention]
However, the oil rotary type vacuum pump has a problem that SF6 gas is mixed into the oil, and the air cooling type cannot use a large capacity device because of the storage container, so that only a small displacement type can be used. In addition, there is a problem that it takes a long time to recover a gas under the atmospheric pressure.
[0005]
There is also a water-cooled vacuum pump, but this pump requires a cooling water pipe such as tap water, and there is a problem that tap water cannot be secured in some places.
[0006]
Therefore, an object of the present invention is to solve the above problems and to provide a vacuum pump unit for collecting an insulating gas that can effectively cool a vacuum pump without a cooling water source such as tap water.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, the invention of claim 1 includes a main circuit that sends an insulating gas from an inlet side to an outlet side connected to a compressor side via a vacuum pump, and a bypass circuit of the vacuum pump. In addition to the above, the gas pressure on the inlet side is detected, and when the pressure is higher than a predetermined value, the main circuit is bypassed to switch to the bypass circuit, and when the pressure is low, the flow path is switched to the vacuum pump of the main circuit, and the vacuum pump is cooled by brine. Pump cooling means, further comprising a heat exchanger provided in the vacuum pump, a brine tank, a refrigerator for cooling the liquid in the brine tank, and a heat pump for cooling the liquid in the brine tank. This is a vacuum pump unit for recovering insulating gas, comprising a brine circulating path for supplying to the exchanger.
[0011]
According to a second aspect of the present invention, a pressure regulating valve, a vacuum pump, and a cushion tank are connected between an inlet-side connection port connecting the insulating gas filling device and an outlet-side connection port connecting the compressor side. A main circuit, a bypass circuit that bypasses a vacuum pump of the main circuit, a flow path switching valve that switches gas from the inlet side to flow to one of the main circuit or the bypass circuit, and a gas pressure at the inlet side that is detected and determined. A pressure detection means for controlling a flow path switching valve for switching to a bypass circuit when the pressure is higher than the pressure, and a main circuit when the pressure is lower than the pressure; and a pump cooling means for cooling the vacuum pump with brine, further comprising a vacuum pump. a heat exchanger provided, consists of a brine tank, a refrigerator for cooling the liquid in the brine tank, a brine circulation path for supplying the cooling liquid to the heat exchanger in the brine tank, this Et which is the insulating gas recovery vacuum pump unit accommodated in the same casing.
[0012]
The invention according to claim 3, a vacuum pump on the bottom of the casing, brine tank of the cooling means, the cushion tank arranged, refrigerator pumping cooling means at the top, on the front of the casing, according to claim 2, wherein placing the control panel Is a vacuum pump unit for collecting insulating gas.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, a preferred embodiment of the present invention will be described in detail with reference to the accompanying drawings.
[0014]
First, the circuit of the vacuum pump unit for collecting insulating gas will be described with reference to FIG.
[0015]
As shown in FIG. 2, between an inlet side connection port 12A connected to a connection hose 11A connected to the insulating gas sealing device and an outlet side connection port 12B connected to a connection hose 11B to a compressor unit (not shown). A main circuit 16 to which a brine vacuum pump 13 for cooling with brine , a cushion tank 14, and a check valve 15 are connected, and a bypass circuit in parallel with the main circuit 16 between the vacuum pump 13 and the cushion tank 14. 17 is connected.
[0016]
Flow passage switching means 18 are formed by connecting flow passage switching electromagnetic valves 18a and 18b to branches of the main circuit 16 and the bypass circuit 17, respectively. A pressure gauge 20 for detecting the pressure of the insulating gas is provided upstream of the passage switching means 18. A pressure switch 21 is provided as control means for opening and closing the flow path switching electromagnetic valves 18a and 18b to switch the bypass circuit 17 and the main circuit 16 according to the detected gas pressure.
[0017]
A safety valve 23 that opens when the main circuit 16 becomes abnormally high pressure is connected to the main circuit 16 on the upstream side of the vacuum pump 13.
[0018]
A pressure balancing solenoid valve 25 is connected in parallel with the vacuum pump 13, and is further opened in parallel with the vacuum pump 13 when the pressure of the gas sent to the vacuum pump 13 becomes a predetermined value or more, and the pressure is adjusted to bypass the gas. Valve 27 is connected.
[0019]
Pump cooling means 28 is connected to the vacuum pump 13.
[0020]
The pump cooling means 28 includes a heat exchanger 29 provided in the vacuum pump 13, a brine tank 30, a refrigerator 31 for cooling the liquid in the brine tank 30, and a heat exchanger 29 for cooling the liquid in the brine tank 30. And a brine circulation path 32 for supplying the water to the water supply line.
[0021]
The refrigerator 31 is connected to a heat exchange coil 33 provided in the brine tank 30 by a refrigerant pipe 34, and the refrigerant pipe 34 is connected to an electromagnetic on-off valve 35.
[0022]
The brine circulation path 32 connects the brine tank 30 and the heat exchanger 29, and is configured such that the brine circulation pump 32 is connected to the brine circulation path 32.
[0023]
The vacuum pump unit shown in FIG. 2 is housed in a casing 10 as shown in FIG.
[0024]
1A is a plan view, FIG. 1B is a front view, and FIG. 1C is a right side view.
[0025]
As shown in FIGS. 1A, 1B, and 1C, a vacuum pump 13, a brine tank 30, and a cushion tank 14 are provided at the bottom of the casing 10, and a refrigerator 31 is provided at the top.
[0026]
On the front surface of the casing 10, the inlet side connection port 12A and the outlet side connection port 12B described with reference to FIG.
[0027]
A control panel 40 is provided on the front surface of the casing 10. The control panel 40 has operation buttons 42 for operating / stopping and resetting, operating states of the vacuum pump 13 and the refrigerator 31, a positive pressure recovery operation for atmospheric pressure, and the like. A display lamp 44 is provided to display a negative pressure recovery operation or the like in a blinking or colored manner.
[0028]
Next, the recovery operation will be described with reference to FIG.
[0029]
When recovering insulating gas from an insulating gas sealing device such as a transformer, the connection hose 11A is connected to the sealing device, and the connection hose 11A is connected to the inlet-side connection port 12A. The outlet side connection port 12B is connected to a compression unit (not shown) by a connection hose 11B.
[0030]
Next control power is ON, the insulating gas is carried out a recovery operation flows into the main circuit 16 from the inlet-side connecting port 12A, the pressure switch the recovery operation early, due to the high gas pressure in the enclosed equipment is a control means At 21, the flow path switching electromagnetic valve 18b on the bypass circuit 17 side of the flow path switching means 18 is opened, and the flow path switching electromagnetic valve 18a on the main circuit 16 side is closed, so that the recovered gas flows to the bypass circuit 17. The normal recovery operation is performed by flowing the gas from the outlet side connection port 12B to the compressor unit side.
[0031]
Thereafter, when the gas pressure drops to a set pressure, for example, near the atmospheric pressure, the flow is switched to the main circuit 16 side by the flow path switching means 18, and the suction gas of the vacuum pump 13 sucks the insulating gas in the sealed device and compresses it. Then, it flows to the compressor unit side from the outlet side connection port 12B to perform the negative pressure recovery operation.
[0032]
The status of the positive / negative recovery operation can be confirmed by the display lamp 44 of the control panel 40 shown in FIG.
[0033]
During this recovery operation, the liquid in the brine tank 30 is cooled by the refrigerator 31, and the cooling liquid is passed through the heat exchanger 29 of the vacuum pump 13 to cool the vacuum pump 13, thereby suppressing heat generation. .
[0034]
The recovered gas sent to the compressor unit is compressed, then cooled and liquefied by the liquefaction unit, and stored in the storage tank. The recovered liquid stored in the storage tank is then heated and gasified by the vaporizing unit and returned to the sealing device.
[0035]
【The invention's effect】
In short, according to the present invention, in recovering insulating gas from an insulating gas filling device such as a transformer, a vacuum pump is provided with a heat exchanger for cooling the vacuum pump, a brine tank, and a refrigerator for cooling the coolant in the brine tank. , And by providing a brine pump cooling means comprising a brine circulation path for circulating a coolant, the unit can be made movable even without a cooling water source such as tap water, and positive pressure is recovered by a set pressure. The operability is good because the vacuum pressure recovery using the vacuum pump can be automatically operated.
[Brief description of the drawings]
FIG. 1 is an external view of a vacuum pump unit showing one embodiment of the present invention.
FIG. 2 is a circuit diagram of a vacuum pump unit showing one embodiment of the present invention.
[Explanation of symbols]
13 Vacuum pump 16 Main circuit 17 Bypass circuit 18 Flow path switching means 28 Pump cooling means 31 Refrigerator

Claims (3)

入口側からの絶縁ガスを、真空ポンプを介して圧縮機側と連結される出口側に送る主回路と、真空ポンプのバイパス回路とを備えると共に、入口側のガス圧力を検知し、圧力が所定より高いとき主回路をバイパスさせてバイパス回路に切り換え、低いとき主回路の真空ポンプに切り換える流路切換手段と、真空ポンプをブラインにより冷却するポンプ冷却手段とを備え、さらに該ポンプ冷却手段が、真空ポンプに設けられた熱交換器と、ブラインタンクと、ブラインタンク内の液を冷却する冷凍機と、ブラインタンク内の冷却液を熱交換器に供給するブライン循環路とからなることを特徴とする絶縁ガス回収用真空ポンプユニット。It has a main circuit that sends the insulating gas from the inlet side to the outlet side connected to the compressor side via a vacuum pump, and a bypass circuit for the vacuum pump. When higher, the main circuit is bypassed to switch to the bypass circuit, and when low, the flow path switching means for switching to the vacuum pump of the main circuit, and pump cooling means for cooling the vacuum pump by brine, further comprising the pump cooling means, It is characterized by comprising a heat exchanger provided in a vacuum pump, a brine tank, a refrigerator for cooling the liquid in the brine tank, and a brine circulation path for supplying the coolant in the brine tank to the heat exchanger. Vacuum pump unit for insulating gas recovery. 絶縁ガス封入機器と連結する入口側接続口と、圧縮機側と連結する出口側接続口との間に、圧力調整弁、真空ポンプ、クッションタンクが接続される主回路と、主回路の真空ポンプをバイパスするバイパス回路と、入口側からのガスを主回路又はバイパス回路の一方に流すように切り換える流路切換弁と、入口側のガス圧力を検出し、所定圧力より高いときバイパス回路へ、低いときは主回路に切り換える流路切換弁を制御する圧力検知手段と、真空ポンプをブラインで冷却するポンプ冷却手段とを備え、さらに該ポンプ冷却手段が、真空ポンプに設けられた熱交換器と、ブラインタンクと、ブラインタンク内の液を冷却する冷凍機と、ブラインタンク内の冷却液を熱交換器に供給するブライン循環路とからなり、これらを同一のケーシング内に収容したことを特徴とする絶縁ガス回収用真空ポンプユニット。 A main circuit in which a pressure regulating valve, a vacuum pump, and a cushion tank are connected between an inlet-side connection port connected to the insulating gas filling device and an outlet-side connection port connected to the compressor side, and a vacuum pump in the main circuit A bypass circuit that bypasses the gas, a flow path switching valve that switches gas from the inlet side to flow to one of the main circuit and the bypass circuit, and detects a gas pressure on the inlet side, and when the gas pressure is higher than a predetermined pressure, the bypass circuit is switched to a lower pressure. When, pressure detection means for controlling the flow path switching valve for switching to the main circuit, and a pump cooling means for cooling the vacuum pump with brine, further comprising a heat exchanger provided in the vacuum pump, It consists of a brine tank, a refrigerator that cools the liquid in the brine tank, and a brine circulation path that supplies the coolant in the brine tank to the heat exchanger. Insulating gas recovery vacuum pump unit, characterized in that accommodated in. ケーシング内の底部に真空ポンプ、冷却手段のブラインタンク、クッションタンクを配置し、上部にポンプ冷却手段の冷凍機、ケーシングの前面に、制御盤を配置した請求項2記載の絶縁ガス回収用真空ポンプユニット。3. The vacuum pump according to claim 2, wherein a vacuum pump, a brine tank and a cushion tank as cooling means are arranged at the bottom of the casing, a refrigerator as the pump cooling means, and a control panel is arranged at the front of the casing. unit.
JP04831598A 1998-02-27 1998-02-27 Vacuum pump unit for insulating gas recovery Expired - Lifetime JP3600723B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04831598A JP3600723B2 (en) 1998-02-27 1998-02-27 Vacuum pump unit for insulating gas recovery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04831598A JP3600723B2 (en) 1998-02-27 1998-02-27 Vacuum pump unit for insulating gas recovery

Publications (2)

Publication Number Publication Date
JPH11247760A JPH11247760A (en) 1999-09-14
JP3600723B2 true JP3600723B2 (en) 2004-12-15

Family

ID=12799992

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04831598A Expired - Lifetime JP3600723B2 (en) 1998-02-27 1998-02-27 Vacuum pump unit for insulating gas recovery

Country Status (1)

Country Link
JP (1) JP3600723B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5075439B2 (en) * 2007-03-26 2012-11-21 株式会社ネリキ Manifold valve for refrigerant injection

Also Published As

Publication number Publication date
JPH11247760A (en) 1999-09-14

Similar Documents

Publication Publication Date Title
JP4324932B2 (en) Constant temperature coolant circulation device
US20100288482A1 (en) Safety heat exchanger for combining a heat pump with a device of a public drinking water supply facility
JP3600723B2 (en) Vacuum pump unit for insulating gas recovery
JPH0410536Y2 (en)
CN110869683B (en) Refrigerant recovery device
JP3706731B2 (en) Insulating gas recovery and filling equipment
CN112614621B (en) Superconducting cable refrigerating system
JP7194579B2 (en) cycle equipment
JPH0791776A (en) Cooler
JPH0370943A (en) Operation controller for air conditioner
CN115413314B (en) Valve-opening circuit and heat pump device
JP2000046426A (en) Temperature raising method for pulse pipe refrigerating machine
CN212538411U (en) Cryogenic continuous treatment and cold energy recovery system
CN218723355U (en) Circulation cooling equipment of collocation emulsion
JP3113992B2 (en) Helium liquefaction refrigeration equipment
US20230228462A1 (en) Chiller
CN112432258B (en) Refrigerant cuts device and air conditioning system
CN216282130U (en) Refrigeration device and communication system
JPH11248096A (en) Insulating gas collection charging device, insulating gas collection device and insulating gas charging device
CN113606499A (en) Water chilling unit suitable for hydrogen filling station and use method thereof
JPH0330766Y2 (en)
JP2007127327A (en) High pressure rise preventing means of engine drive type heat pump
CN114279127A (en) Cryogenic continuous treatment and cold energy recovery system and method
JPS60108649A (en) Refrigerator
JP2024059364A (en) Oil-lubricated compressor for cryogenic refrigerator and method of operating same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040316

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040514

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040608

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040729

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040824

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040917

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080924

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080924

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080924

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090924

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090924

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100924

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110924

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110924

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120924

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130924

Year of fee payment: 9

EXPY Cancellation because of completion of term