JP2007127327A - High pressure rise preventing means of engine drive type heat pump - Google Patents

High pressure rise preventing means of engine drive type heat pump Download PDF

Info

Publication number
JP2007127327A
JP2007127327A JP2005320112A JP2005320112A JP2007127327A JP 2007127327 A JP2007127327 A JP 2007127327A JP 2005320112 A JP2005320112 A JP 2005320112A JP 2005320112 A JP2005320112 A JP 2005320112A JP 2007127327 A JP2007127327 A JP 2007127327A
Authority
JP
Japan
Prior art keywords
refrigerant
pressure
heat exchanger
path
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005320112A
Other languages
Japanese (ja)
Inventor
Ikuo Mizuno
郁男 水野
Takahiko Masuda
貴彦 増田
Hiroshi Sawada
浩 澤田
Masafumi Shinomiya
将文 篠宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yanmar Co Ltd
Original Assignee
Yanmar Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yanmar Co Ltd filed Critical Yanmar Co Ltd
Priority to JP2005320112A priority Critical patent/JP2007127327A/en
Publication of JP2007127327A publication Critical patent/JP2007127327A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve reliability of a high pressure rise preventing means of an existing connecting piping and to improve versatility to enable use in both cooling operation and heating operation, in regard to an engine drive type heat pump in transferring to HFC refrigerant. <P>SOLUTION: This engine drive type heat pump 1 having a compressor 10 by driving of an engine, a receiver 14 for storing a liquid refrigerant, and a four-way valve 20 capable of connecting a discharge path with an outdoor heat exchanger or an indoor heat exchanger, further comprises a bypass path 66 provided with a bypass solenoid valve 32 on the way, connected with the discharge path 60 at its one end, and connected with a suction path 61 at the other end, a first pressure switch 97 disposed on a path connecting the four-way valve 20 and the indoor heat exchanger 13, a second pressure switch 96 disposed on a path connecting the receiver and the indoor heat exchanger, and a high pressure rise preventing means opening the bypass solenoid valve 32 when the first pressure switch 97 or the second pressure switch 96 becomes more than a prescribed value. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、エンジン駆動式ヒートポンプの高圧上昇回避の技術に関する。   The present invention relates to a technique for avoiding a high-pressure rise in an engine-driven heat pump.

従来、地球環境保護目的から、冷凍装置及び空気調和装置に使用される冷媒が、HCFC冷媒からHFC冷媒へ移行されている。これは、塩素を含むHCFC冷媒に対して塩素を全く含まないHFC冷媒は、オゾン層を破壊することなく、オゾン破壊係数(Оzone Depeleting Potential)はゼロであることによる。
このHFC冷媒移行の課題として、それぞれの冷媒飽和圧力の違いが挙げられる。一般に、HFC冷媒はHCFC冷媒より飽和圧力が高く、例えば、飽和温度が50℃を越えると、HFC−R410A冷媒の飽和圧力は、HCFC−R22冷媒の飽和圧力の1.4倍程度高くなる。
Conventionally, for the purpose of protecting the global environment, the refrigerant used in the refrigeration apparatus and the air conditioner has been transferred from the HCFC refrigerant to the HFC refrigerant. This is because an HFC refrigerant that does not contain chlorine at all with respect to an HCFC refrigerant containing chlorine does not destroy the ozone layer and has an ozone depletion potential of zero.
The problem of this HFC refrigerant transfer is the difference in the respective refrigerant saturation pressures. In general, the saturation pressure of HFC refrigerant is higher than that of HCFC refrigerant. For example, when the saturation temperature exceeds 50 ° C., the saturation pressure of HFC-R410A refrigerant is about 1.4 times higher than the saturation pressure of HCFC-R22 refrigerant.

最近では、ビル又はマンションにおいては、空気中調和装置の室外機と室内機を接続する連絡配管が、壁面内に埋設されていることが多い。ここで、既設の空気調和装置を撤去して新たな空気調和装置を据付する際には、通常、既設連絡配管は、そのまま使用される場合がある。
そのため、HCFC冷媒の空気調和装置からHFC冷媒の空気調和装置に入れ替える際には、既設連絡配管の配管耐久圧力が課題となる。例えば、HCFC−R22冷媒使用の空気調和装置の配管設計圧力は2.75MPaであるが、HFC−R410A冷媒使用の場合は、これを大きく上回る。
Recently, in buildings or condominiums, communication pipes that connect outdoor units and indoor units of air-conditioning apparatuses are often embedded in wall surfaces. Here, when the existing air conditioner is removed and a new air conditioner is installed, the existing connection pipe is usually used as it is.
Therefore, when replacing the HCFC refrigerant air conditioner with the HFC refrigerant air conditioner, the pipe endurance pressure of the existing communication pipe becomes a problem. For example, the piping design pressure of the air conditioner using the HCFC-R22 refrigerant is 2.75 MPa, but is significantly higher when using the HFC-R410A refrigerant.

このようなHFC冷媒移行の課題に対して、特許文献1は、連絡配管内の圧力を所定値以下にする冷凍装置を開示している。該冷凍装置は、冷房運転時は、膨張弁開度を大きくし冷媒循環量を多くし連絡配管の高圧を低減している。一方、暖房運転時は、圧縮機の運転周波数を低減させ、連絡配管の高圧上昇を回避している。
特開2005−49057号公報
In response to such a problem of HFC refrigerant transfer, Patent Document 1 discloses a refrigeration apparatus that reduces the pressure in the communication pipe to a predetermined value or less. During the cooling operation, the refrigeration apparatus increases the opening degree of the expansion valve, increases the amount of refrigerant circulation, and reduces the high pressure of the communication pipe. On the other hand, during the heating operation, the operating frequency of the compressor is reduced to avoid an increase in the high pressure of the connecting pipe.
JP-A-2005-49057

しかし、特許文献1開示の高圧上昇回避手段は、圧縮機が容量制御可能でなければ、暖房時の高圧上昇回避ができない。さらに、通常、冷凍装置の配管は、少しでも設計圧力を越えたら破裂するということはないが、疲労、経年劣化又はロウ付け部の強度バラツキを考慮すると、長年の使用において設計圧力を超える時間が累積され、配管破裂・損傷の可能性がある。ここで、膨張弁制御では、細かいパルスにて開度制御され冷媒挙動への追従性が遅いため、設計圧力を超えてしまうタイミングもあり得る。このように、膨張弁制御のみによる高圧上昇回避手段は、連絡配管の設計圧力に対する信頼性が低い。
そこで、解決しようとする課題は、HFC冷媒移行時のエンジン駆動式ヒートポンプにおいて、既設連絡配管の高圧上昇回避手段の信頼性を向上し、冷房運転及び暖房運転でも使用できるように汎用性を向上することである。
However, the high pressure rise avoidance means disclosed in Patent Document 1 cannot avoid high pressure rise during heating unless the compressor is capable of capacity control. In addition, the piping of a refrigeration unit usually does not rupture if the design pressure is exceeded even a little, but considering fatigue, aging deterioration, or strength variation of the brazed part, the time for exceeding the design pressure in long-term use Accumulated and may cause pipe rupture / damage. Here, in the expansion valve control, the opening degree is controlled with fine pulses, and the followability to the refrigerant behavior is slow, so there may be a timing when the design pressure is exceeded. Thus, the high pressure increase avoidance means based only on the expansion valve control has low reliability with respect to the design pressure of the communication pipe.
Therefore, the problem to be solved is to improve the reliability of the high pressure rise avoidance means of the existing communication pipe in the engine-driven heat pump when the HFC refrigerant is transferred, and to improve the versatility so that it can be used in the cooling operation and the heating operation. That is.

本発明の解決しようとする課題は以上の如くであり、次にこの課題を解決するための手段を説明する。   The problem to be solved by the present invention is as described above. Next, means for solving the problem will be described.

即ち、請求項1においては、エンジン駆動による圧縮機と、前記圧縮機の吐出側に接続される吐出経路と、前記圧縮機の吸入側に接続される吸入経路と、高圧の液冷媒を貯留するレシーバと、前記吐出経路を室外熱交換器又は室内熱交換器へ連通可能な四方弁とを有するエンジン駆動式ヒートポンプにおいてその途中に開閉弁を設け、一端を前記吐出経路に接続し、他端を前記吸入経路に接続するバイパス経路と、前記四方弁と室内熱交換器とを接続する経路上に設けられる第一圧力スイッチと、前記レシーバと室内熱交換器とを接続する経路上に設けられる第二圧力スイッチと、前記第一圧力スイッチ又は第二圧力スイッチにより前記開閉弁を開とする高圧上昇回避手段を備えるものである。   That is, in claim 1, the compressor driven by the engine, the discharge path connected to the discharge side of the compressor, the suction path connected to the suction side of the compressor, and the high-pressure liquid refrigerant are stored. In an engine-driven heat pump having a receiver and a four-way valve capable of communicating the discharge path with an outdoor heat exchanger or an indoor heat exchanger, an open / close valve is provided in the middle thereof, one end is connected to the discharge path, and the other end is connected A bypass path connected to the suction path, a first pressure switch provided on a path connecting the four-way valve and the indoor heat exchanger, and a first pressure switch provided on a path connecting the receiver and the indoor heat exchanger. A two-pressure switch and high-pressure rise avoiding means for opening the on-off valve by the first pressure switch or the second pressure switch are provided.

本発明の効果として、以下に示すような効果を奏する。   As effects of the present invention, the following effects can be obtained.

請求項1においては、HFC冷媒移行時の既設連絡配管に対する高圧上昇回避を、冷房運転時又は暖房運転時でも使用できるように汎用性を向上している。さらに、開閉手段にて、即に所定の冷媒量をバイパスさせるため、既設連絡配管設計圧力に対する信頼性を向上できる。   In claim 1, versatility is improved so that high pressure rise avoidance for the existing communication pipe at the time of transition to the HFC refrigerant can be used even during cooling operation or heating operation. Furthermore, since the predetermined refrigerant amount is immediately bypassed by the opening / closing means, the reliability with respect to the existing communication pipe design pressure can be improved.

次に、発明の実施の形態を説明する。
図1は本発明の実施例に係るエンジン駆動式ヒートポンプの全体的な構成を示した冷媒回路図、図2は同じく冷房運転における高圧上昇緩和制御及び高圧上昇回避制御の冷媒挙動を示す図、図3は同じく暖房運転における高圧上昇緩和制御及び高圧上昇回避制御の冷媒挙動を示す図である。
Next, embodiments of the invention will be described.
FIG. 1 is a refrigerant circuit diagram showing an overall configuration of an engine-driven heat pump according to an embodiment of the present invention. FIG. 2 is a diagram showing refrigerant behavior of high-pressure rise mitigation control and high-pressure rise avoidance control in the same cooling operation. 3 is a diagram showing refrigerant behavior of high pressure increase mitigation control and high pressure increase avoidance control in the heating operation.

図1に示すように、エンジン駆動式ヒートポンプ1は、駆動源としてのエンジン(図示略)から動力を得て冷媒を圧縮する圧縮機10と、該圧縮機10の吐出側に接続され冷房時及び暖房時で冷媒の流れを切り換える四方弁20と、冷房時に圧縮機10から四方弁20を介して吐出冷媒が供給される室外熱交換器12と、該室外熱交換器12を室外空気と熱交換させる室外ファン5と、暖房時に圧縮機10から四方弁20を介して吐出冷媒が供給される室内熱交換器13と、該室内熱交換器13を室内空気と熱交換させる室内ファン6と、室外熱交換器12及び室内熱交換器13間に配設される室外熱交換器膨張弁21とを有しており、これらで構成される冷媒サイクルを用いるものである。   As shown in FIG. 1, an engine-driven heat pump 1 includes a compressor 10 that obtains power from an engine (not shown) as a drive source and compresses refrigerant, and is connected to the discharge side of the compressor 10 during cooling. A four-way valve 20 that switches the flow of refrigerant during heating, an outdoor heat exchanger 12 that is supplied with refrigerant discharged from the compressor 10 via the four-way valve 20 during cooling, and heat exchange between the outdoor heat exchanger 12 and outdoor air An outdoor fan 5 that is heated, an indoor heat exchanger 13 that is supplied with refrigerant discharged from the compressor 10 through a four-way valve 20 during heating, an indoor fan 6 that exchanges heat between the indoor heat exchanger 13 and indoor air, It has the outdoor heat exchanger expansion valve 21 arrange | positioned between the heat exchanger 12 and the indoor heat exchanger 13, and uses the refrigerant cycle comprised by these.

前記圧縮機10は、その吸入側からガス冷媒を吸引・圧縮し、高温・高圧のガス冷媒を吐出する。圧縮機10の吐出側には、吐出経路60を介して前記四方弁20が接続されており、この吐出経路60にはガス冷媒中に含まれる冷凍機油を分離して圧縮機10の吸入側に戻すためのオイルセパレータ11が設けられている。すなわち、圧縮機10から吐出されるガス冷媒は、オイルセパレータ11を介して前記四方弁20へと流入し、この四方弁20にて所定の方向に導かれる。また、圧縮機10に吸引されるガス冷媒も四方弁20にて導かれるため、圧縮機10の冷媒吸入側と四方弁20とは吸入経路61により接続されている。なお、第二圧力センサ90及び高圧遮断スイッチ(HPS)95は、圧縮機10により吐出される高圧のガス冷媒圧力を検知するため、吐出経路60の圧縮機10側に設けられる。   The compressor 10 sucks and compresses the gas refrigerant from the suction side and discharges the high-temperature and high-pressure gas refrigerant. The four-way valve 20 is connected to the discharge side of the compressor 10 through a discharge path 60, and the refrigerating machine oil contained in the gas refrigerant is separated into the discharge path 60 to the suction side of the compressor 10. An oil separator 11 for returning is provided. That is, the gas refrigerant discharged from the compressor 10 flows into the four-way valve 20 through the oil separator 11 and is guided in a predetermined direction by the four-way valve 20. Further, since the gas refrigerant sucked into the compressor 10 is also guided by the four-way valve 20, the refrigerant suction side of the compressor 10 and the four-way valve 20 are connected by a suction path 61. The second pressure sensor 90 and the high-pressure cutoff switch (HPS) 95 are provided on the compressor 10 side of the discharge path 60 in order to detect the high-pressure gas refrigerant pressure discharged by the compressor 10.

前記四方弁20は、前記室外熱交換器12の一端側に接続されており、この室外熱交換器12の他端側には、レシーバ14が接続されている。一方、室内熱交換器13は、一端が、液側連絡配管50を介して、前記レシーバ14に接続されており、他端は、ガス側連絡配管51を介して、四方弁20に接続されている。これら液側連絡配管50及びガス側連絡配管5は、建物内部に据付されている場合が多く、最近では、空調機更新時にはそのまま利用される場合がある。また、これら連絡配管50・51の室外機2側には、それぞれ液閉鎖弁40及びガス閉鎖弁41が設けられている。さらに、液側連絡配管50の室外機2側には、第一圧力センサ91及び第一圧力スイッチ96が設けられている。一方、ガス側連絡配管51の室外機2側には、第二圧力スイッチ97が設けられている。   The four-way valve 20 is connected to one end side of the outdoor heat exchanger 12, and a receiver 14 is connected to the other end side of the outdoor heat exchanger 12. On the other hand, one end of the indoor heat exchanger 13 is connected to the receiver 14 via a liquid side communication pipe 50, and the other end is connected to the four-way valve 20 via a gas side communication pipe 51. Yes. The liquid side communication pipe 50 and the gas side communication pipe 5 are often installed inside the building, and recently, they may be used as they are when the air conditioner is updated. Further, a liquid closing valve 40 and a gas closing valve 41 are provided on the side of the outdoor unit 2 of these communication pipes 50 and 51, respectively. Furthermore, a first pressure sensor 91 and a first pressure switch 96 are provided on the outdoor unit 2 side of the liquid side communication pipe 50. On the other hand, a second pressure switch 97 is provided on the gas communication pipe 51 on the outdoor unit 2 side.

廃熱回収器15は、前記室外熱交換器膨張弁21と前記レシーバ14の間から分岐し、吸入経路61に接続される経路63に設けられている。該経路63には、吸入経路61に向かって廃熱回収器膨張弁22、過冷却熱交換器17、前記廃熱回収器15の順にて、これらが直列に接続されている。前記経路63を通過する冷媒は、蒸発潜熱により、レシーバ14内の液冷媒を、過冷却熱交換器17にて過冷却し、廃熱回収器15でエンジン冷却水からエンジンの廃熱を回収して蒸発する。   The waste heat recovery unit 15 is provided in a path 63 that branches from between the outdoor heat exchanger expansion valve 21 and the receiver 14 and is connected to the suction path 61. The waste heat recovery device expansion valve 22, the supercooling heat exchanger 17, and the waste heat recovery device 15 are connected in series to the passage 63 toward the suction passage 61. The refrigerant passing through the path 63 subcools the liquid refrigerant in the receiver 14 by latent heat of vaporization in the supercooling heat exchanger 17 and recovers engine waste heat from the engine cooling water in the waste heat recovery unit 15. Evaporate.

第一バイパス経路65及び第二バイパス経路66は、吐出経路60と吸入経路61とを短絡するバイパス経路である。第一バイパス経路65には、減圧機構としてバイパス膨張弁24が、第二バイパス経路66には、バイパス電磁弁32及び減圧機構としてキャピラリ25が設けられている。これらバイパス経路65・66は、圧縮機10の吐出ガスを短絡して吸入経路に戻すことで、エンジン駆動式ヒートポンプ1の高圧側の異常圧力上昇を防止する。   The first bypass path 65 and the second bypass path 66 are bypass paths that short-circuit the discharge path 60 and the suction path 61. The first bypass path 65 is provided with a bypass expansion valve 24 as a pressure reducing mechanism, and the second bypass path 66 is provided with a bypass electromagnetic valve 32 and a capillary 25 as a pressure reducing mechanism. These bypass paths 65 and 66 prevent an abnormal pressure increase on the high-pressure side of the engine-driven heat pump 1 by short-circuiting the discharge gas of the compressor 10 and returning it to the suction path.

経路67は、前記レシーバ14の上面から、前記吐出経路60に向かう経路である。該経路67は、レシーバ14の高圧が異常上昇したとき、ガス冷媒を吐出経路へ逃がすことができる。また、経路67は、逆止弁75・76を介して、高温・高圧の吐出ガス冷媒が、レシーバ14に逆流することを防止している。   A path 67 is a path from the upper surface of the receiver 14 toward the discharge path 60. The path 67 can release the gas refrigerant to the discharge path when the high pressure of the receiver 14 rises abnormally. Further, the path 67 prevents the high-temperature and high-pressure discharged gas refrigerant from flowing back to the receiver 14 via the check valves 75 and 76.

上述した圧力スイッチ95・96・97は、圧力変化を検出し、電気回路の接点を開閉するものであり、保護・保安のため圧縮機10及び電磁弁などの電気回路を開閉する装置である。例えば、高圧遮断スイッチ(HPS)95は、圧縮機10の吐出圧力が所定値以上となると、直ちに圧縮機10を電気的に遮断し停止するものであり、異常高圧時の配管破損や機器破損を防止する安全装置である。一方、圧力センサ90・91は、圧力変化をダイヤフラムにて電気的信号に変換する装置であり、それらの多くは通常運転における冷媒制御のための装置である。
なお、温度センサ及び圧力センサにより、コントローラ100は冷媒状態を検知して、電磁弁、電子膨張弁、及び四方弁を開閉作動又は開閉制御する。一方、閉鎖弁は、通常、作業者の手によって開閉作動される。
The pressure switches 95, 96, and 97 described above detect pressure changes and open and close the contacts of the electric circuit, and are devices that open and close the electric circuit such as the compressor 10 and the electromagnetic valve for protection and security. For example, the high-pressure shut-off switch (HPS) 95 immediately shuts down the compressor 10 electrically when the discharge pressure of the compressor 10 exceeds a predetermined value, and stops the piping or equipment due to abnormally high pressure. It is a safety device to prevent. On the other hand, the pressure sensors 90 and 91 are devices that convert a pressure change into an electrical signal using a diaphragm, and many of them are devices for controlling the refrigerant in normal operation.
The controller 100 detects the refrigerant state by the temperature sensor and the pressure sensor, and opens / closes or controls the opening / closing of the electromagnetic valve, the electronic expansion valve, and the four-way valve. On the other hand, the closing valve is normally opened and closed by an operator's hand.

最近では、ビル又はマンションにおいては、エンジン駆動式ヒートポンプ1のような空気中調和装置の室外機2と室内機3を接続する連絡配管50・51が、壁面内に埋設されていることが多い。ここで、既設の空気調和装置を撤去して新たなエンジン駆動式ヒートポンプ1を据付する場合には、通常、既設連絡配管50・51をそのまま使用する場合がある。
そのため、HCFC冷媒使用の空気調和装置から、HFC冷媒使用のエンジン駆動式ヒートポンプ1に更新する場合は、既設連絡配管50・51の配管設計圧力が課題となる。例えば、HFC−R410A冷媒使用の場合は、HCFC−R22冷媒使用の空気調和装置の配管設計圧力に比べ、大きい配管設計圧力になるため、HCFC−R22冷媒使用時の既設連絡配管50・51の設計圧力を超えてはならない。
本実施例では、HFC冷媒使用のエンジン駆動式ヒートポンプ1において、既設連絡配管50・51がHCFC冷媒使用であった場合を想定して、連絡配管50・51の高圧制御手段及び高圧回避手段について説明する。
Recently, in buildings or condominiums, connecting pipes 50 and 51 that connect the outdoor unit 2 and the indoor unit 3 of the air conditioner such as the engine-driven heat pump 1 are often embedded in the wall surface. Here, when the existing air conditioner is removed and a new engine-driven heat pump 1 is installed, the existing communication pipes 50 and 51 are usually used as they are.
Therefore, when updating from an air conditioner using HCFC refrigerant to an engine-driven heat pump 1 using HFC refrigerant, the piping design pressure of the existing communication pipes 50 and 51 becomes a problem. For example, when the HFC-R410A refrigerant is used, the pipe design pressure is larger than the pipe design pressure of the air conditioner using the HCFC-R22 refrigerant. Therefore, the design of the existing connection pipes 50 and 51 when using the HCFC-R22 refrigerant is used. Do not exceed pressure.
In the present embodiment, in the engine-driven heat pump 1 using HFC refrigerant, the high-pressure control means and high-pressure avoidance means of the communication pipes 50 and 51 will be described on the assumption that the existing communication pipes 50 and 51 are HCFC refrigerant use. To do.

図2の太線に示すように、ここで、エンジン駆動式ヒートポンプ1の冷房運転時の冷媒挙動について説明する。
冷房運転時においては、圧縮機10にて圧縮され吐出される高温・高圧のガス冷媒は、吐出経路60を経由し四方弁20を介して室外熱交換器12に送られ、この室外熱交換器12で室外ファン5により送風される外気に放熱することにより凝縮されて、この凝縮熱が室外の空気中に放熱される。ここで、ガス冷媒は気体から液体となる。そして、液化された冷媒は、レシーバ14内に流入し、さらにレシーバ14から液側連絡配管50を経由して、室内熱交換器膨張弁23に到達し、この室内熱交換器膨張弁23で急激に減圧され蒸発しやすい状態となって室内熱交換器13に導かれる。この室内熱交換器13が蒸発器となり、冷媒が室内の空気から蒸発熱を奪い液体から気体へと変化するとともに室内の空気を冷却する。気化した冷媒は、ガス側連絡配管51を経由して、四方弁20を介して吸入経路61を通り、圧縮機10に吸引されて圧縮された後、再び吐出される。
As shown by the thick line in FIG. 2, the refrigerant behavior during the cooling operation of the engine-driven heat pump 1 will be described here.
During the cooling operation, the high-temperature and high-pressure gas refrigerant compressed and discharged by the compressor 10 is sent to the outdoor heat exchanger 12 via the discharge path 60 and the four-way valve 20, and this outdoor heat exchanger. 12 is condensed by dissipating heat to the outside air blown by the outdoor fan 5, and this condensed heat is dissipated into the outdoor air. Here, the gas refrigerant changes from gas to liquid. The liquefied refrigerant flows into the receiver 14, and further reaches the indoor heat exchanger expansion valve 23 from the receiver 14 via the liquid side connection pipe 50, and suddenly reaches the indoor heat exchanger expansion valve 23. Then, the pressure is reduced and the gas is easily evaporated and is led to the indoor heat exchanger 13. This indoor heat exchanger 13 becomes an evaporator, and the refrigerant takes evaporation heat from the indoor air and changes from liquid to gas, and cools the indoor air. The vaporized refrigerant passes through the gas side connecting pipe 51, passes through the suction path 61 through the four-way valve 20, is sucked and compressed by the compressor 10, and then discharged again.

図2の破線に示すように、また、エンジン駆動式ヒートポンプ1の冷房運転時における高圧上昇緩和制御時の冷媒挙動について説明する。
通常冷房運転中に、高圧が上昇する原因としては、外気温の上昇や室内冷房負荷増大が挙げられる。
このような場合、連絡配管50・51のうち先に通過する液側連絡配管50の設計圧力を越えないように、第一バイパス経路65の通過冷媒量を制御する。具体的には、前記液側連絡配管50の上流側に設けられる第一圧力センサ91にて検知する圧力が所定値を超える場合には、コントローラ100は、前記第一バイパス経路65の途上に設けられるバイパス膨張弁24の開度制御にて、通過冷媒量を制御して通常運転を継続する。エンジン駆動式ヒートポンプ1の全体循環冷媒量の一部を、バイパス冷媒量として仕事をさせない(室外熱交換器12に流さない)ことで高圧上昇を緩和している。
As shown by the broken line in FIG. 2, the refrigerant behavior during the high-pressure rise mitigation control during the cooling operation of the engine-driven heat pump 1 will be described.
During normal cooling operation, the cause of the increase in high pressure includes an increase in outside air temperature and an increase in indoor cooling load.
In such a case, the amount of refrigerant passing through the first bypass path 65 is controlled so as not to exceed the design pressure of the liquid side communication pipe 50 that passes through the communication pipes 50 and 51 first. Specifically, when the pressure detected by the first pressure sensor 91 provided on the upstream side of the liquid side connecting pipe 50 exceeds a predetermined value, the controller 100 is provided in the middle of the first bypass path 65. By controlling the opening degree of the bypass expansion valve 24, the amount of refrigerant passing through is controlled and normal operation is continued. By preventing a part of the total circulating refrigerant amount of the engine-driven heat pump 1 from working as a bypass refrigerant amount (not flowing through the outdoor heat exchanger 12), the increase in high pressure is mitigated.

図2の一点鎖線に示すように、さらに、エンジン駆動式ヒートポンプ1の冷房運転時における高圧上昇回避制御時の冷媒挙動について説明する。
上述した高圧上昇緩和制御においても、さらに高圧が十分に低下しない場合の原因として、室外機2の通風路に障害物がある(例えばビニールシート等)、室内熱交換器膨張弁23の詰まり、又は冷媒回路内に不凝縮ガスの混入等が考えられる。さらに、例えば、複数台の室内機3・・・・3を接続しているエンジン駆動式ヒートポンプの場合は、多数の室内機3・・・3が運転を停止して、1台の室内機3のみ運転する状況となった場合は、冷媒が運転する1台の室内機3に集中し、高圧が急に上昇することもあり得る。
このような場合は、液側連絡配管50の設計圧力を越えないように、第二バイパス経路66を用いて、バイパス冷媒量を増加する。具体的には、前記液側連絡配管50を通過する冷媒の圧力が、第一圧力スイッチ96に予め設定された所定値を超える場合には、コントローラ100は、前記第二バイパス経路66の途上に設けられるバイパス電磁弁32を開として、前記第二バイパス経路66に冷媒量を通過させる。つまり、バイパス通過冷媒量をさらに増加させることで高圧上昇を回避しているのである。ここで、バイパス電磁弁32はON―OFFによる開閉制御のため、一端ONとされた場合は、即に高圧上昇は回避できるのである。
As shown by the alternate long and short dash line in FIG. 2, the refrigerant behavior during the high-pressure rise avoidance control during the cooling operation of the engine-driven heat pump 1 will be further described.
Even in the above-described high pressure rise mitigation control, as a cause when the high pressure is not sufficiently lowered, there is an obstacle in the ventilation path of the outdoor unit 2 (for example, a vinyl sheet or the like), the indoor heat exchanger expansion valve 23 is clogged, or A non-condensable gas may be mixed in the refrigerant circuit. Further, for example, in the case of an engine-driven heat pump in which a plurality of indoor units 3... 3 are connected, a large number of indoor units 3. In the situation where only the operation is performed, the refrigerant concentrates on one indoor unit 3 that is operated, and the high pressure may suddenly rise.
In such a case, the amount of bypass refrigerant is increased using the second bypass path 66 so as not to exceed the design pressure of the liquid side communication pipe 50. Specifically, when the pressure of the refrigerant passing through the liquid side connection pipe 50 exceeds a predetermined value preset in the first pressure switch 96, the controller 100 is in the middle of the second bypass path 66. The bypass solenoid valve 32 provided is opened, and the amount of refrigerant passes through the second bypass path 66. In other words, a high pressure rise is avoided by further increasing the amount of bypass passage refrigerant. Here, since the bypass solenoid valve 32 is controlled to be opened and closed by ON-OFF, when one end is turned ON, an increase in high pressure can be immediately avoided.

図3の太線に示すように、さらに、エンジン駆動式ヒートポンプ1の暖房運転時の冷媒挙動について説明する。
暖房運転時においては、圧縮機10にて圧縮され吐出される高温・高圧のガス冷媒は、吐出経路60を経由し四方弁20を介して、ガス連絡配管51を経由して室内熱交換器13に送られ、この室内熱交換器13で室内ファン6により送風される室内の空気に放熱することにより凝縮されて、この凝縮熱が室内の空気中に放熱され室内の空気を温める。ここで、冷媒は気体から液体となる。そして、液化された冷媒は、液連絡配管50を経由してレシーバ14に流入し、このレシーバ14から室外熱交換器膨張弁21に到達し、この室外熱交換器膨張弁21で急激に減圧され蒸発しやすい状態となって室外熱交換器12に導かれる。この室外熱交換器4が蒸発器となり、冷媒が室外の空気中から蒸発熱を奪い、冷媒の一部が液体から気体へと変化する。そして、室外熱交換器4を経て気化した冷媒は、四方弁20を介して吸入経路61を通り、圧縮機10に吸引されて圧縮された後、再び吐出される。
As shown by the thick line in FIG. 3, the refrigerant behavior during the heating operation of the engine-driven heat pump 1 will be further described.
During the heating operation, the high-temperature and high-pressure gas refrigerant compressed and discharged by the compressor 10 passes through the discharge path 60, passes through the four-way valve 20, passes through the gas communication pipe 51, and the indoor heat exchanger 13. In the indoor heat exchanger 13, heat is condensed to the indoor air blown by the indoor fan 6, and the condensed heat is dissipated in the indoor air to warm the indoor air. Here, the refrigerant changes from gas to liquid. The liquefied refrigerant flows into the receiver 14 via the liquid communication pipe 50, reaches the outdoor heat exchanger expansion valve 21 from the receiver 14, and is rapidly depressurized by the outdoor heat exchanger expansion valve 21. The state is easily evaporated and is led to the outdoor heat exchanger 12. This outdoor heat exchanger 4 becomes an evaporator, and the refrigerant takes heat of evaporation from the outdoor air, and a part of the refrigerant changes from liquid to gas. Then, the refrigerant evaporated through the outdoor heat exchanger 4 passes through the suction path 61 via the four-way valve 20, is sucked and compressed by the compressor 10, and is then discharged again.

暖房運転の場合、高圧上昇緩和手段及び高圧上昇回避手段の手段は、冷房運転と同じである。ただ、冷房運転の場合とは逆に、冷媒は連絡配管50・51のうち先にガス側連絡配管51を通過するため、第二圧力センサ90は吐出経路60の圧縮機10側に、第二圧力スイッチ97はガス側連絡配管51の暖房運転時上流側に設けられる。第二圧力センサ90がガス側連絡配管51上に設けられないのは、室外熱交換器12の配管圧力損失を考慮すると、圧縮機10の吐出側よりガス側連絡配管51の圧力が高いことはないからである。
一方、第二圧力スイッチ97のみガス側連絡配管51に対して設けられるのは、圧縮機10の吐出側には高圧遮断スイッチ(HPS)95が設けられるためである。この高圧遮断スイッチ(HPS)95が作動すると、圧縮機10が停止してしまうため、第一圧力スイッチ96及び第二圧力スイッチ97の設定値は、高圧遮断スイッチ(HPS)95の設定値以下でなくてはならない。
In the case of heating operation, the means of the high pressure rise mitigating means and the high pressure rise avoiding means are the same as in the cooling operation. However, contrary to the case of the cooling operation, since the refrigerant passes through the gas side connection pipe 51 first of the connection pipes 50 and 51, the second pressure sensor 90 is connected to the compressor 10 side of the discharge path 60. The pressure switch 97 is provided on the upstream side of the gas side communication pipe 51 during the heating operation. The reason why the second pressure sensor 90 is not provided on the gas side connecting pipe 51 is that the pressure of the gas side connecting pipe 51 is higher than the discharge side of the compressor 10 in consideration of the pipe pressure loss of the outdoor heat exchanger 12. Because there is no.
On the other hand, the reason why only the second pressure switch 97 is provided for the gas side communication pipe 51 is that a high-pressure cutoff switch (HPS) 95 is provided on the discharge side of the compressor 10. When the high pressure cutoff switch (HPS) 95 is activated, the compressor 10 is stopped. Therefore, the set values of the first pressure switch 96 and the second pressure switch 97 are less than the set values of the high pressure cutoff switch (HPS) 95. Must-have.

本実施例では、バイパス膨張弁24の開度制御にて通過冷媒量制御する高圧上昇緩和手段に加え、ON―OFFによる開閉制御のバイパス電磁弁32にてバイパス冷媒量を増加する高圧上昇回避手段にて、既設連絡配管の設計圧力に対する信頼性を向上した。また、本実施例では冷房運転時でも暖房運転時でも高圧上昇回避が可能であり、その汎用性を向上している。
本実施例は、HFC冷媒移行時の既設連絡配管50・51の設計圧力に対する高圧上昇回避するだけでなく、例えば、所定の圧力以下でなければ動作保証されていない機器を含んだ冷媒回路においても応用できる。
In this embodiment, in addition to the high-pressure rise mitigating means for controlling the passage refrigerant amount by opening degree control of the bypass expansion valve 24, the high-pressure rise avoiding means for increasing the bypass refrigerant amount by the bypass solenoid valve 32 for opening / closing control by ON-OFF. Therefore, the reliability for the design pressure of the existing connecting pipe has been improved. Further, in this embodiment, it is possible to avoid a high pressure rise during cooling operation and heating operation, and the versatility is improved.
This embodiment not only avoids a high pressure increase with respect to the design pressure of the existing communication pipes 50 and 51 when the HFC refrigerant is transferred, but also in a refrigerant circuit including equipment whose operation is not guaranteed unless the pressure is lower than a predetermined pressure. Can be applied.

本発明の実施例に係るエンジン駆動式ヒートポンプの全体的な構成を示した冷媒回路図。The refrigerant circuit figure which showed the whole structure of the engine drive type heat pump which concerns on the Example of this invention. 同じく冷房運転における高圧上昇緩和制御及び高圧上昇回避制御の冷媒挙動を示す図。The figure which similarly shows the refrigerant | coolant behavior of the high voltage | pressure rise mitigation control and high voltage | pressure rise avoidance control in a cooling operation. 同じく暖房運転における高圧上昇緩和制御及び高圧上昇回避制御の冷媒挙動を示す図。The figure which similarly shows the refrigerant | coolant behavior of the high voltage | pressure rise mitigation control and high voltage | pressure rise avoidance control in heating operation.

符号の説明Explanation of symbols

1 エンジン駆動式ヒートポンプ
10 圧縮機
13 室内熱交換器
14 レシーバ
20 四方弁
32 バイパス電磁弁
60 吐出経路
61 吸入経路
66 バイパス経路
96 第二圧力スイッチ
97 第一圧力スイッチ
DESCRIPTION OF SYMBOLS 1 Engine drive type heat pump 10 Compressor 13 Indoor heat exchanger 14 Receiver 20 Four-way valve 32 Bypass solenoid valve 60 Discharge path 61 Intake path 66 Bypass path 96 Second pressure switch 97 First pressure switch

Claims (1)

エンジン駆動による圧縮機と、
前記圧縮機の吐出側に接続される吐出経路と、
前記圧縮機の吸入側に接続される吸入経路と、
高圧の液冷媒を貯留するレシーバと、
前記吐出経路を室外熱交換器又は室内熱交換器へ連通可能な四方弁とを有するエンジン駆動式ヒートポンプにおいて
その途中に開閉弁を設け、一端を前記吐出経路に接続し、他端を前記吸入経路に接続するバイパス経路と、
前記四方弁と室内熱交換器とを接続する経路上に設けられる第一圧力スイッチと、
前記レシーバと室内熱交換器とを接続する経路上に設けられる第二圧力スイッチと、
前記第一圧力スイッチ又は第二圧力スイッチにより前記開閉弁を開とする高圧上昇回避手段を備えることを特徴とするエンジン駆動式ヒートポンプ。
An engine driven compressor;
A discharge path connected to the discharge side of the compressor;
A suction path connected to the suction side of the compressor;
A receiver for storing high-pressure liquid refrigerant;
In an engine-driven heat pump having an outdoor heat exchanger or a four-way valve capable of communicating with the indoor heat exchanger, an opening / closing valve is provided in the middle of the discharge path, one end is connected to the discharge path, and the other end is the suction path A bypass path connected to
A first pressure switch provided on a path connecting the four-way valve and the indoor heat exchanger;
A second pressure switch provided on a path connecting the receiver and the indoor heat exchanger;
An engine-driven heat pump comprising a high-pressure rise avoiding means for opening the on-off valve by the first pressure switch or the second pressure switch.
JP2005320112A 2005-11-02 2005-11-02 High pressure rise preventing means of engine drive type heat pump Pending JP2007127327A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005320112A JP2007127327A (en) 2005-11-02 2005-11-02 High pressure rise preventing means of engine drive type heat pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005320112A JP2007127327A (en) 2005-11-02 2005-11-02 High pressure rise preventing means of engine drive type heat pump

Publications (1)

Publication Number Publication Date
JP2007127327A true JP2007127327A (en) 2007-05-24

Family

ID=38150126

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005320112A Pending JP2007127327A (en) 2005-11-02 2005-11-02 High pressure rise preventing means of engine drive type heat pump

Country Status (1)

Country Link
JP (1) JP2007127327A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008151454A (en) * 2006-12-19 2008-07-03 Toshiba Kyaria Kk Air conditioner
WO2023037897A1 (en) * 2021-09-08 2023-03-16 Denso Corporation Vehicle heating, ventilation, air conditioning system and method for dehumidification and reheat of cabin air using the same

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5076452U (en) * 1973-11-02 1975-07-03
JPS5680669A (en) * 1979-12-06 1981-07-02 Fuji Heavy Ind Ltd Refrigerator
JPS63290366A (en) * 1987-05-21 1988-11-28 松下電器産業株式会社 Engine drive heat pump device
JPH01147265A (en) * 1987-12-04 1989-06-08 Hitachi Ltd Air conditioner
JPH09138018A (en) * 1995-11-15 1997-05-27 Yamaha Motor Co Ltd Heat pump apparatus
JP2002130843A (en) * 2000-10-23 2002-05-09 Mitsubishi Heavy Ind Ltd Supercritical vapor compression cycle
JP2002318025A (en) * 2001-04-19 2002-10-31 Yanmar Diesel Engine Co Ltd Control device and control method for engine heat pump
JP2004045036A (en) * 2003-11-04 2004-02-12 Yanmar Co Ltd Engine heat pump
JP2005040000A (en) * 2004-10-14 2005-02-10 Hitachi Ltd Refrigeration unit
JP2005049057A (en) * 2003-07-31 2005-02-24 Mitsubishi Electric Corp Refrigerating cycle device
JP2005106413A (en) * 2003-09-30 2005-04-21 Sanyo Electric Co Ltd Refrigerant cycle device

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5076452U (en) * 1973-11-02 1975-07-03
JPS5680669A (en) * 1979-12-06 1981-07-02 Fuji Heavy Ind Ltd Refrigerator
JPS63290366A (en) * 1987-05-21 1988-11-28 松下電器産業株式会社 Engine drive heat pump device
JPH01147265A (en) * 1987-12-04 1989-06-08 Hitachi Ltd Air conditioner
JPH09138018A (en) * 1995-11-15 1997-05-27 Yamaha Motor Co Ltd Heat pump apparatus
JP2002130843A (en) * 2000-10-23 2002-05-09 Mitsubishi Heavy Ind Ltd Supercritical vapor compression cycle
JP2002318025A (en) * 2001-04-19 2002-10-31 Yanmar Diesel Engine Co Ltd Control device and control method for engine heat pump
JP2005049057A (en) * 2003-07-31 2005-02-24 Mitsubishi Electric Corp Refrigerating cycle device
JP2005106413A (en) * 2003-09-30 2005-04-21 Sanyo Electric Co Ltd Refrigerant cycle device
JP2004045036A (en) * 2003-11-04 2004-02-12 Yanmar Co Ltd Engine heat pump
JP2005040000A (en) * 2004-10-14 2005-02-10 Hitachi Ltd Refrigeration unit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008151454A (en) * 2006-12-19 2008-07-03 Toshiba Kyaria Kk Air conditioner
WO2023037897A1 (en) * 2021-09-08 2023-03-16 Denso Corporation Vehicle heating, ventilation, air conditioning system and method for dehumidification and reheat of cabin air using the same

Similar Documents

Publication Publication Date Title
JP6935720B2 (en) Refrigeration equipment
JP3109500B2 (en) Refrigeration equipment
CN114174732B (en) Heat source unit and refrigerating device
JP6156528B1 (en) Refrigeration equipment
JP2003289195A (en) Cooling device
JP5481937B2 (en) Air conditioner
JP2002228281A (en) Air conditioner
WO2015122171A1 (en) Air conditioning device
JP2017062056A (en) Engine drive-type air conditioning device
KR950014470B1 (en) Air conditioning apparatus in which one outdoor unit is connected to one or a plurality of indoor units
KR20190005445A (en) Method for controlling multi-type air conditioner
JP4549205B2 (en) Engine driven heat pump
JP6747226B2 (en) Refrigeration equipment
JP5827210B2 (en) Heat pump system
AU2015282159B2 (en) Heat pump type chiller
JP2007127327A (en) High pressure rise preventing means of engine drive type heat pump
JP5313774B2 (en) Air conditioner
KR102390900B1 (en) Multi-type air conditioner and control method for the same
JP2020193760A (en) Air conditioning system
WO2016129027A1 (en) Air conditioning device
JP2008209021A (en) Multi-air conditioner
JP2020034250A (en) Refrigeration cycle device
KR20060069714A (en) Over heating control method of compressor in air-conditioner
KR20180137801A (en) Method for controlling multi-type air conditioner
JP2019124419A (en) Air conditioning device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100105

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100706