JP3600715B2 - Transmission control device for automatic transmission - Google Patents

Transmission control device for automatic transmission Download PDF

Info

Publication number
JP3600715B2
JP3600715B2 JP28665797A JP28665797A JP3600715B2 JP 3600715 B2 JP3600715 B2 JP 3600715B2 JP 28665797 A JP28665797 A JP 28665797A JP 28665797 A JP28665797 A JP 28665797A JP 3600715 B2 JP3600715 B2 JP 3600715B2
Authority
JP
Japan
Prior art keywords
hydraulic pressure
hydraulic
shift
automatic transmission
step response
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP28665797A
Other languages
Japanese (ja)
Other versions
JPH11125330A (en
Inventor
弘之 湯浅
芳和 田中
Original Assignee
株式会社日立ユニシアオートモティブ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立ユニシアオートモティブ filed Critical 株式会社日立ユニシアオートモティブ
Priority to JP28665797A priority Critical patent/JP3600715B2/en
Publication of JPH11125330A publication Critical patent/JPH11125330A/en
Application granted granted Critical
Publication of JP3600715B2 publication Critical patent/JP3600715B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Control Of Transmission Device (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は自動変速機の変速制御装置に関し、詳しくは、作動油中へのエアの混入による油圧制御精度の低下を補正し得る装置に関する。
【0002】
【従来の技術】
従来から、1方向クラッチを用いずに、2つの摩擦係合要素の締結と解放とを同時に制御して変速を行う車両用自動変速機が知られており、かかる自動変速機においては、解放側に対して相対的に締結側の油圧変化が遅いとエンジン回転の吹き上がりが発生し、逆に、解放側に対して相対的に締結側の油圧変化が早いとトルクの引け,エンジン回転の低下(以下、インターロックという)が発生する(特開平2−37128号公報等参照)。
【0003】
【発明が解決しようとする課題】
従って、上記構成の自動変速機においては、締結側,開放側の油圧をそれぞれ高精度に制御することが要求されるが、作動油中にエアが混入すると、ソレノイドに目標油圧相当の操作量(電流)を与えても実際の油圧が目標値に一致しなくなり、これによって、前記回転の吹き上がりやインターロックが発生してしまうという問題があった。
【0004】
本発明は上記問題点に鑑みなされたものであり、作動油中に対するエアの混入があっても、油圧の制御精度を確保できる自動変速機の変速制御装置を提供することを目的とする。
【0005】
【課題を解決するための手段】
そのため請求項1記載の発明は、摩擦係合要素に対する供給油圧をソレノイドによって制御することによって変速を行わせる自動変速機の変速制御装置であって、油圧のステップ応答を求め、該ステップ応答から作動油中におけるエアの混入率を推定し、該エア混入率に応じて前記ソレノイドの操作量を補正する構成とした。
【0006】
かかる構成によると、エア混入率が大きくなるに従って油圧のステップ応答が低下することから、油圧をステップ変化させたときの実油圧の検出結果から油圧のステップ応答を求め、該ステップ応答に基づいてエアの混入率を推定する。
そして、作動油に対するエアの混入によって、指示圧に対して実油圧に誤差が生じるようになることを、エア混入率の推定に基づきソレノイド操作量を補正することで抑制させるものである。尚、操作量の補正には、操作量自体の補正の他、目標油圧の補正、目標油圧と操作量との相関の補正を含むものとする。
【0008】
また、実油圧の検出は、油圧センサによって行わせても良いし、所定油圧でON/OFFに切り換わる油圧スイッチを用いても良い。
請求項記載の発明では、変速動作に関与しない油圧のステップ変化を生じさせ、このときの実油圧の変化に基づいて、前記油圧のステップ応答を求める構成とした。
【0009】
かかる構成によると、変速を行わせるために油圧を変化させるのではなく、エア混入率の推定のみのために油圧をステップ変化させて、このときの実油圧の応答からエア混入率を推定する。
請求項記載の発明では、前記油圧のステップ変化をセレクト位置がパーキングレンジのときに生じさせ、このときに求めた油圧のステップ応答に基づく前記操作量の補正量を、時間経過と共に減少させて用いる構成とした。
【0010】
かかる構成によると、運転者によって操作されるセレクトレバーのセレクト位置がパーキングレンジ(Pレンジ)のとき、換言すれば、エンジン始動時に、変速動作に関与しない油圧のステップ変化を生じさせてエア混入率を推定させる。ここで、パーキングレンジでエア混入率を推定させる構成では、推定結果の更新周期が長くなるので、操作量の補正量を、Pレンジで推定を行ってからの経過時間に応じて減少させて、推定が次に行われるまでのエア混入率の変化に対応できるようにする。
【0011】
請求項記載の発明では、前記油圧のステップ変化を一定周期毎に生じさせ、最新に求められた油圧のステップ応答に基づいて前記操作量の補正量を決定する構成とした。
かかる構成によると、変速動作に関与しない油圧のステップ変化を一定周期毎に実行することで、前記一定周期毎にエア混入率を推定し、エア混入率の変化に追従した推定を行わせる。
【0012】
請求項記載の発明では、摩擦係合要素を締結させるときに作動油のプリチャージを行うよう構成され、前記油圧のステップ応答を、前記プリチャージ用の指示圧のステップ変化に対する実油圧の応答として求める構成とした。
かかる構成によると、プリチャージのために油圧のステップ変化を指示したときの実油圧の変化から、プリチャージ毎にエア混入率を推定する。
【0013】
請求項記載の発明では、前記作動油のプリチャージ時に求められた油圧のステップ応答による前記操作量の補正量を、次回の同一の変速動作において適用する構成とした。
かかる構成によると、例えば1速→2速の変速動作時に行われたプリチャージで推定されたエア混入率の推定に基づく補正量は、次回の1速→2速の変速動作において用いられることになる。即ち、摩擦係合要素毎にステップ応答を求めて操作量を補正するものであり、同一の変速動作とは同一の摩擦係合要素の締結を行わせる変速とすることが好ましい。
【0014】
請求項記載の発明では、前記作動油のプリチャージ時に求められた油圧のステップ応答による前記操作量の補正量を、他の変速動作に対して修正して適用する構成とした。
かかる構成によると、例えば1速→2速の変速動作時に行われたプリチャージで推定されたエア混入率の推定に基づく補正量を、実際にはエア混入率の推定が行われていない他の変速動作である2速→3速,3速→4速等において修正して用いる。
【0015】
【発明の効果】
請求項1記載の発明によると、油圧のステップ応答に基づいて作動油に対するエア混入率を精度良く推定できると共に、該推定結果に基づいて油圧を制御するソレノイドの操作量を補正することで所期の油圧を得ることが可能になり、以って、変速性能の確保を図れるという効果がある。
【0016】
請求項記載の発明によると、変速動作に関与しない油圧のステップ変化を生じさせることから、変速動作に伴う油圧制御においてエア混入率を推定することができない場合であっても、非変速中にエア混入率の推定が行えるという効果がある。
請求項記載の発明によると、パーキングレンジにおいて変速動作に関与しない油圧のステップ変化を生じさせることで、エンジン始動時に確実にエア混入率の推定を行わせることができ、かつ、その後のエア混入率の変化に対しては、補正量を減少修正させることで対応できるという効果がある。
【0017】
請求項記載の発明によると、変速動作に関与しない油圧のステップ変化を一定周期毎に生じさせてエア混入率の推定を行わせることで、エア混入率の更新機会が確保され、エア混入率の変化に対して精度良く対応できるという効果がある。
請求項記載の発明によると、プリチャージに伴う油圧のステップ変化に基づいてエア混入率を推定するから、エア混入率を推定するためのみの油圧変化を生じさせる必要がなく、簡便な構成でエア混入率の推定が行えるという効果がある。
【0018】
請求項記載の発明によると、エア混入率の推定結果に基づく補正制御を、油圧のステップ応答を求めた同じ変速動作に対して適用するので、油経路毎のエア混入率の違いに対応して精度良く補正を行えるという効果がある。
請求項記載の発明によると、ある変速動作時に求めたエア混入率に基づく補正量を、他の変速動作においても適用させることができるため、各変速動作に対する補正を簡便な構成で行わせることができるという効果がある。
【0019】
【発明の実施の形態】
以下に本発明の実施の形態を説明する。
図1は、本発明に係る変速制御装置が適用される車両用自動変速機のシステム構成図であり、図示しない車両に搭載されるエンジン1の出力トルクは、自動変速機2を介して駆動輪に伝達される。
【0020】
前記自動変速機2は、クラッチ,ブレーキなどの摩擦係合要素に対する作動油圧の供給をソレノイドバルブユニット3によって制御することで変速が行われる構成のものであり、具体的には、図2に示すように、トルクコンバータT/Cを介してエンジンの出力トルクを入力する構成であって、フロント遊星歯車組83,リヤ遊星歯車組84を備えると共に、摩擦係合要素として、リバースクラッチR/C,ハイクラッチH/C,バンドブレーキB/B,ロー&リバースブレーキL&R/B,フォワードクラッチFWD/Cを備える。尚、図2において、81は変速機の入力軸,82は変速機の出力軸を示し、また、Neはエンジン回転速度,Ntはタービン回転速度,Noは出力軸回転速度を示す。
【0021】
上記構成において、図3に示すように、前記リバースクラッチR/C,ハイクラッチH/C,バンドブレーキB/B,ロー&リバースブレーキL&R/B,フォワードクラッチFWD/Cの締結,解放の組み合わせに応じて変速が行われ、例えば、3速→4速のアップシフト時には、フォワードクラッチFWD/Cの解放と、バンドブレーキB/Bの締結とが同時に行われることになる。即ち、本実施の形態における自動変速機2は、1方向クラッチを用いずに、2つの摩擦係合要素の締結と解放とを同時に行わせる変速(所謂クラッチツウクラッチ変速)を実行する構成となっている(図4参照)。
【0022】
前記コントロールユニット4には、前記ソレノイドバルブユニット3の各ソレノイドの駆動電流(操作量)と油圧との相関を示すテーブルが記憶されており、要求油圧に対応する駆動電流をテーブル変換によって求めて、前記ソレノイドの駆動電流を制御する。ここで、ソレノイドに実際に流れる電流を検出し、前記テーブル変換によって求めた目標駆動電流に実際の電流が一致するようにフィードバック制御することが好ましい。
【0023】
クラッチ等の摩擦係合要素の締結制御においては、図4に示すように、まず、プリチャージを行って摩擦係合要素を接触直前まで無効ストロークさせた後、作動油圧を締結力が発生するぎりぎりのリターン圧(臨界圧)に保持し、その後、摩擦係合要素の締結が所定のタイミングで進行するように作動油圧を制御する。ここで、前記コントロールユニット4は、作動油に対するエアの混入率を推定し、該推定結果に基づいて前記ソレノイドに与える駆動電流(操作量)を補正し、エア混入による油圧制御精度の低下を回避するようになっている。
【0024】
具体的には、図5の制御ブロック図に示すように、油圧のステップ応答の時定数を応答時定数算出手段Aで算出し、エア混入率推定手段Bでは、前記時定数に応じてエア混入率を求める。そして、特性補正手段Cでは、前記駆動電流を補正するための補正値を、前記エア混入率に基づき決定する。
一方、駆動電流設定手段Dでは、エア混入のない状態に適合されているテーブルによって要求油圧が駆動電流に変換され、駆動電流補正手段Eでは、前記特性補正手段Cで決定された補正値に従って前記駆動電流を補正し、該補正された駆動電流がソレノイドに与えられるようにする。
【0025】
前記応答時定数算出手段Aにおいて、ステップ応答時定数は、油圧の指示圧をステップ変化させたときの実油圧の変化に基づいて算出されるが、前記油圧のステップ応答を求めるには、以下の方法を用いることができる。
第1の方法としては、パーキングレンジ(Pレンジ)においてのみ油圧が作用し変速動作に関与しない油圧室を作ると共に、該油圧室内の油圧を検出する油圧センサ又は油圧スイッチを設け、前記油圧室の油圧をソレノイドバルブによってステップ的に増大制御したときの油圧センサ又は油圧スイッチの検出結果から、油圧のステップ応答を求める。
【0026】
一般に、エンジンの始動はパーキングレンジ(Pレンジ)において行われるから、上記のようにしてPレンジにおいて変速動作に関与しない油圧のステップ応答を求める構成とすれば、エンジンの停止中に作動油中に混入したエアの量を検知して、最初の変速からエア混入率に応じた駆動電流の補正を行わせることができる。
【0027】
尚、エンジンの始動後は、作動油の循環によりエアの混入率が低下するので、前記Pレンジにおいて求めたエア混入率に基づく補正値を時間経過と共に減少させて用いるようにすると良い。
また、Pレンジに限らずに油圧が作用するが、変速動作に関与しない油圧室を設け、この油圧室の油圧を一定周期毎にソレノイドバルブでステップ変化させてエア混入率を推定させ、最新の推定結果から駆動電流に補正を加える構成とすることも可能であり、この場合には、一定周期毎にエア混入率の推定結果が更新されるので、エア混入率の変化に精度良く補正値を追従変化させることが可能である。
【0028】
上記各方法は、いずれも変速動作に関与しない油圧のステップ変化を生じさせる構成であるが、本実施の形態のように、摩擦係合要素の締結時にプリチャージを行う構成の場合には、前記プリチャージを行ったときの実油圧の変化から、油圧のステップ応答を求めることができる。
図4に示すように、プリチャージの指示圧を出力したときの実油圧変化を、油圧センサ又は油圧スイッチによって検出するようにし、該検出結果から油圧のステップ応答を求めるようにする。
【0029】
ここで、プリチャージを伴って締結が行われる摩擦係合要素毎に油圧センサ又は油圧スイッチを設け、変速の種類毎に油圧のステップ応答を求めて、次回の同じ変速(同じ摩擦係合要素の締結が行われる変速)において、前回の変速時に求めたステップ応答に応じた補正を加える構成としても良い。
また、1つの摩擦係合要素に対する締結圧のみを油圧センサ又は油圧スイッチで検出して、油圧のステップ応答を求める構成とし、他の摩擦係合要素の締結を行わせる他の変速においては、前記ステップ応答に応じた補正値に修正を加えて適用させる構成として、油圧センサ,油圧スイッチの設置数を節約する構成としても良い。
【0030】
尚、上記実施の形態では、油圧のステップ応答から推定したエア混入率に基づいて、駆動電流を補正する構成としたが、前記エア混入率に応じて要求油圧を駆動電流に変換するテーブルを補正しても良いし、また、要求油圧自体をエア混入率に応じて補正しても良い。
【図面の簡単な説明】
【図1】本発明が適用される自動変速機を示すシステム図。
【図2】自動変速機の詳細を示す構成図。
【図3】上記自動変速機における摩擦係合要素の締結状態の組み合わせによる変速の様子を示す図。
【図4】変速時の油圧制御の様子を示すタイムチャート。
【図5】エア混入率に応じたソレノイド駆動電流の補正制御の様子を示す制御ブロック図。
【符号の説明】
1 エンジン
2 自動変速機
3 ソレノイドバルブユニット
4 コントロールユニット
83 フロント遊星歯車組
84 リヤ遊星歯車組
R/C リバースクラッチ
H/C ハイクラッチ
B/B バンドブレーキ
L&R/B ロー&リバースブレーキ
FWD/C フォワードクラッチ
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a shift control device for an automatic transmission, and more particularly, to a device that can correct a decrease in hydraulic control accuracy due to mixing of air into hydraulic oil.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, there has been known an automatic transmission for a vehicle that performs a shift by simultaneously controlling engagement and disengagement of two friction engagement elements without using a one-way clutch. If the change in the oil pressure on the engagement side is relatively slow relative to the disengagement side, the engine speed will increase. Conversely, if the change in the oil pressure on the engagement side is fast relative to the disengagement side, the torque will decrease and the engine speed will decrease. (Hereinafter referred to as an interlock) (see Japanese Patent Application Laid-Open No. Hei 2-37128).
[0003]
[Problems to be solved by the invention]
Therefore, in the automatic transmission having the above configuration, it is required to control the hydraulic pressure on the engagement side and the hydraulic pressure on the release side with high precision. However, if air is mixed in the hydraulic oil, the operation amount (equivalent to the target hydraulic pressure) is applied to the solenoid. Even if the current is applied, the actual oil pressure does not match the target value, and this causes a problem that the rotation speed increases and an interlock occurs.
[0004]
SUMMARY OF THE INVENTION The present invention has been made in consideration of the above problems, and has as its object to provide a shift control device for an automatic transmission that can ensure hydraulic pressure control accuracy even when air is mixed into hydraulic oil.
[0005]
[Means for Solving the Problems]
Therefore, an invention according to claim 1 is a shift control device for an automatic transmission that performs a shift by controlling a supply oil pressure to a friction engagement element by a solenoid , and obtains a step response of the oil pressure, and operates from the step response. The configuration is such that the mixing ratio of air in oil is estimated, and the operation amount of the solenoid is corrected according to the mixing ratio of air.
[0006]
With this configuration, the step response of the hydraulic pressure decreases as the air mixing ratio increases. Therefore, the step response of the hydraulic pressure is obtained from the detection result of the actual hydraulic pressure when the hydraulic pressure is changed in steps, and the air response is determined based on the step response. Is estimated.
Then, the occurrence of an error in the actual oil pressure with respect to the command pressure due to the mixing of air with the hydraulic oil is suppressed by correcting the solenoid operation amount based on the estimation of the air mixing ratio. Note that the correction of the operation amount includes correction of the target oil pressure and correction of the correlation between the target oil pressure and the operation amount in addition to the correction of the operation amount itself.
[0008]
Further, the detection of the actual oil pressure may be performed by an oil pressure sensor, or a hydraulic switch that switches between ON and OFF at a predetermined oil pressure may be used.
According to the second aspect of the present invention, a step change of the hydraulic pressure which is not involved in the shift operation is caused, and the step response of the hydraulic pressure is obtained based on the change of the actual hydraulic pressure at this time.
[0009]
According to this configuration, the hydraulic pressure is not changed for shifting, but the hydraulic pressure is changed stepwise only for estimating the air mixing ratio, and the air mixing ratio is estimated from the response of the actual hydraulic pressure at this time.
In the invention according to the third aspect , the step change of the hydraulic pressure is caused when the select position is in the parking range, and the correction amount of the operation amount based on the step response of the hydraulic pressure obtained at this time is reduced with time. The configuration was used.
[0010]
According to such a configuration, when the select position of the select lever operated by the driver is in the parking range (P range), in other words, when the engine is started, a step change of the hydraulic pressure which is not involved in the shift operation is caused to cause the air mixing ratio. Is estimated. Here, in the configuration for estimating the air mixing ratio in the parking range, the update cycle of the estimation result becomes long, so that the correction amount of the operation amount is reduced according to the elapsed time after the estimation in the P range. It is possible to cope with a change in the air mixing ratio until the next estimation is performed.
[0011]
According to a fourth aspect of the present invention, the step change of the hydraulic pressure is generated at regular intervals, and the correction amount of the operation amount is determined based on a latest step response of the hydraulic pressure.
According to such a configuration, the step change of the hydraulic pressure that is not involved in the shift operation is performed at regular intervals, so that the air mixing ratio is estimated at each of the constant periods, and the estimation that follows the change of the air mixing ratio is performed.
[0012]
In the invention of claim 5, wherein, configured to perform a precharge of the hydraulic oil when to conclude a friction engagement element, the step response of the hydraulic actual pressure in response to a step change in command pressure for the precharge The configuration was obtained as follows.
According to this configuration, the air mixing ratio is estimated for each precharge from the change in the actual hydraulic pressure when a step change in the hydraulic pressure is instructed for the precharge.
[0013]
In the invention according to claim 6, the correction amount of the operation amount based on the step response of the hydraulic pressure obtained at the time of precharging the hydraulic oil is applied in the next same shift operation.
According to such a configuration, for example, the correction amount based on the estimation of the air mixing rate estimated by the precharge performed during the first-speed to second-speed shift operation is used in the next first-speed to second-speed shift operation. Become. That is, the operation amount is corrected by obtaining a step response for each friction engagement element, and it is preferable that the same shift operation be a shift in which the same friction engagement element is engaged.
[0014]
In the invention according to claim 7, the correction amount of the operation amount based on the step response of the hydraulic pressure obtained at the time of precharging the hydraulic oil is modified and applied to another shift operation.
According to this configuration, for example, the correction amount based on the estimation of the air entrapment rate estimated by the precharge performed during the first-gear to second-gear shift operation is replaced with another correction amount that is not actually estimated. The shift operation is modified and used in the second speed → the third speed, the third speed → the fourth speed, and the like.
[0015]
【The invention's effect】
According to the first aspect of the invention, it is possible to accurately estimate the air mixing ratio with respect to the hydraulic oil based on the step response of the hydraulic pressure, and to correct the operation amount of the solenoid that controls the hydraulic pressure based on the estimation result. This makes it possible to obtain the oil pressure of the above, which has the effect of ensuring the shifting performance.
[0016]
According to the second aspect of the present invention, since the step change of the hydraulic pressure which is not involved in the shift operation is caused, even when the air mixing ratio cannot be estimated in the hydraulic control associated with the shift operation, it is possible to perform the control during the non-shift operation. There is an effect that the air mixing ratio can be estimated.
According to the third aspect of the present invention, by causing a step change in the hydraulic pressure that is not involved in the shift operation in the parking range, it is possible to reliably estimate the air entrapment rate at the time of starting the engine, and to subsequently perform the air entrapment. There is an effect that a change in the rate can be dealt with by reducing and correcting the correction amount.
[0017]
According to the fourth aspect of the present invention, an opportunity for updating the air mixing ratio is secured by causing the step change of the hydraulic pressure not involved in the shift operation to be performed at regular intervals to estimate the air mixing ratio. There is an effect that it is possible to accurately respond to changes in
According to the fifth aspect of the present invention, since the air mixing ratio is estimated based on the hydraulic pressure step change accompanying the precharge, it is not necessary to generate a hydraulic pressure change only for estimating the air mixing ratio, and the configuration is simple. There is an effect that the air mixing ratio can be estimated.
[0018]
According to the sixth aspect of the invention, the correction control based on the estimation result of the air mixing ratio is applied to the same shift operation in which the step response of the hydraulic pressure is obtained, so that it is possible to cope with the difference in the air mixing ratio for each oil path. Thus, there is an effect that correction can be performed with high accuracy.
According to the seventh aspect of the present invention, since the correction amount based on the air mixing ratio obtained at a certain shift operation can be applied to another shift operation, the correction for each shift operation can be performed with a simple configuration. There is an effect that can be.
[0019]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described.
FIG. 1 is a system configuration diagram of an automatic transmission for a vehicle to which a transmission control device according to the present invention is applied. The output torque of an engine 1 mounted on a vehicle (not shown) Is transmitted to.
[0020]
The automatic transmission 2 has a configuration in which a shift is performed by controlling the supply of operating hydraulic pressure to frictional engagement elements such as a clutch and a brake by a solenoid valve unit 3, and more specifically, shown in FIG. Thus, the configuration is such that the output torque of the engine is input via the torque converter T / C, and includes the front planetary gear set 83 and the rear planetary gear set 84, and the reverse clutch R / C, A high clutch H / C, a band brake B / B, a low & reverse brake L & R / B, and a forward clutch FWD / C are provided. In FIG. 2, reference numeral 81 denotes an input shaft of the transmission, 82 denotes an output shaft of the transmission, Ne denotes an engine rotation speed, Nt denotes a turbine rotation speed, and No denotes an output shaft rotation speed.
[0021]
In the above configuration, as shown in FIG. 3, the combination of the engagement and disengagement of the reverse clutch R / C, high clutch H / C, band brake B / B, low & reverse brake L & R / B, and forward clutch FWD / C. The shift is performed accordingly, for example, at the time of the upshift from the third speed to the fourth speed, the release of the forward clutch FWD / C and the engagement of the band brakes B / B are performed simultaneously. That is, the automatic transmission 2 according to the present embodiment is configured to execute a shift (so-called clutch-to-clutch shift) in which the two friction engagement elements are simultaneously engaged and released without using the one-way clutch. (See FIG. 4).
[0022]
The control unit 4 stores a table showing a correlation between a drive current (operating amount) of each solenoid of the solenoid valve unit 3 and a hydraulic pressure, and obtains a drive current corresponding to a required hydraulic pressure by table conversion. The drive current of the solenoid is controlled. Here, it is preferable that a current actually flowing through the solenoid is detected, and feedback control is performed so that the actual current matches the target drive current obtained by the table conversion.
[0023]
In the engagement control of a friction engagement element such as a clutch, as shown in FIG. 4, first, a precharge is performed to cause an invalid stroke of the friction engagement element until immediately before contact, and then the operating oil pressure is reduced to just before the engagement force is generated. , And then control the operating oil pressure so that the engagement of the friction engagement element proceeds at a predetermined timing. Here, the control unit 4 estimates the mixing ratio of air to the hydraulic oil, corrects the drive current (operating amount) given to the solenoid based on the estimation result, and avoids a decrease in hydraulic control accuracy due to mixing of air. It is supposed to.
[0024]
Specifically, as shown in the control block diagram of FIG. 5, the time constant of the hydraulic step response is calculated by the response time constant calculating means A, and the air mixing rate estimating means B is controlled by the air mixing rate estimating means B according to the time constant. Find the rate. Then, the characteristic correction means C determines a correction value for correcting the drive current based on the air mixing ratio.
On the other hand, in the drive current setting means D, the required oil pressure is converted into a drive current by a table adapted to a state in which no air is mixed. In the drive current correction means E, the required hydraulic pressure is converted according to the correction value determined by the characteristic correction means C. The drive current is corrected so that the corrected drive current is provided to the solenoid.
[0025]
In the response time constant calculating means A, the step response time constant is calculated based on the change of the actual oil pressure when the command pressure of the oil pressure is changed stepwise. To obtain the step response of the oil pressure, A method can be used.
A first method is to create a hydraulic chamber in which the hydraulic pressure acts only in the parking range (P range) and is not involved in the shifting operation, and a hydraulic sensor or a hydraulic switch for detecting the hydraulic pressure in the hydraulic chamber is provided. A step response of the hydraulic pressure is obtained from a detection result of a hydraulic pressure sensor or a hydraulic switch when the hydraulic pressure is stepwise controlled by a solenoid valve.
[0026]
Generally, the start of the engine is performed in the parking range (P range). Therefore, if the step response of the hydraulic pressure that is not involved in the shift operation is obtained in the P range as described above, the engine is stopped while the hydraulic oil is being operated. By detecting the amount of the mixed air, the drive current can be corrected according to the air mixing ratio from the first shift.
[0027]
After the engine is started, the air mixing rate decreases due to the circulation of the hydraulic oil. Therefore, it is preferable to use a correction value based on the air mixing rate obtained in the P range as time elapses.
The hydraulic pressure is not limited to the P range, but a hydraulic chamber that does not participate in the shifting operation is provided. The hydraulic pressure in this hydraulic chamber is step-changed by a solenoid valve at regular intervals to estimate the air mixing rate. It is also possible to adopt a configuration in which the drive current is corrected from the estimation result.In this case, since the estimation result of the air mixing ratio is updated at regular intervals, the correction value can be accurately applied to the change in the air mixing ratio. It is possible to change the following.
[0028]
Each of the above-described methods is a configuration that causes a step change in hydraulic pressure that is not involved in a shift operation.However, in the case of a configuration in which precharging is performed when the friction engagement element is engaged as in the present embodiment, the above-described method is used. A step response of the hydraulic pressure can be obtained from a change in the actual hydraulic pressure when the precharge is performed.
As shown in FIG. 4, a change in the actual oil pressure when the precharge command pressure is output is detected by an oil pressure sensor or an oil pressure switch, and a step response of the oil pressure is obtained from the detection result.
[0029]
Here, a hydraulic pressure sensor or a hydraulic switch is provided for each friction engagement element that is engaged with precharge, and a step response of the hydraulic pressure is obtained for each type of shift, and the next gear shift (for the same friction engagement element) is performed. In the shift in which the engagement is performed, a configuration may be adopted in which a correction is made according to the step response obtained in the previous shift.
Further, only the engagement pressure for one friction engagement element is detected by a hydraulic sensor or a hydraulic switch to obtain a step response of the hydraulic pressure, and in another shift for engaging another friction engagement element, As a configuration in which the correction value according to the step response is modified and applied, the configuration may be such that the number of hydraulic sensors and hydraulic switches installed is reduced.
[0030]
In the above embodiment, the drive current is corrected based on the air mixing ratio estimated from the step response of the hydraulic pressure. However, the table for converting the required hydraulic pressure into the driving current according to the air mixing ratio is corrected. Alternatively, the required hydraulic pressure itself may be corrected according to the air mixing ratio.
[Brief description of the drawings]
FIG. 1 is a system diagram showing an automatic transmission to which the present invention is applied.
FIG. 2 is a configuration diagram showing details of an automatic transmission.
FIG. 3 is a diagram showing a state of a shift by a combination of engagement states of friction engagement elements in the automatic transmission.
FIG. 4 is a time chart showing a state of hydraulic control during shifting.
FIG. 5 is a control block diagram illustrating a state of correction control of a solenoid drive current according to an air mixing ratio.
[Explanation of symbols]
Reference Signs List 1 engine 2 automatic transmission 3 solenoid valve unit 4 control unit 83 front planetary gear set 84 rear planetary gear set R / C reverse clutch H / C high clutch B / B band brake L & R / B low & reverse brake FWD / C forward clutch

Claims (7)

摩擦係合要素に対する供給油圧をソレノイドによって制御することによって変速を行わせる自動変速機の変速制御装置であって、
油圧のステップ応答を求め、該ステップ応答から作動油中におけるエアの混入率を推定し、該エア混入率に応じて前記ソレノイドの操作量を補正することを特徴とする自動変速機の変速制御装置。
A shift control device for an automatic transmission for performing a shift by controlling a supply hydraulic pressure to a friction engagement element by a solenoid,
A shift control device for an automatic transmission , wherein a step response of hydraulic pressure is obtained, an air mixing ratio in hydraulic oil is estimated from the step response, and an operation amount of the solenoid is corrected according to the air mixing ratio. .
変速動作に関与しない油圧のステップ変化を生じさせ、このときの実油圧の変化に基づいて、前記油圧のステップ応答を求めることを特徴とする請求項記載の自動変速機の変速制御装置。Causing hydraulic step change which is not involved in the shift operation, on the basis of the actual hydraulic pressure change in this case, the shift control system for an automatic transmission according to claim 1, wherein the determination of the step response of the hydraulic pressure. 前記油圧のステップ変化をセレクト位置がパーキングレンジのときに生じさせ、このときに求めた油圧のステップ応答に基づく前記操作量の補正量を、時間経過と共に減少させて用いることを特徴とする請求項記載の自動変速機の変速制御装置。The step change of the hydraulic pressure is caused when the select position is in the parking range, and the correction amount of the operation amount based on the step response of the hydraulic pressure obtained at this time is reduced and used with time. 3. The shift control device for an automatic transmission according to claim 2 . 前記油圧のステップ変化を一定周期毎に生じさせ、最新に求められた油圧のステップ応答に基づいて前記操作量の補正量を決定することを特徴とする請求項記載の自動変速機の変速制御装置。 3. The shift control of an automatic transmission according to claim 2, wherein the step change of the hydraulic pressure is generated at regular intervals, and the correction amount of the operation amount is determined based on the latest response of the hydraulic pressure. apparatus. 摩擦係合要素を締結させるときに作動油のプリチャージを行うよう構成され、前記油圧のステップ応答を、前記プリチャージ用の指示圧のステップ変化に対する実油圧の応答として求めることを特徴とする請求項記載の自動変速機の変速制御装置。The hydraulic oil is precharged when the friction engagement element is engaged, and a step response of the hydraulic pressure is obtained as a response of an actual hydraulic pressure to a step change of the precharge command pressure. Item 3. A shift control device for an automatic transmission according to Item 1 . 前記作動油のプリチャージ時に求められた油圧のステップ応答による前記操作量の補正量を、次回の同一の変速動作において適用することを特徴とする請求項記載の自動変速機の変速制御装置。6. The shift control device for an automatic transmission according to claim 5, wherein the correction amount of the operation amount based on the step response of the hydraulic pressure obtained at the time of precharging the hydraulic oil is applied in the next same shift operation. 前記作動油のプリチャージ時に求められた油圧のステップ応答による前記操作量の補正量を、他の変速動作に対して修正して適用することを特徴とする請求項記載の自動変速機の変速制御装置。6. The shift of the automatic transmission according to claim 5, wherein a correction amount of the operation amount based on a step response of a hydraulic pressure obtained at the time of precharging the hydraulic oil is corrected and applied to another shift operation. Control device.
JP28665797A 1997-10-20 1997-10-20 Transmission control device for automatic transmission Expired - Fee Related JP3600715B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28665797A JP3600715B2 (en) 1997-10-20 1997-10-20 Transmission control device for automatic transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28665797A JP3600715B2 (en) 1997-10-20 1997-10-20 Transmission control device for automatic transmission

Publications (2)

Publication Number Publication Date
JPH11125330A JPH11125330A (en) 1999-05-11
JP3600715B2 true JP3600715B2 (en) 2004-12-15

Family

ID=17707275

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28665797A Expired - Fee Related JP3600715B2 (en) 1997-10-20 1997-10-20 Transmission control device for automatic transmission

Country Status (1)

Country Link
JP (1) JP3600715B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010060050A (en) 2008-09-03 2010-03-18 Toyota Motor Corp Control device for vehicular automatic transmission
JP5062308B2 (en) * 2010-08-06 2012-10-31 トヨタ自動車株式会社 Control device for automatic transmission for vehicle
JP5418698B2 (en) * 2010-12-20 2014-02-19 トヨタ自動車株式会社 Hydraulic control device
JP6075340B2 (en) * 2014-07-29 2017-02-08 株式会社デンソー Hydraulic control device
JP7310699B2 (en) * 2020-05-01 2023-07-19 トヨタ自動車株式会社 Oil state estimation device, vehicle control device, vehicle control system, and data analysis device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0272265A (en) * 1988-09-02 1990-03-12 Mazda Motor Corp Hydraulic controller for automatic transmission
JPH05340470A (en) * 1992-06-08 1993-12-21 Unisia Jecs Corp Line pressure control device for automatic transmission for automobile
JPH0735210A (en) * 1993-07-20 1995-02-07 Hitachi Ltd Adjusting method of continuously variable transmission for vehicle and device therefor
JP3122294B2 (en) * 1993-11-26 2001-01-09 株式会社東芝 Hydraulic elevator controller
DE4342057B4 (en) * 1993-12-09 2007-02-08 Bosch Rexroth Aktiengesellschaft Method for adapting the control parameters of an electrohydraulic axle
JP3246239B2 (en) * 1994-12-13 2002-01-15 日産自動車株式会社 Transmission control device for automatic transmission
JP3870443B2 (en) * 1995-03-31 2007-01-17 マツダ株式会社 Control device for automatic transmission

Also Published As

Publication number Publication date
JPH11125330A (en) 1999-05-11

Similar Documents

Publication Publication Date Title
JP3313327B2 (en) Shift control device for synchromesh transmission
US20070191184A1 (en) Control unit and method for vehicle
US6843754B2 (en) Control apparatus for an automatic transmission and a method for controlling the same
JPH03275950A (en) Down-shift controller for automatic transmission
US6503165B1 (en) Hydraulic control device for automatic transmission
KR950005753B1 (en) Variable speed gear
JP3112569B2 (en) Transmission control device for automatic transmission
JP3520184B2 (en) Transmission control device for automatic transmission
JP3600715B2 (en) Transmission control device for automatic transmission
JP3656004B2 (en) Failure detection device for hydraulic pressure detection device
JP5055424B2 (en) Control device and control method for automatic transmission
JP2009008148A (en) Transmission control method of automobile
JP2002054732A (en) Hydraulic control device of automatic transmission
JP2005147391A (en) Hydraulic control method and its device for automatic transmission at tip-in time during static transmission
JPH10324178A (en) One-way clutch engagement shock prevention device for automatic transmission
JP2002227989A (en) Hydraulic control unit of automatic transmission
JP3653255B2 (en) Automatic transmission clutch control device
JP2000179661A (en) Control device for vehicular automatic transmission
JP3600714B2 (en) Control device for automatic transmission
JP3578610B2 (en) Control device for automatic transmission for vehicles
JP3633240B2 (en) Control device for automatic transmission
JP3680641B2 (en) Shift control device for automatic transmission
KR100496359B1 (en) Speed change completion degree estimating system of automatic transmission and speed change control device using same
JP2002221275A (en) Geared automatic transmission
KR19990050724A (en) Power-Off 4 → 2 Skip-Down Shift Control Device and Method of Automatic Transmission

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040406

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040601

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040907

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040917

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070924

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080924

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080924

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090924

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees