JP3600714B2 - Control device for automatic transmission - Google Patents

Control device for automatic transmission Download PDF

Info

Publication number
JP3600714B2
JP3600714B2 JP21750297A JP21750297A JP3600714B2 JP 3600714 B2 JP3600714 B2 JP 3600714B2 JP 21750297 A JP21750297 A JP 21750297A JP 21750297 A JP21750297 A JP 21750297A JP 3600714 B2 JP3600714 B2 JP 3600714B2
Authority
JP
Japan
Prior art keywords
control signal
pressure
hydraulic pressure
hydraulic
engagement element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP21750297A
Other languages
Japanese (ja)
Other versions
JPH1163195A (en
Inventor
益夫 柏原
正伸 堀口
要 末広
弘之 湯浅
晋 森田
Original Assignee
株式会社日立ユニシアオートモティブ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立ユニシアオートモティブ filed Critical 株式会社日立ユニシアオートモティブ
Priority to JP21750297A priority Critical patent/JP3600714B2/en
Publication of JPH1163195A publication Critical patent/JPH1163195A/en
Application granted granted Critical
Publication of JP3600714B2 publication Critical patent/JP3600714B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Gear-Shifting Mechanisms (AREA)
  • Control Of Transmission Device (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は自動変速機の制御装置に関し、詳しくは、制御信号に応じて摩擦締結要素の油圧を制御する自動変速機において、前記制御信号と油圧との相関を学習して、油圧の制御精度を向上させるための技術に関する。
【0002】
【従来の技術】
従来、車両用自動変速機において、クラッチ等の摩擦係合要素の締結時に、まず、作動油のプリチャージを行った後、締結力が発生する直前のリターン圧に保持し、その後に摩擦係合要素の締結を進行させるべく油圧を制御する構成が知られている(特開平8−334171号公報等参照)。尚、前記リターン圧は、摩擦係合要素を解放方向に付勢するリターンスプリングのばね力に対応した圧力となる。
【0003】
また、前記リターン圧(プリチャージ圧)を学習して、摩擦係合要素の締結遅れの発生等を回避するよう構成された変速制御装置も提案されている(特開平5−106722号公報等参照)。
【0004】
【発明が解決しようとする課題】
ところで、前記リターン圧の学習によって締結力が発生する直前の状態に精度良く保持でき、以て、その後の油圧制御の応答性が確保できることになるが、前記リターン圧のばらつきは、リターンスプリングのばね力のばらつきを要因とするよりも、油圧を制御するソレノイドバルブに対する制御信号と、実際に得られる油圧との相関のずれに因ることが多い。
【0005】
即ち、リターンスプリングのばね力に対応する油圧を供給すべく、要求油圧に対応する制御信号をソレノイドバルブに出力しても、制御信号に対して得られる実際の油圧がばらついていると、前記ばね力に対応する油圧が得られず、学習により制御信号を補正する必要が生じるものである。
しかし、従来では、前記リターン圧の学習のみを行っていたため、その後の締結圧の制御において、油圧と制御信号との相関のずれによって、所望の油圧に制御することができず、結果的に、変速ショック等を招く可能性があった。
【0006】
本発明は上記問題点に鑑みなされたものであり、制御信号と油圧との相関の補正が行えるようにし、以て、油圧の制御精度を向上させることを目的とする。
【0007】
【課題を解決するための手段】
そのため請求項1記載の発明では、摩擦係合要素を解放方向に付勢する弾性部材を備えてなり、制御信号により前記摩擦係合要素の油圧を制御して前記摩擦係合要素の解放,締結を制御する構成の自動変速機の制御装置において、前記弾性部材が所定の状態になったときの前記制御信号と、前記所定の状態に対応して予め記憶された基準圧とに基づいて、前記制御信号と油圧との相対関係を学習する構成とした。
【0009】
かかる構成によると、弾性部材(リターンスプリング等)の付勢力に抗して油圧を作用させて、前記弾性部材が所定状態になったときの制御信号が、前記所定状態を得るのに要するものとして予め記憶された基準圧に相当することになり、これによって制御信号と油圧との相対関係を学習する。即ち、弾性部材が、前記請求項1での一定油圧を要求する制御因子に相当することになる。
【0010】
請求項記載の発明では、摩擦係合要素の締結時に、作動油のプリチャージを行い、次いで、前記弾性部材に抗して締結力が発生する直前までストロークさせるリターン圧に保持し、その後に摩擦係合要素の締結を進行させるべく前記制御信号を出力する構成であり、前記リターン圧が得られる制御信号を学習し、該学習結果と予め記憶された基準圧としてのリターン圧とに基づいて、前記制御信号と油圧との相対関係を学習する構成とした。
【0011】
かかる構成によると、弾性部材の所定状態とは、該弾性部材の解放方向に作用するばね力に対応した油圧を供給して、摩擦係合要素を締結直前にまでストロークさせた状態であり、この締結直前の状態が得られる制御信号を学習し、前記弾性部材の付勢力に対応する基準圧と前記締結直前の状態が得られる制御信号とから、制御信号と油圧との相対関係を学習する。
【0012】
前記リターン圧の学習は、例えば、2つの摩擦係合要素の解放と締結とを同時に行って変速を行う構成において、リターン圧が過剰であることをトルクの引き込みや回転低下に基づいて検出して行わせることができる。
請求項記載の発明では、摩擦係合要素の油圧を検出する油圧スイッチを備え、前記弾性部材が所定の状態になったときの前記制御信号と、前記所定の状態に対応して予め記憶された基準圧とに基づいて、前記制御信号と油圧との相対関係を学習すると共に、前記油圧スイッチの切り換え点での制御信号に基づいて前記制御信号と油圧との相対関係を学習する構成とした。
【0013】
かかる構成によると、前記弾性部材を所定状態にする油圧と、前記油圧スイッチが切り換わる点の油圧との2点で、制御信号と油圧との相対関係が学習されることになる。
【0014】
【発明の効果】
請求項1記載の発明によると、入力トルクや温度等の外乱に影響されにくい弾性部材の付勢力に基づいて、油圧と制御信号との相対関係を学習するので、油圧と制御信号との相対関係を正しく補正でき、以って、摩擦係合要素に供給する油圧を高精度に制御できるようになるという効果がある。
【0015】
請求項2記載の発明によると、摩擦係合要素を締結直前までストロークさせた状態を、弾性部材の所定状態とすることで、前記弾性部材の付勢力に対応する制御信号を精度良く学習でき、以って、油圧と制御信号との相対関係を正しく補正できるという効果がある。
【0016】
請求項記載の発明によると、弾性部材を所定状態にしたときの制御信号と、油圧スイッチの切り換え点での制御信号との双方に基づいて、制御信号と油圧との相対関係を学習するので、より高精度に前記相対関係の補正が行えるという効果がある。
【0017】
【発明の実施の形態】
以下に本発明の実施の形態を説明する。
図1は、本発明に係る自動変速機のシステム構成を示す図であり、図示しない車両に搭載されるエンジン1の出力トルクは、自動変速機2を介して駆動輪に伝達される。
【0018】
前記自動変速機2は、クラッチ,ブレーキなどの摩擦係合要素に対する作動油圧の供給をソレノイドバルブユニット3によって制御することで変速が行われる構成のものであり、具体的には、図2に示すように、トルクコンバータT/Cを介してエンジンの出力トルクを入力する構成であって、フロント遊星歯車組83,リヤ遊星歯車組84を備えると共に、摩擦係合要素として、リバースクラッチR/C,ハイクラッチH/C,バンドブレーキB/B,ロー&リバースブレーキL&R/B,フォワードクラッチFWD/Cを備える。尚、図2において、81は変速機の入力軸,82は変速機の出力軸を示し、また、Neはエンジン回転速度,Ntはタービン回転速度,Noは出力軸回転速度を示す。
【0019】
上記構成において、図3に示すように、前記リバースクラッチR/C,ハイクラッチH/C,バンドブレーキB/B,ロー&リバースブレーキL&R/B,フォワードクラッチFWD/Cの締結,解放の組み合わせに応じて変速が行われ、例えば、3速→4速のアップシフト時には、フォワードクラッチFWD/Cの解放と、バンドブレーキB/Bの締結とが同時に行われることになる。即ち、本実施の形態における自動変速機2は、1方向クラッチを用いずに、2つの摩擦係合要素の締結と解放とを同時に行わせる変速(所謂クラッチツウクラッチ変速)を実行する構成となっている(図4参照)。
【0020】
前記コントロールユニット4には、前記ソレノイドバルブユニット3の各ソレノイドバルブに対する制御信号(電流制御信号)と油圧との相関を示すテーブルが記憶されており、要求油圧に対応する制御信号をテーブル変換によって求めて、前記ソレノイドバルブに出力し、ソレノイドに流れる電流を制御する。
クラッチ等の摩擦係合要素の締結制御においては、図4に示すように、まず、プリチャージを行って摩擦係合要素を接触直前まで無効ストロークさせた後、作動油圧を締結力が発生するぎりぎりのリターン圧(臨界圧)に保持し、その後、摩擦係合要素の締結が所定のタイミングで進行するように作動油圧を制御する。尚、前記リターン圧は、摩擦係合要素を解放方向に付勢するリターンスプリング(弾性部材)のばね力に対応した圧力である。
【0021】
ここで、コントロールユニット4は、摩擦係合要素の締結時に上記のように油圧を制御する一方、前記リターン圧(指示値)の学習を行う。
前記リターン圧の学習は、図5のフローチャートに示すように、リターン圧に保持しているときのトルクの引き込み(図4参照)が許容値よりも大きいか否かを判断し(S1)、前記引き込みトルクが許容値よりも大きい場合には、リターン圧が過剰であると判断してリターン圧を所定値だけ低下させる一方(S2)、前記引き込みトルクが許容値よりも小さい場合には(S3)、リターン圧を増大させ得ると判断してリターン圧を所定値だけ増大させ(S4)、結果的に引き込みトルクが許容値付近になるリターン圧を学習する。
【0022】
前記リターン圧が過剰であると、解放動作に対して締結動作が相対的に早過ぎる状態(以下、この状態をインターロックと称する)となって、トルクの引き込みが大きくなるので、かかる特性を利用して適切なリターン圧、即ち、リターンスプリングのばね力に対応して締結直前に保持できる油圧を学習するものである。
【0023】
引き込みトルクの許容値に対する大小は、具体的には、リターン圧に保持状態でトルクの引けが発生したときの最小トルクPmin を引き込みトルクを示す値とする一方、トルクフェーズ,イナーシャフェーズ終了後のトルクを基準トルクPs/l として、前記最小トルクPmin が基準トルクPs/l を下回るときには、許容値よりもトルクの引き込みが大きいと判断し、逆に、前記最小トルクPmin が基準トルクPs/l を上回るときには、許容値よりもトルクの引き込みが小さいと判断する。
【0024】
前記リターン圧の学習においては、リターン圧の初期値に対応する制御信号を出力したときのトルクの引き込みから、前記初期値を修正すると、該修正されたリターン圧に相当する制御信号を次の変速時に出力して、変速毎に所期のリターン圧に近づけるようにする。
尚、トルクの引き込みに基づいてリターン圧の過不足を判断する代わりに、インターロックを、エンジンの回転変動に基づいて判断して、インターロックが発生しない範囲内でリターン圧を高くするようにリターン圧を学習させても良い。即ち、インターロックの発生を検出できれば、その検出結果に基づいてリターン圧の学習が行えるものであり、学習の方法(インターロックの検出方法)を上記に限定するものではない。
【0025】
ところで、前記リターン圧は、リターンスプリングのばね力に対応して要求されるもの、換言すれば、リターンスプリングを所定状態にするのに要する油圧であり、前記リターンスプリングのばね力は、入力トルクや温度条件などの外乱に影響され難い制御因子である。従って、ソレノイドバルブに対する制御信号の出力によって、所期の油圧が得られれば、学習による修正の必要は殆どないことになり、換言すれば、学習により修正が必要であった分は、制御信号に対して実際に得られる油圧のばらつきによるものであると推定できる。
【0026】
そこで、図6に示すように、前記リターン圧を学習した結果、即ち、補正前の油圧−制御信号の変換テーブル上で、適正なリターン圧を得られたときの制御信号に対応する油圧と、予め記憶してある設計上のリターン圧(リターンスプリングのばね力に応じた基準圧)とを比較し、該比較結果に基づいて、油圧−制御信号の変換テーブルを補正する。
【0027】
例えば、図7に示すように、補正前の転換テーブル上では、摩擦係合要素を締結直前の状態にするには、リターン圧として100KPaが必要であると学習されたのに対し、前記リターン圧の設計値が 80KPaであったときには、制御信号として100KPaに相当する値を出力することで、実際には80KPa しか得られていないことになるので、100KPaに相当するとされていた制御信号が80KPa に対応することになるように、制御信号と油圧との相対関係を全体的に20KPa だけマイナス方向にシフトさせる(特性線を図で下方に20KPa だけ平行移動させる)ようにする。
【0028】
上記のようにして、油圧−制御信号の変換テーブルを補正することで、要求リターン圧を正しく得ることができるようになると共に、その後の締結圧制御や解放圧制御において、要求圧に精度良く制御できるようになり、摩擦係合要素の締結,解放を精度良く制御して、高い変速性能を発揮させることができる。
ここで、前記クラッチ等の摩擦係合要素に、フェールセーフ等のために所定油圧を基準にして出力がON・OFFに切り換わる油圧スイッチ(図8参照)を備える構成の場合には、上記のようにリターン圧の学習結果に基づいて油圧−制御信号の変換テーブルを補正すると共に、前記油圧スイッチのON・OFF切り換わり点における制御信号に基づく補正も行うと良い。
【0029】
具体的には、前記油圧スイッチのON・OFF切り換わりが発生したときの制御信号を学習し、例えば、リターン圧の設計値とこれに相当する制御信号とで規定される点と、前記油圧スイッチの出力が切り換わる油圧とこれに対応する制御信号とで規定される点との2点を通るように、特性線の傾きを修正する(図8参照)。
【0030】
上記のようにして、油圧スイッチを用いた学習を併用すれば、油圧−制御信号の変換テーブルをより一層正確に補正できることになる。
【図面の簡単な説明】
【図1】本発明が適用される自動変速機を示すシステム図。
【図2】自動変速機の詳細を示す構成図。
【図3】上記自動変速機における摩擦係合要素の締結状態の組み合わせによる変速の様子を示す図。
【図4】変速時の油圧制御の様子を示すタイムチャート。
【図5】リターン圧の学習の様子を示すフローチャート。
【図6】油圧−制御信号の変換テーブルの学習制御の基本構成を示す図。
【図7】変換テーブルの補正の様子を示す線図。
【図8】油圧スイッチの結果を併用した変換テーブル補正の様子を示す線図。
【符号の説明】
1 エンジン
2 自動変速機
3 ソレノイドバルブユニット
4 コントロールユニット
83 フロント遊星歯車組
84 リヤ遊星歯車組
R/C リバースクラッチ
H/C ハイクラッチ
B/B バンドブレーキ
L&R/B ロー&リバースブレーキ
FWD/C フォワードクラッチ
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a control device for an automatic transmission, and more specifically, in an automatic transmission that controls the oil pressure of a friction engagement element according to a control signal, learns the correlation between the control signal and the oil pressure, and adjusts the control accuracy of the oil pressure. Technology for improving.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, in a vehicle automatic transmission, when a friction engagement element such as a clutch is engaged, first, hydraulic fluid is precharged, and then the return pressure is maintained just before the engagement force is generated. There is known a configuration in which the hydraulic pressure is controlled so as to advance the fastening of the elements (see Japanese Patent Application Laid-Open No. 8-334171). Note that the return pressure is a pressure corresponding to the spring force of the return spring that urges the friction engagement element in the release direction.
[0003]
Further, there has also been proposed a shift control device configured to learn the return pressure (precharge pressure) to avoid occurrence of a delay in engagement of a friction engagement element (see Japanese Patent Application Laid-Open No. 5-106722, etc.). ).
[0004]
[Problems to be solved by the invention]
By the way, by learning the return pressure, it is possible to accurately maintain the state immediately before the fastening force is generated, thereby ensuring the responsiveness of the subsequent hydraulic control. This is more often due to a deviation in the correlation between the control signal for the solenoid valve for controlling the hydraulic pressure and the actually obtained hydraulic pressure than to the variation in force.
[0005]
That is, even if the control signal corresponding to the required oil pressure is output to the solenoid valve in order to supply the oil pressure corresponding to the spring force of the return spring, if the actual oil pressure obtained for the control signal varies, the spring The hydraulic pressure corresponding to the force cannot be obtained, and the control signal needs to be corrected by learning.
However, conventionally, since only the learning of the return pressure is performed, in the subsequent control of the engagement pressure, it is not possible to control to a desired hydraulic pressure due to a difference in correlation between the hydraulic pressure and the control signal, and as a result, There was a possibility of causing a shift shock or the like.
[0006]
The present invention has been made in view of the above problems, and has as its object to enable correction of a correlation between a control signal and hydraulic pressure, thereby improving hydraulic pressure control accuracy.
[0007]
[Means for Solving the Problems]
Therefore, the invention according to claim 1 includes an elastic member for urging the friction engagement element in the release direction, and controls the hydraulic pressure of the friction engagement element by a control signal to release and fasten the friction engagement element. In the control device for an automatic transmission configured to control the control signal when the elastic member is in a predetermined state, based on a reference pressure stored in advance corresponding to the predetermined state, The configuration is such that the relative relationship between the control signal and the hydraulic pressure is learned.
[0009]
According to this configuration, the control signal when the elastic member is brought into the predetermined state by applying the hydraulic pressure against the urging force of the elastic member (return spring or the like) is required to obtain the predetermined state. This corresponds to a pre-stored reference pressure, whereby the relative relationship between the control signal and the hydraulic pressure is learned. That is, the elastic member corresponds to the control factor that requires a constant hydraulic pressure in the first aspect.
[0010]
According to the second aspect of the invention, when the friction engagement element is fastened, the hydraulic oil is precharged, and then the return pressure is maintained at a return pressure for stroke until just before the fastening force is generated against the elastic member. The control signal is output in order to advance the engagement of the friction engagement element.The control signal for obtaining the return pressure is learned, and based on the learning result and a return pressure as a reference pressure stored in advance. In this configuration, the relative relationship between the control signal and the hydraulic pressure is learned.
[0011]
According to this configuration, the predetermined state of the elastic member is a state in which a hydraulic pressure corresponding to a spring force acting in a releasing direction of the elastic member is supplied, and the friction engagement element is stroked to just before the engagement. The control signal for obtaining the state immediately before the engagement is learned, and the relative relationship between the control signal and the oil pressure is learned from the reference pressure corresponding to the urging force of the elastic member and the control signal for obtaining the state immediately before the engagement.
[0012]
The learning of the return pressure is performed by, for example, detecting that excessive return pressure is detected based on torque pull-in or rotation decrease in a configuration in which the two frictional engagement elements are simultaneously released and engaged to perform a gear shift. Can be done.
According to the third aspect of the present invention, a hydraulic switch for detecting a hydraulic pressure of the friction engagement element is provided, and the control signal when the elastic member is brought into a predetermined state and the control signal stored in advance corresponding to the predetermined state are stored. And learning the relative relationship between the control signal and the hydraulic pressure based on the reference pressure and learning the relative relationship between the control signal and the hydraulic pressure based on the control signal at the switching point of the hydraulic switch. .
[0013]
According to this configuration, the relative relationship between the control signal and the hydraulic pressure is learned at two points, that is, the hydraulic pressure at which the elastic member is brought into a predetermined state and the hydraulic pressure at which the hydraulic switch is switched.
[0014]
【The invention's effect】
According to the first aspect of the present invention, the relative relationship between the hydraulic pressure and the control signal is learned based on the biasing force of the elastic member which is hardly affected by disturbances such as input torque and temperature. Can be correctly corrected, so that the hydraulic pressure supplied to the friction engagement element can be controlled with high accuracy.
[0015]
According to the second aspect of the present invention, by setting the state in which the friction engagement element is stroked immediately before the engagement to the predetermined state of the elastic member, it is possible to accurately learn a control signal corresponding to the urging force of the elastic member, Thus, there is an effect that the relative relationship between the hydraulic pressure and the control signal can be correctly corrected.
[0016]
According to the third aspect of the present invention, the relative relationship between the control signal and the hydraulic pressure is learned based on both the control signal when the elastic member is brought into the predetermined state and the control signal at the switching point of the hydraulic switch. This has the effect that the relative relationship can be corrected with higher accuracy.
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described.
FIG. 1 is a diagram showing a system configuration of an automatic transmission according to the present invention. An output torque of an engine 1 mounted on a vehicle (not shown) is transmitted to drive wheels via an automatic transmission 2.
[0018]
The automatic transmission 2 has a configuration in which a shift is performed by controlling the supply of operating hydraulic pressure to frictional engagement elements such as a clutch and a brake by a solenoid valve unit 3, and more specifically, shown in FIG. Thus, the configuration is such that the output torque of the engine is input via the torque converter T / C, and includes the front planetary gear set 83 and the rear planetary gear set 84, and the reverse clutch R / C, A high clutch H / C, a band brake B / B, a low & reverse brake L & R / B, and a forward clutch FWD / C are provided. In FIG. 2, reference numeral 81 denotes an input shaft of the transmission, 82 denotes an output shaft of the transmission, Ne denotes an engine rotation speed, Nt denotes a turbine rotation speed, and No denotes an output shaft rotation speed.
[0019]
In the above configuration, as shown in FIG. 3, the combination of the engagement and disengagement of the reverse clutch R / C, high clutch H / C, band brake B / B, low & reverse brake L & R / B, and forward clutch FWD / C. The shift is performed accordingly, for example, at the time of the upshift from the third speed to the fourth speed, the release of the forward clutch FWD / C and the engagement of the band brakes B / B are performed simultaneously. That is, the automatic transmission 2 according to the present embodiment is configured to execute a shift (so-called clutch-to-clutch shift) in which the two friction engagement elements are simultaneously engaged and released without using the one-way clutch. (See FIG. 4).
[0020]
The control unit 4 stores a table indicating a correlation between a control signal (current control signal) for each solenoid valve of the solenoid valve unit 3 and a hydraulic pressure, and obtains a control signal corresponding to a required hydraulic pressure by table conversion. Output to the solenoid valve to control the current flowing through the solenoid.
In the engagement control of a friction engagement element such as a clutch, as shown in FIG. 4, first, a precharge is performed to cause an invalid stroke of the friction engagement element until immediately before contact, and then the operating oil pressure is reduced to just before the engagement force is generated. , And then control the operating oil pressure so that the engagement of the friction engagement element proceeds at a predetermined timing. The return pressure is a pressure corresponding to the spring force of a return spring (elastic member) for urging the friction engagement element in the release direction.
[0021]
Here, the control unit 4 controls the oil pressure as described above when the friction engagement element is engaged, and learns the return pressure (instruction value).
In the learning of the return pressure, as shown in the flowchart of FIG. 5, it is determined whether or not the pull-in of the torque (see FIG. 4) when maintaining the return pressure is larger than an allowable value (S1). If the pull-in torque is larger than the allowable value, it is determined that the return pressure is excessive, and the return pressure is reduced by a predetermined value (S2), while if the pull-in torque is smaller than the allowable value (S3). When it is determined that the return pressure can be increased, the return pressure is increased by a predetermined value (S4), and the return pressure at which the pull-in torque becomes close to the allowable value as a result is learned.
[0022]
If the return pressure is excessive, a state in which the engagement operation is relatively too early with respect to the release operation (hereinafter, this state is referred to as an interlock) will increase the torque withdrawal. Then, an appropriate return pressure, that is, a hydraulic pressure that can be maintained just before the engagement in accordance with the spring force of the return spring is learned.
[0023]
The magnitude of the allowable value of the pull-in torque with respect to the allowable value is, specifically, a value indicating the pull-in torque while the minimum torque Pmin at the time when the torque is reduced while the return pressure is held, while the torque after the end of the torque phase and the inertia phase. When the minimum torque Pmin is lower than the reference torque Ps / l, it is determined that the pull-in of the torque is larger than an allowable value. Conversely, the minimum torque Pmin exceeds the reference torque Ps / l. Sometimes, it is determined that the pull-in of the torque is smaller than the allowable value.
[0024]
In the learning of the return pressure, when the initial value is corrected based on the pull-in of the torque when the control signal corresponding to the initial value of the return pressure is output, the control signal corresponding to the corrected return pressure is transmitted to the next shift. It is output at times to approach the expected return pressure for each shift.
Instead of determining whether the return pressure is too high or too low based on the pull-in of the torque, the interlock is determined based on the engine rotation fluctuation, and the return pressure is increased so as to increase the return pressure within a range where the interlock does not occur. The pressure may be learned. That is, if the occurrence of the interlock can be detected, the return pressure can be learned based on the detection result, and the learning method (interlock detection method) is not limited to the above.
[0025]
Incidentally, the return pressure is required in accordance with the spring force of the return spring, in other words, the hydraulic pressure required to bring the return spring into a predetermined state. It is a control factor that is hardly affected by disturbances such as temperature conditions. Therefore, if the expected oil pressure is obtained by the output of the control signal to the solenoid valve, there is almost no need for correction by learning. In other words, the amount of correction required by learning is converted to the control signal. On the other hand, it can be presumed that it is due to the variation in the hydraulic pressure actually obtained.
[0026]
Therefore, as shown in FIG. 6, a result of learning the return pressure, that is, a hydraulic pressure corresponding to a control signal when an appropriate return pressure is obtained on a hydraulic-control signal conversion table before correction, The return pressure is compared with a design return pressure (a reference pressure corresponding to the spring force of the return spring) stored in advance, and the conversion table of the hydraulic pressure-control signal is corrected based on the comparison result.
[0027]
For example, as shown in FIG. 7, on the conversion table before correction, it was learned that a return pressure of 100 KPa was required to bring the friction engagement element into a state immediately before engagement, whereas the return pressure When the design value of is 80 KPa, by outputting a value corresponding to 100 KPa as a control signal, only 80 KPa is actually obtained. Therefore, the control signal corresponding to 100 KPa is changed to 80 KPa. In order to correspond, the relative relationship between the control signal and the oil pressure is shifted in the negative direction by 20 KPa as a whole (the characteristic line is shifted downward by 20 KPa in the figure in parallel).
[0028]
As described above, the required return pressure can be correctly obtained by correcting the conversion table of the hydraulic pressure-control signal, and the required pressure can be accurately controlled in the subsequent engagement pressure control and release pressure control. As a result, the engagement and disengagement of the friction engagement element can be controlled with high precision, and high gear shifting performance can be exhibited.
Here, in the case of a configuration in which the friction engagement element such as the clutch is provided with a hydraulic switch (see FIG. 8) whose output is switched ON / OFF based on a predetermined hydraulic pressure for fail-safe or the like, As described above, the conversion table of the hydraulic pressure-control signal may be corrected based on the learning result of the return pressure, and the correction based on the control signal at the ON / OFF switching point of the hydraulic switch may be performed.
[0029]
Specifically, the control signal when the ON / OFF switching of the hydraulic switch occurs is learned, and, for example, a point defined by a design value of the return pressure and a control signal corresponding thereto, The inclination of the characteristic line is corrected so as to pass through two points, ie, a point defined by the hydraulic pressure at which the output changes and a control signal corresponding thereto (see FIG. 8).
[0030]
As described above, if the learning using the hydraulic switch is also used, the conversion table of the hydraulic pressure-control signal can be corrected more accurately.
[Brief description of the drawings]
FIG. 1 is a system diagram showing an automatic transmission to which the present invention is applied.
FIG. 2 is a configuration diagram showing details of an automatic transmission.
FIG. 3 is a diagram showing a state of a shift by a combination of engagement states of friction engagement elements in the automatic transmission.
FIG. 4 is a time chart showing a state of hydraulic control during shifting.
FIG. 5 is a flowchart showing how return pressure is learned.
FIG. 6 is a diagram showing a basic configuration of learning control of a hydraulic-control signal conversion table.
FIG. 7 is a diagram showing how a conversion table is corrected.
FIG. 8 is a diagram showing a state of conversion table correction using a result of a hydraulic switch together.
[Explanation of symbols]
Reference Signs List 1 engine 2 automatic transmission 3 solenoid valve unit 4 control unit 83 front planetary gear set 84 rear planetary gear set R / C reverse clutch H / C high clutch B / B band brake L & R / B low & reverse brake FWD / C forward clutch

Claims (3)

摩擦係合要素を解放方向に付勢する弾性部材を備えてなり、制御信号により前記摩擦係合要素の油圧を制御して前記摩擦係合要素の解放,締結を制御する構成の自動変速機の制御装置において、
前記弾性部材が所定の状態になったときの前記制御信号と、前記所定の状態に対応して予め記憶された基準圧とに基づいて、前記制御信号と油圧との相対関係を学習することを特徴とする自動変速機の制御装置。
An automatic transmission having an elastic member for urging the frictional engagement element in the release direction and controlling release and engagement of the frictional engagement element by controlling a hydraulic pressure of the frictional engagement element by a control signal . In the control device,
Learning the relative relationship between the control signal and the hydraulic pressure based on the control signal when the elastic member enters a predetermined state and a reference pressure stored in advance corresponding to the predetermined state. Control device for automatic transmission.
摩擦係合要素の締結時に、作動油のプリチャージを行い、次いで、前記弾性部材に抗して締結力が発生する直前までストロークさせるリターン圧に保持し、その後に摩擦係合要素の締結を進行させるべく前記制御信号を出力する構成であり、
前記リターン圧が得られる制御信号を学習し、該学習結果と予め記憶された基準圧としてのリターン圧とに基づいて、前記制御信号と油圧との相対関係を学習することを特徴とする請求項記載の自動変速機の制御装置。
When the friction engagement element is fastened, the hydraulic oil is precharged, and then maintained at the return pressure that causes the stroke to occur immediately before the fastening force is generated against the elastic member, and then the fastening of the friction engagement element proceeds. Output the control signal to cause
A control signal for obtaining the return pressure is learned, and a relative relationship between the control signal and a hydraulic pressure is learned based on the learning result and a return pressure as a reference pressure stored in advance. 2. The control device for an automatic transmission according to claim 1 .
摩擦係合要素の油圧を検出する油圧スイッチを備え、前記弾性部材が所定の状態になったときの前記制御信号と、前記所定の状態に対応して予め記憶された基準圧とに基づいて、前記制御信号と油圧との相対関係を学習すると共に、前記油圧スイッチの切り換え点での制御信号に基づいて前記制御信号と油圧との相対関係を学習することを特徴とする請求項1又は2に記載の自動変速機の制御装置。A hydraulic switch for detecting the hydraulic pressure of the friction engagement element is provided, based on the control signal when the elastic member is in a predetermined state, and a reference pressure stored in advance corresponding to the predetermined state, The method according to claim 1 or 2 , wherein the relative relationship between the control signal and the hydraulic pressure is learned, and the relative relationship between the control signal and the hydraulic pressure is learned based on a control signal at a switching point of the hydraulic switch. A control device for the automatic transmission according to the above.
JP21750297A 1997-08-12 1997-08-12 Control device for automatic transmission Expired - Fee Related JP3600714B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21750297A JP3600714B2 (en) 1997-08-12 1997-08-12 Control device for automatic transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21750297A JP3600714B2 (en) 1997-08-12 1997-08-12 Control device for automatic transmission

Publications (2)

Publication Number Publication Date
JPH1163195A JPH1163195A (en) 1999-03-05
JP3600714B2 true JP3600714B2 (en) 2004-12-15

Family

ID=16705248

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21750297A Expired - Fee Related JP3600714B2 (en) 1997-08-12 1997-08-12 Control device for automatic transmission

Country Status (1)

Country Link
JP (1) JP3600714B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4509320B2 (en) * 2000-07-12 2010-07-21 本田技研工業株式会社 Shift control device for automatic transmission for vehicle
JP4509319B2 (en) * 2000-07-12 2010-07-21 本田技研工業株式会社 Shift control device for automatic transmission for vehicle
JP3927435B2 (en) * 2002-03-29 2007-06-06 ジヤトコ株式会社 Correction control system for hydraulic control device of automatic transmission
JP4760006B2 (en) * 2004-12-20 2011-08-31 マツダ株式会社 Control device for automatic transmission

Also Published As

Publication number Publication date
JPH1163195A (en) 1999-03-05

Similar Documents

Publication Publication Date Title
JP4821409B2 (en) Hydraulic control device for automatic transmission
US7451031B2 (en) Control unit and method for vehicle
US6503165B1 (en) Hydraulic control device for automatic transmission
JPH1182712A (en) Hydraulic control device of automatic transmission
US6259983B1 (en) Hydraulic control system for automatic transmission
KR101415381B1 (en) Upshift control apparatus of automatic transmission
KR930021438A (en) Vehicle automatic transmission and its control method
EP1431624B1 (en) Shift control device for automatic transmission
JPH10299880A (en) Shift controller for automatic transmission
JP3600714B2 (en) Control device for automatic transmission
JP3446426B2 (en) Transmission control device for automatic transmission
KR20080053150A (en) Method for controlling shifting during shifting and system thereof
KR20020022023A (en) Shift control apparatus for automatic transmission
JP3853580B2 (en) Hydraulic control device for automatic transmission
JPH11210874A (en) Control device for automatic transmission
JP2005076593A (en) Shifting shock reducing device for automatic transmission
JP3600715B2 (en) Transmission control device for automatic transmission
JP2689493B2 (en) Transmission control device for automatic transmission
JP2000009224A (en) Fail-safe device for vehicular automatic transmission
JP3633240B2 (en) Control device for automatic transmission
JP3578610B2 (en) Control device for automatic transmission for vehicles
JP3630072B2 (en) Creep force control device for vehicle automatic transmission
JP3374166B2 (en) Learning control device for automatic transmission
JP3371747B2 (en) Transmission control device for automatic transmission
KR100260158B1 (en) Learning control and integrating control method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040406

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040601

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040907

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040917

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees