JPH10299880A - Shift controller for automatic transmission - Google Patents
Shift controller for automatic transmissionInfo
- Publication number
- JPH10299880A JPH10299880A JP9109742A JP10974297A JPH10299880A JP H10299880 A JPH10299880 A JP H10299880A JP 9109742 A JP9109742 A JP 9109742A JP 10974297 A JP10974297 A JP 10974297A JP H10299880 A JPH10299880 A JP H10299880A
- Authority
- JP
- Japan
- Prior art keywords
- predetermined
- servo
- automatic transmission
- shift
- pressure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H61/00—Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
- F16H61/04—Smoothing ratio shift
- F16H2061/0477—Smoothing ratio shift by suppression of excessive engine flare or turbine racing during shift transition
Landscapes
- Control Of Transmission Device (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、自動車に搭載され
る自動変速機の油圧制御装置に係り、詳しくは学習によ
りサーボ起動制御、例えばファストフィル時間を変更す
る変速制御装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydraulic control device for an automatic transmission mounted on an automobile, and more particularly to a servo control device for learning, for example, changing a fast-fill time by a servo start control.
【0002】[0002]
【従来の技術】一般に、自動変速機は、制御部からの変
速判断に基づき、所定摩擦係合要素(クラッチ又はブレ
ーキ)用油圧サーボに油圧を供給すると共に、他の摩擦
係合要素用油圧サーボの油圧を解放して、多段変速ギヤ
機構の伝動経路が切換えられて変速される。この際、上
記係合側油圧サーボ又は解放側油圧サーボ油圧を、リニ
アソレノイドバルブ等の調圧手段により調圧して、シフ
トショックを軽減して滑らかに変速することが図られて
いる。2. Description of the Related Art Generally, an automatic transmission supplies a hydraulic pressure to a hydraulic servo for a predetermined frictional engagement element (clutch or brake) based on a shift determination from a control unit, and also provides a hydraulic servo for another frictional engagement element. Is released, and the transmission path of the multi-stage transmission gear mechanism is switched to change the speed. At this time, the engagement side hydraulic servo or the release side hydraulic servo oil pressure is adjusted by a pressure adjusting means such as a linear solenoid valve to reduce shift shock and smoothly shift.
【0003】しかし、このものにあっても、各製品の固
体差による初期のバラツキ及び経年変化等によるリニア
ソレノイドバルブ等のバラツキに基づき、解放側及び係
合側摩擦係合要素が共に係合状態(オーバラップ状態)
となってタイアップを生じたり、又は解放側及び係合側
摩擦係合要素が共に解放状態(アンダーラップ状態)と
なってエンジンの吹き上りを生じてしまうことがある。However, even in this case, both the disengagement side and engagement side frictional engagement elements are in the engaged state based on the initial variation due to the individual difference of each product and the variation of the linear solenoid valve due to aging and the like. (Overlap state)
As a result, the tie-up may occur, or the disengagement side and engagement side frictional engagement elements may both be in the disengaged state (underlap state), causing the engine to blow up.
【0004】従来、上記係合側摩擦係合要素の係合と共
に解放側摩擦係合要素を解放する、いわゆるクラッチ掴
み換えによる変速において、上記係合側及び解放側摩擦
係合要素のオーバラップ又はアンダーラップの度合いが
不適切となって、エンジンの吹上げ又はタイアップによ
る出力軸トルクの低下を防止すべく、エンジンの吹き上
りを検出して、該吹き上がり量が予め定めた範囲内にな
るように油圧を制御する変速制御装置が提案されている
(特開平6−341535号公報参照)。Conventionally, in a so-called clutch grip shifting operation in which the disengagement side frictional engagement element is disengaged together with the engagement side frictional engagement element, overlapping or disengagement of the engagement side and the disengagement side frictional engagement element is performed. In order to prevent the degree of underlap from becoming inappropriate and to prevent the output shaft torque from decreasing due to engine blowing or tie-up, engine blowing is detected and the amount of blowing becomes within a predetermined range. A shift control device that controls the hydraulic pressure in this way has been proposed (see Japanese Patent Application Laid-Open No. 6-341535).
【0005】このものは、変速前段側となる摩擦係合要
素用油圧の調圧をエンジンの最大吹き上り量に応じて設
定した補正量により補正するものであり、具体的には、
2→3変速において、3速段にあって解放する摩擦係合
要素(第3ブレーキB3 )の油圧を調圧するリニアソレ
ノイドバルブのデューティ比を、イナーシャ相開始まで
のエンジンの回転変動幅の最大値を吹き上り量として設
定した補正値により補正する。In this method, the pressure adjustment of the hydraulic pressure for the frictional engagement element, which is on the pre-shift side, is corrected by a correction amount set in accordance with the maximum blow-up amount of the engine.
In the 2 → 3 shift, the duty ratio of the linear solenoid valve for adjusting the oil pressure of the friction engagement element (third brake B 3 ) to be released in the third speed is set to the maximum value of the engine rotation fluctuation width until the start of the inertia phase. The value is corrected by the correction value set as the blow-up amount.
【0006】[0006]
【発明が解決しようとする課題】上記変速制御装置は、
アップシフトに際して解放側となる油圧の調圧を補正し
て、その解放圧の低下度合いを変更し、予め所定上昇状
態に設定されている係合側摩擦係合要素の油圧との間
で、オーバラップ又はアンダーラップ度合いを調整する
ものである。SUMMARY OF THE INVENTION
Correcting the pressure adjustment of the hydraulic pressure on the disengagement side during the upshift, changing the degree of decrease of the disengagement pressure, and increasing the hydraulic pressure of the engagement side frictional engagement element set in advance to a predetermined rising state. The wrap or underlap degree is adjusted.
【0007】しかし、上記オーバラップ又はアンダーラ
ップ度合いに起因するエンジン吹上げ又はタイアップ
は、上述したように解放側油圧の低下度合い(勾配)よ
りも、むしろ、係合側及び解放側摩擦係合要素の開始タ
イミングの方が影響が大きく、上述したように解放側油
圧の調圧を補正したものでは、係合側油圧の状態によっ
ては、必ずしも適正に調整することができなかった。However, the engine blowing or tie-up caused by the degree of overlap or underlap is caused by the engagement side and the release side frictional engagement rather than the decrease (gradient) of the release side hydraulic pressure as described above. The start timing of the element has a greater effect, and when the pressure adjustment of the release hydraulic pressure is corrected as described above, it is not always possible to properly adjust the pressure depending on the state of the engagement hydraulic pressure.
【0008】そこで、本発明は、係合側及び解放側摩擦
係合要素の掴み換えに先立ち、係合側摩擦係合要素の油
圧サーボに油圧を供給してピストンをストロークしてト
ルク伝達開始直前の状態になうるように制御するサーボ
起動制御を学習制御し、もってエンジンの吹上げ及びタ
イアップを防止して、変速フィーリングの向上を図った
自動変速機の変速制御装置を提供することを目的とする
ものである。Therefore, according to the present invention, prior to gripping of the engagement side and release side frictional engagement elements, hydraulic pressure is supplied to the hydraulic servo of the engagement side frictional engagement element to stroke the piston and immediately before the start of torque transmission. Learning control of servo activation control for controlling the state of the automatic transmission to prevent the engine from blowing up and tie-up, thereby providing a shift control device for an automatic transmission that improves shift feeling. It is the purpose.
【0009】[0009]
【課題を解決するための手段】請求項1に係る本発明
は、エンジン出力軸から動力が入力される入力軸と、車
輪に連結される出力軸と、これら入力軸と出力軸との間
で動力伝達経路を変更する複数の摩擦係合要素と、これ
ら摩擦係合要素を断・接作動する油圧サーボ(9,1
0)と、を備え、前記複数の摩擦係合要素の内の第1の
摩擦係合要素を係合すると共に、第2の摩擦係合要素を
解放することにより所定変速段への変速を達成するに先
立ち、前記第1の摩擦係合要素を、その油圧サーボに所
定特性の油圧を供給してピストン(19)をストローク
し、トルク伝達直前の状態にするサーボ起動制御を行
う、自動変速機の変速制御装置において、少なくとも前
記第1の摩擦係合要素の油圧サーボに供給される係合圧
を調圧する調圧手段(SLS又はSLU)と、前記変速
中におけるタイアップ又はエンジン吹きを検出する検出
手段(1a)と、該検出手段の検出値に基づき前記サー
ボ起動制御における前記所定特性を補正するサーボ起動
制御手段(1b)と、を備えることを特徴とする自動変
速機の変速制御装置にある。According to a first aspect of the present invention, there is provided an input shaft to which power is input from an engine output shaft, an output shaft connected to wheels, and a connection between the input shaft and the output shaft. A plurality of friction engagement elements for changing a power transmission path, and a hydraulic servo (9, 1) for disconnecting / engaging these friction engagement elements
0), the first frictional engagement element of the plurality of frictional engagement elements is engaged and the second frictional engagement element is released to achieve a shift to a predetermined gear position. Prior to the automatic transmission, the first frictional engagement element is subjected to a servo activation control to supply a hydraulic pressure having a predetermined characteristic to a hydraulic servo of the first frictional engagement element to stroke a piston (19) to bring it into a state immediately before torque transmission. And a pressure adjusting means (SLS or SLU) for adjusting an engagement pressure supplied to at least a hydraulic servo of the first friction engagement element, and detecting a tie-up or engine blowing during the shift. A shift control device for an automatic transmission, comprising: a detection means (1a); and a servo activation control means (1b) for correcting the predetermined characteristic in the servo activation control based on a detection value of the detection means. A.
【0010】請求項2に係る本発明は、前記サーボ起動
制御は、油圧サーボに所定高圧(PS1)を供給するファ
ストフィルと、前記所定高圧を所定低圧(PS2)に向け
てスイープダウンする制御と、該所定低圧にて保持する
制御とを有すると共に、該サーボ起動制御時間(tSE)
が略々一定時間からなり、前記サーボ起動制御手段は、
前記ファストフィルを制御するファストフィル制御手段
(1b)である、請求項1記載の自動変速機の変速制御
装置にある。According to a second aspect of the present invention, in the servo start control, a fast fill for supplying a predetermined high pressure (P S1 ) to the hydraulic servo, and a sweep down of the predetermined high pressure to a predetermined low pressure (P S2 ). Control and control for maintaining the pressure at the predetermined low pressure, and the servo start control time (t SE ).
Consists of a substantially constant time, the servo activation control means,
The shift control device for an automatic transmission according to claim 1, wherein the shift control device (1b) controls the fast fill.
【0011】請求項3に係る本発明は、前記ファストフ
ィル制御手段は、ファストフィル時間(tSA)を補正し
てなる、請求項2記載の自動変速機の変速制御装置にあ
る。According to a third aspect of the present invention, there is provided the shift control device for an automatic transmission according to the second aspect, wherein the fast fill control means corrects a fast fill time (t SA ).
【0012】請求項4に係る本発明は、前記所定変速段
への変速がアップシフトであり、前記検出手段の検出値
が、前記入力軸の回転を検出するセンサ(5)の信号に
基づき演算される入力回転加速度(α)である、請求項
1、2又は3記載の自動変速機の変速制御装置にある。According to a fourth aspect of the present invention, the shift to the predetermined shift speed is an upshift, and a detection value of the detection means is calculated based on a signal of a sensor (5) for detecting rotation of the input shaft. The shift control device for an automatic transmission according to claim 1, wherein the input rotational acceleration (α) is a predetermined input rotational acceleration (α).
【0013】請求項5に係る本発明は、前記検出手段に
よるエンジン吹きを検出する検出値が、所定値(L)以
上のときにエンジン吹きと判断し、前記所定値からの吹
き量(c,d)に応じて前記ファストフィル制御手段の
補正量(C,D)、を学習する、請求項1ないし4のい
ずれか記載の自動変速機の変速制御装置にある。According to a fifth aspect of the present invention, when the detection value for detecting engine blowing by the detecting means is equal to or more than a predetermined value (L), it is determined that the engine is blowing, and the blowing amount (c, The shift control device for an automatic transmission according to any one of claims 1 to 4, wherein a correction amount (C, D) of the fast fill control means is learned according to d).
【0014】請求項6に係る本発明は、前記検出手段
が、サーボ起動制御時間(tSE)内の所定時間中におけ
る前記入力回転加速度(α)のマイナス方向の突出を検
出することによりタイアップと判断し、前記入力回転加
速度の量(a,b)に応じて前記ファストフィル制御手
段の補正量(A,B)を学習する、請求項4記載の自動
変速機の変速制御装置にある。According to a sixth aspect of the present invention, a tie-up is performed by the detecting means detecting a negative direction protrusion of the input rotational acceleration (α) during a predetermined time within a servo activation control time (t SE ). 5. The shift control device for an automatic transmission according to claim 4, wherein the correction amount (A, B) of the fast fill control unit is learned according to the input rotational acceleration amount (a, b).
【0015】[作用]以上構成に基づき、検出手段(1
a)により、例えば入力回転加速度(α)の方向にてタ
イアップ又はエンジン吹きを検出すると、サーボ起動制
御手段(1b)が油圧サーボへ供給する油圧の所定特性
を変更・補正する。即ち、前記サーボ起動制御は、所定
高圧(PS1)を供給するファストフィルと、該所定高圧
から所定低圧(PS2)にスイープダウンする制御と、該
所定低圧に保持する制御とを有し、これら全体のサーボ
起動制御時間(tSE)を一定にした状態で、各制御のバ
ランスを変更する。例えば、一定のサーボ起動制御時間
(tSE)の中で、ファストフィル時間(tSE)を変更
し、これに応じて待機時間(tSB)も変更される。[Operation] Based on the above configuration, the detecting means (1
According to a), when tie-up or engine blowing is detected, for example, in the direction of the input rotational acceleration (α), the servo activation control means (1b) changes and corrects a predetermined characteristic of the hydraulic pressure supplied to the hydraulic servo. That is, the servo activation control includes a fast fill for supplying a predetermined high pressure (P S1 ), a control for sweeping down from the predetermined high pressure to a predetermined low pressure (P S2 ), and a control for maintaining the predetermined low pressure. The balance of each control is changed while keeping the entire servo start control time (t SE ) constant. For example, the fast fill time (t SE ) is changed within the fixed servo activation control time (t SE ), and the standby time (t SB ) is changed accordingly.
【0016】一例として、入力回転加速度(α)がマイ
ナス方向に突出すると、タイアップと判断し、該加速度
量(a)(b)に応じて補正量(−A)(−B)にてフ
ァストフィル時間(tSA)を学習・補正し、またプラス
方向に所定値(L)以上に突出すると、エンジン吹きと
判断して、該所定値以上の加速度量(c)(d)に応じ
た補正量(C)(D)にてファストフィル時間(tSA)
を学習・補正する。As an example, if the input rotational acceleration (α) protrudes in the negative direction, it is determined that a tie-up has occurred, and the correction amount (−A) (−B) is used in accordance with the acceleration amounts (a) and (b). If the fill time (t SA ) is learned and corrected, and if it protrudes beyond a predetermined value (L) in the plus direction, it is determined that the engine is blowing, and correction according to the acceleration amounts (c) and (d) that are not less than the predetermined value Fast fill time (t SA ) in quantity (C) (D)
Learn and correct.
【0017】これにより、タイアップ時は、ファストフ
ィル時間を短くし、またエンジン吹き時は、ファストフ
ィル時間が長くなるように制御して、サーボ起動時間が
適正になるように補正する。In this way, the fast-fill time is shortened at the time of tie-up, and the fast-fill time is controlled to be long at the time of engine blowing, so that the servo activation time is corrected to be appropriate.
【0018】なお、上記カッコ内の符号は、図面と対照
するためのものであるが、本発明の構成を何等限定する
ものではない。The reference numerals in the parentheses are for comparison with the drawings, but do not limit the configuration of the present invention.
【0019】[0019]
【発明の効果】請求項1に係る本発明によると、各製品
の固体差及び経年変化に基づくバラツキによるエンジン
吹き及びタイアップを生じても、サーボ起動制御におけ
る所定油圧特性を補正することにより、掴み換え時にお
ける係合側摩擦係合要素のトルク容量の増加タイミング
を収束性よくかつ正確に制御することができるので、解
放側摩擦係合要素とのタイミングを正確に合せて、変速
中の掴み換えを良好にして変速フィーリングを向上する
ことができる。According to the first aspect of the present invention, even if engine blowing and tie-up due to variations due to individual differences and aging of each product occur, the predetermined hydraulic characteristics in the servo activation control are corrected, Since the increase timing of the torque capacity of the engagement-side frictional engagement element at the time of gripping can be controlled with good convergence and accurately, the timing with the release-side frictional engagement element can be accurately adjusted to achieve the gripping during shifting. The shift feeling can be improved and the shift feeling can be improved.
【0020】請求項2に係る本発明によると、油圧サー
ボに所定高圧を供給するファストフィルを補正すること
により、容易かつ高い精度にて変速中の掴みタイミング
を合せることができる。According to the second aspect of the present invention, the gripping timing during shifting can be adjusted easily and with high accuracy by correcting the fast fill for supplying a predetermined high voltage to the hydraulic servo.
【0021】請求項3に係る本発明によると、ファスト
フィル時間を補正するので、制御が容易でかつ精度の高
い時間制御により係合側タイミングを制御して、信頼性
の高い安価な構造でもって変速フィーリングを向上する
ことができる。According to the third aspect of the present invention, since the fast fill time is corrected, the engagement side timing is controlled by time control which is easy and accurate, and has a highly reliable and inexpensive structure. The shift feeling can be improved.
【0022】請求項4に係る本発明によると、アップシ
フト変速に際して入力回転加速度によりタイアップ又は
エンジン吹きを検出するので、入力軸回転数センサで足
り、特別なセンサを用いることなく、安価で確実な検出
を行うことができる。According to the fourth aspect of the present invention, a tie-up or engine blowing is detected based on an input rotational acceleration during an upshift, so that an input shaft rotational speed sensor is sufficient and an inexpensive and reliable sensor can be used without using a special sensor. Detection can be performed.
【0023】請求項5に係る本発明によると、掴み換え
による変速に際して係合側及び解放側のトルク分担がう
まくいかないか又は個々のバラツキによっても、エンジ
ン吹きが発生するが、この場合エンジン吹き量がそれ程
大きくないので、所定値以上のエンジン吹き量を検出す
ることによる判断に基づき、上記外乱を排除して、係合
側及び解放側のタイミング不良によるエンジン吹きを確
実に検出すると共に、該エンジン吹き量に応じて補正量
を設定するので、エンジン吹きを確実に抑制することが
できる。According to the fifth aspect of the present invention, the engine is blown even when the torque sharing between the engagement side and the release side does not work well or when there is an individual variation in the speed change by the gripping change. Since it is not so large, the above disturbance is eliminated based on the judgment by detecting the engine blowing amount equal to or more than a predetermined value, and the engine blowing due to the timing failure on the engagement side and the release side is reliably detected, and the engine blowing Since the correction amount is set in accordance with the amount, engine blowing can be reliably suppressed.
【0024】請求項6に係る本発明によると、サーボ起
動制御時間内の所定時間中における入力回転加速度のマ
イナス方向の突出を検出してタイアップと判断するの
で、前記所定時間以外に生ずる入力回転加速度、例えば
路面の段差等による外乱を排除して、タイアップを正確
に抑制することができる。According to the sixth aspect of the present invention, a tie-up is determined by detecting a protrusion in the negative direction of the input rotational acceleration during a predetermined time within the servo start control time. Tie-up can be accurately suppressed by eliminating disturbance due to acceleration, for example, a step on a road surface.
【0025】[0025]
【発明の実施の形態】本自動変速機は、多数のクラッチ
又はブレーキ等の摩擦係合要素を有し、これら摩擦係合
要素を適宜断・接することによりプラネタリギヤの伝動
経路が選択される自動変速機構(図示せず)を備えてお
り、該自動変速機構の入力軸が、エンジン出力軸にトル
クコンバータを介して連結しており、またその出力軸が
駆動車輪に連結している。DESCRIPTION OF THE PREFERRED EMBODIMENTS The present automatic transmission has a number of frictional engagement elements such as clutches or brakes, and an automatic transmission in which the transmission path of a planetary gear is selected by appropriately connecting and disconnecting these frictional engagement elements. A mechanism (not shown) is provided, and the input shaft of the automatic transmission mechanism is connected to an engine output shaft via a torque converter, and the output shaft is connected to drive wheels.
【0026】図1は、電気系制御を示すブロック図であ
り、1は、マイクロコンピュータ(マイコン)からなる
制御部(ECU)で、エンジン回転センサ2、ドライバ
のアクセルペダル踏み量を検出するスロットル開度セン
サ3、トランスミッション(自動変速機構)の入力軸回
転数(=タービン回転数)を検出するセンサ5、車速
(=自動変速機出力軸回転数)センサ6及び油温センサ
7からの各信号が入力しており、また油圧回路のリニア
ソレノイドバルブSLS及びSLUに出力している。前
記制御部1は、入力軸回転数センサ5からの信号に基づ
き入力回転加速度αを検出するタイアップ・エンジン吹
き検出手段1aと、該検出手段の検出値に基づきサーボ
起動制御における所定油圧特性を学習・補正するサーボ
起動制御手段1bとを有しており、例えば該サーボ起動
制御手段(ファストフィル制御手段1b)により補正さ
れたファストフィル時間による所定制御信号が前記リニ
アソレノイドバルブSLS又はSLUに出力する。FIG. 1 is a block diagram showing electric system control. Reference numeral 1 denotes a control unit (ECU) comprising a microcomputer (microcomputer), an engine rotation sensor 2 and a throttle opening for detecting a driver's accelerator pedal depression amount. Each signal from the degree sensor 3, the sensor 5 for detecting the input shaft rotation speed (= turbine rotation speed) of the transmission (automatic transmission mechanism), the vehicle speed (= automatic transmission output shaft rotation speed) sensor 6, and the oil temperature sensor 7 And is output to the linear solenoid valves SLS and SLU of the hydraulic circuit. The control unit 1 includes a tie-up engine blowing detection unit 1a that detects an input rotation acceleration α based on a signal from the input shaft rotation speed sensor 5, and a predetermined hydraulic characteristic in servo activation control based on a detection value of the detection unit. A servo control unit 1b for learning and correcting, for example, a predetermined control signal based on the fast fill time corrected by the servo start control unit (fast fill control unit 1b) is output to the linear solenoid valve SLS or SLU. I do.
【0027】図2は、油圧回路の概略を示す図であり、
前記2個のリニアソレノイドバルブSLS及びSLUを
有すると共に、自動変速機構のプラネタリギヤユニット
の伝達経路を切換えて、例えば前進4速又は5速、後進
1速の変速段を達成する複数の摩擦係合要素(クラッチ
及びブレーキ)を断接作動する複数の油圧サーボ9、1
0を有している。また、前記リニアソレノイドバルブS
LS及びSLUの入力ポートa1 ,a2 にはソレノイド
モジュレータ圧が供給されており、これらリニアソレノ
イドバルブの出力ポートb1 ,b2 からの制御油圧がそ
れぞれプレッシャコントロールバルブ11,12の制御
油室11a,12aに供給されている。プレッシャコン
トロールバルブ11,12は、ライン圧がそれぞれ入力
ポート11b,12bに供給されており、前記制御油圧
にて調圧された出力ポート11c,12cからの調圧
が、それぞれシフトバルブ13,15を介して適宜各油
圧サーボ9,10に供給される。FIG. 2 is a diagram schematically showing a hydraulic circuit.
A plurality of friction engagement elements having the two linear solenoid valves SLS and SLU and switching a transmission path of a planetary gear unit of an automatic transmission mechanism to achieve, for example, a forward fourth speed or a fifth speed and a reverse first speed. A plurality of hydraulic servos 9 for connecting and disconnecting (clutches and brakes)
It has 0. Further, the linear solenoid valve S
Solenoid modulator pressure is supplied to input ports a 1 and a 2 of LS and SLU, and control oil pressures from output ports b 1 and b 2 of these linear solenoid valves are applied to control oil chambers of pressure control valves 11 and 12, respectively. 11a and 12a. The pressure control valves 11 and 12 supply line pressures to the input ports 11b and 12b, respectively, and the pressure regulation from the output ports 11c and 12c regulated by the control hydraulic pressure is applied to the shift valves 13 and 15 respectively. It is supplied to the hydraulic servos 9 and 10 as needed.
【0028】なお、本油圧回路は、基本概念を示すため
のものであって、各油圧サーボ9,10及びシフトバル
ブ13,15は、象徴的に示すものであり、実際には、
自動変速機構に対応して油圧サーボは多数備えられてお
り、これら油圧サーボへの油圧を切換えるシフトバルブ
も多数備えている。また、油圧サーボ10に示すように
油圧サーボは、シリンダ16にオイルシール17により
油密状に嵌合するピストン19を有しており、該ピスト
ン19は、油圧室20に作用するプレッシャコントロー
ルバルブ12からの調圧油圧に基づき、戻しスプリング
21に抗して移動し、外側摩擦プレート22及び内側摩
擦材23を接触する。該摩擦プレート及び摩擦材は、ク
ラッチで示してあるが、ブレーキにも同様に対応するこ
とは勿論である。This hydraulic circuit is for showing the basic concept, and the hydraulic servos 9 and 10 and the shift valves 13 and 15 are shown symbolically.
A number of hydraulic servos are provided corresponding to the automatic transmission mechanism, and a number of shift valves for switching the hydraulic pressure to these hydraulic servos are also provided. Further, as shown in the hydraulic servo 10, the hydraulic servo has a piston 19 which is fitted to the cylinder 16 in an oil-tight manner by an oil seal 17, and the piston 19 is provided with a pressure control valve 12 acting on a hydraulic chamber 20. The outer friction plate 22 and the inner friction material 23 come into contact with each other based on the pressure-adjusted hydraulic pressure from the first and second springs, and move against the return spring 21. Although the friction plate and the friction material are shown by the clutch, it is needless to say that the friction plate and the friction material also correspond to the brake.
【0029】ついで、図3及び図4に沿って、アクセル
ペダルを略々一定状態で踏んでいる状態(パワーオン状
態)でアップシフトする際の制御油圧について説明す
る。Next, with reference to FIGS. 3 and 4, a description will be given of the control oil pressure at the time of upshifting with the accelerator pedal depressed in a substantially constant state (power-on state).
【0030】ドライバのアクセルペダル操作に基づくス
ロットル開度センサ3及び車速センサ6からの信号によ
り、制御部1内の変速マップに基づき変速判断、例えば
2→3変速のアップシフト判断がなされる。そして、所
定シフトバルブの操作等の前処理のための所定時間経過
後、係合側油圧PA 及び解放側油圧PB の変速制御が開
始される。該変速開始と同時に、係合側の油圧サーボへ
の油圧(係合側油圧)PA が所定高圧PS1になるように
所定信号をリニアソレノイドバルブSLS(又はSL
U)に出力する。該所定高圧(ファストフィル圧)PS1
は、油圧サーボの油圧室20を満たすために必要な油圧
に設定されており(ファストフィル)、所定時間tSA保
持される。該所定時間tSAが経過すると、係合油圧PA
は、所定勾配dPでスイープダウンし、係合油圧PA が
所定低圧PS2になると、該スイープダウンが停止され、
該所定低圧PS2に保持される。該所定低圧PS2は、サー
ボ起動圧以上でかつ入力軸の回転変化を生じさせない圧
に設定されており、該所定低圧PS2は、計時が所定時間
tSE経過するまで保持される。この状態は、ピストン1
9を摩擦プレート22及び摩擦材23が接触するように
ストロークし(ガタ詰め)、該係合側摩擦係合要素がト
ルク容量を有する直前の状態に保持されるサーボ起動制
御であって、前記ファストフィル時間tSAと、スイープ
ダウンしかつ所定低圧にて保持する待機時間tSBとから
なる予め設定された所定一定時間tSEを継続する。一
方、解放側油圧PB は、クラッチ保持圧等の係合圧PK
に保持されて、上記所定時間tSE待機する。Based on the signals from the throttle opening sensor 3 and the vehicle speed sensor 6 based on the operation of the accelerator pedal by the driver, a shift determination, for example, a 2 → 3 shift upshift determination is made based on a shift map in the control unit 1. Then, after a predetermined time has elapsed for the pretreatment operation by the predetermined shift valve, the shift control of the engagement hydraulic pressure P A and the disengagement side pressure P B is started. Simultaneously with the start of the shift, a predetermined signal is sent to the linear solenoid valve SLS (or SL) so that the hydraulic pressure (engaged hydraulic pressure) P A applied to the hydraulic servo on the engagement side becomes the predetermined high pressure P S1.
U). The predetermined high pressure (fast fill pressure) P S1
Is set to a hydraulic pressure required to fill the hydraulic chamber 20 of the hydraulic servo (fast fill), and is maintained for a predetermined time t SA . When the predetermined time t SA has elapsed, the engagement hydraulic pressure P A
Sweeps down with a predetermined gradient dP, the engaging pressure P A becomes a predetermined low pressure P S2, the sweep-down is stopped,
It is kept at the predetermined low pressure P S2 . The predetermined low pressure P S2 is set to a pressure that is equal to or higher than the servo start pressure and does not cause a change in the rotation of the input shaft, and the predetermined low pressure P S2 is maintained until the time counts a predetermined time t SE . In this state, piston 1
9 is a servo start-up control in which the friction plate 22 and the friction material 23 are stroked so as to come into contact with each other (playback reduction), and the engagement-side friction engagement element is maintained in a state immediately before having a torque capacity. A predetermined predetermined time t SE , which is composed of the fill time t SA and the standby time t SB for sweeping down and holding at a predetermined low pressure, is continued. On the other hand, the release side hydraulic pressure P B is equal to the engagement pressure P K such as the clutch holding pressure.
, And waits for the predetermined time t SE .
【0031】前記所定時間tSEが経過すると、解放側油
圧PB は、摩擦係合要素がトルク容量を有するギリギリ
の状態の油圧PW まで低下し、そして係合側油圧PA は
所定勾配にてスイープアップすると共に、解放側油圧は
所定勾配にてスイープダウンする。これにより、係合側
摩擦係合要素は、油圧が上昇するのに伴いトルク容量が
増大するが、この状態では該係合側摩擦係合要素はスリ
ップして回転変化を生ずることはなく、トルク分担だけ
が変化するトルク相となる。After the lapse of the predetermined time t SE , the disengagement side oil pressure P B decreases to the last oil pressure P W in which the friction engagement element has the torque capacity, and the engagement side oil pressure P A becomes a predetermined gradient. And the release hydraulic pressure sweeps down at a predetermined gradient. As a result, the torque capacity of the engagement-side friction engagement element increases as the hydraulic pressure increases. In this state, however, the engagement-side friction engagement element slips and does not cause a rotation change. Only the allotment becomes a changing torque phase.
【0032】該トルク相における係合側及び解放側油圧
PA 、PB は、該アップシフトにあっては、係合側油圧
が、入力軸回転数変化を開始する直前の目標油圧に向っ
てスイープアップ制御され、かつ該係合側油圧に応じて
解放側油圧が制御される。具体的には、本出願人が既に
提案した特願平7−330895号並びに特願平8−1
09787号(共に本願出願時未公開)に述べる制御が
好ましい。In the upshift, the engagement-side and release-side hydraulic pressures P A and P B in the torque phase are set so that the engagement-side hydraulic pressure is shifted toward the target hydraulic pressure immediately before the start of the input shaft speed change. The sweep-up control is performed, and the release hydraulic pressure is controlled according to the engagement hydraulic pressure. More specifically, Japanese Patent Application No. 7-330895 and Japanese Patent Application No. 8-1 already proposed by the present applicant.
No. 09787 (both not disclosed at the time of filing the present application) is preferable.
【0033】そして、係合側摩擦係合要素のトルク容量
が増加すると共に、解放側摩擦係合要素のトルク容量が
減少して、入力軸回転数NT が下がり始め、イナーシャ
相となる。該イナーシャ相にあっては、係合側油圧PA
は、入力軸回転数センサ5の検出に基づく回転変化量に
てフィードバック制御され、かつ解放側油圧PB は、該
係合側油圧に応じて制御され、係合側摩擦係合要素が完
全に係合して入力軸回転数NT が変速後段の回転比にな
ると、係合側油圧がライン圧まで上昇して変速終了とな
る。Then, as the torque capacity of the engagement-side frictional engagement element increases, the torque capacity of the disengagement-side frictional engagement element decreases, and the input shaft rotation speed NT starts to decrease, resulting in an inertia phase. In the inertia phase, the engagement side hydraulic pressure P A
Is controlled by the amount of rotation change based on the detection of the input shaft speed sensor 5, and the release-side hydraulic pressure P B is controlled in accordance with the engagement-side hydraulic pressure. When the input shaft rotation speed NT reaches the rotation ratio at the stage after the gear shift due to the engagement, the engagement side hydraulic pressure increases to the line pressure, and the gear shift ends.
【0034】ついで、本発明の主要部である前記サーボ
起動制御におけるファストフィルの学習制御について、
図5(a) に示すフローチャートに沿って説明する。Next, the fast-fill learning control in the servo activation control which is a main part of the present invention will be described.
This will be described with reference to the flowchart shown in FIG.
【0035】アップシフト変速制御開始に伴い、直ちに
サーボ起動制御となるが、まず、予め一定に設定されて
いる初期値X(msec)と、後述する学習された学習
値(msec)Yとの合計により係合側ファストフィル
時間tSA(=X+Y)が設定される(S1)。ついで、
油圧の遅れ時間を考慮してサーボ起動制御の前記所定時
間tSEが設定され(S2)、更に上記ファストフィルの
所定圧(限界圧)PS1、所定低圧PS2、そして上記所定
圧から所定低圧へのスイープダウン勾配dPが設定され
る(S3)。また、入力軸回転数センサ5に基づき、現
在の入力回転数の加速度α、即ち入力回転数の変動率が
演算されて記憶される(S4)。なお、該加速度αの記
憶は、予め定められた所定時間、例えばサーボ起動制御
中又は前記初期値X経過後の一定時間等における入力軸
回転数センサ5の検出値に基づく値であって、これによ
りタイヤが路面段差を乗り越える等による加速度の外乱
が入り込む確率を減少する。そして、上記設定された時
間tSA、tSE及び油圧PS1、PS2、dPに基づく制御油
圧が、リニアソレノイドバルブSLS又はSLUから出
力され(S5)、これによりサーボ起動制御が終了す
る。When the upshift control is started, the servo start control is immediately performed. First, a total of a preset initial value X (msec) and a learned value (msec) Y, which will be described later, is set. Sets the engagement-side fast fill time t SA (= X + Y) (S1). Then
The predetermined time t SE of the servo activation control is set in consideration of the hydraulic pressure delay time (S2), and further, the predetermined pressure (limit pressure) P S1 of the fast fill, the predetermined low pressure P S2 , and the predetermined low pressure to the predetermined low pressure. Is set (S3). Further, based on the input shaft speed sensor 5, the acceleration α of the current input speed, that is, the fluctuation rate of the input speed is calculated and stored (S4). The storage of the acceleration α is a value based on the detection value of the input shaft speed sensor 5 during a predetermined period of time, for example, during the servo activation control or during a certain period of time after the initial value X has elapsed. As a result, the probability of entry of disturbance due to acceleration due to, for example, the tire getting over a bump on the road surface is reduced. Then, the control oil pressure based on the set times t SA and t SE and the oil pressures P S1 , P S2 and dP is output from the linear solenoid valve SLS or SLU (S5), thereby ending the servo activation control.
【0036】その後、前記記憶した加速度αに基づき、
それがマイナス側であればタイアップと判断し、プラス
側であって所定下限値L以上であればエンジン吹きと判
断し、かつその大きさによりタイアップ量及び吹き量を
算出する(S6)。そして、上記タイアップ量及び吹き
量から、図5(b) のマップにより、前記係合側ファスト
フィル時間tSAを設定する(S1参照)ための学習値Y
を算出する。なお、サーボ起動制御時間tSEが一定時間
からなる関係上、前記ファストフィル時間tSAの補正に
基づき、それに応じて待機時間tSAも変更される。Thereafter, based on the stored acceleration α,
If it is on the minus side, it is determined to be tie-up, and if it is on the plus side and equal to or greater than the predetermined lower limit L, it is determined that engine blowing has occurred, and the tie-up amount and blowing amount are calculated based on the magnitude (S6). A learning value Y for setting the engagement-side fast-fill time t SA based on the tie-up amount and the blowing amount according to the map shown in FIG. 5B (see S1).
Is calculated. Since the servo activation control time t SE is a fixed time, the standby time t SA is changed accordingly based on the correction of the fast fill time t SA .
【0037】図3はタイアップ時を示す図で、該タイア
ップは、係合側油圧の立上がりが早すぎ、解放側摩擦係
合要素が充分なトルク容量を有する内に係合側摩擦係合
要素のトルク容量が大きくなってオーバラップ状態とな
った場合に生じ、入力回転加速値αは瞬間的に所定量以
上でマイナス方向に突出する。この際、サーボ起動制御
におけるピストンがストローク仕切らない時間を設定
し、該時間内における上記入力回転加速度αの最大値を
検出・演算し、外乱が入り込む確率を減少する。また、
上記加速度のマイナス方向の突出に続くプラス方向の突
出は、タイアップに際して必然的に生ずるゆり返しであ
ってこれは加速度として検出されない。FIG. 3 is a view showing a tie-up operation. In the tie-up operation, the engagement side hydraulic pressure rises too early, and the engagement side friction engagement element has a sufficient torque capacity while the release side friction engagement element has a sufficient torque capacity. This occurs when the torque capacity of the element becomes large and the elements overlap each other, and the input rotation acceleration value α instantaneously projects in the minus direction by a predetermined amount or more. At this time, a time during which the piston does not partition the stroke in the servo activation control is set, and the maximum value of the input rotational acceleration α within the time is detected and calculated, thereby reducing the probability of disturbance. Also,
The positive protrusion following the negative protrusion of the acceleration is a repetition that occurs inevitably at the time of tie-up, and is not detected as the acceleration.
【0038】そして、上記加速度αのマイナス方向に突
出量が小さい場合(a)、小さなタイアップ量を算出し
て該タイアップ量に対応した小さな学習値[−A](Y
=−A)が算出される。これにより、次回の該アップシ
フト変速に際して、ファストフィル時間tSAは、初期値
Xから上記学習値[−A]を加算した値(tSA=X−
A)[msec]として設定される。また、上記加速度
αのマイナス方向突出量が大きい場合(b)、大きなタ
イアップ量を算出して該タイアップ量に対応した大きな
学習値[−B](Y=−B)が算出される。これによ
り、次回の該アップシフト変速に際して、ファストフィ
ル時間tSAは、初期値Xから上記学習値[−A]を加算
した値(tSA=X−A)[msec]として設定され
る。If the amount of protrusion in the minus direction of the acceleration α is small (a), a small tie-up amount is calculated and a small learning value [-A] (Y
= -A) is calculated. Thus, at the time of the next upshift, the fast fill time t SA is a value obtained by adding the learning value [−A] from the initial value X (t SA = X−).
A) It is set as [msec]. If the amount of protrusion of the acceleration α in the negative direction is large (b), a large tie-up amount is calculated, and a large learning value [−B] (Y = −B) corresponding to the tie-up amount is calculated. Thus, at the time of the next upshift, the fast fill time t SA is set as a value (t SA = X−A) [msec] obtained by adding the learning value [−A] to the initial value X.
【0039】これにより、タイアップ量に基づく学習値
によりファストフィル時間tSAが補正されて短くなり、
該サーボ起動制御におけるサーボ起動量は小さくなる。
これにより、解放側及び係合側摩擦係合要素のオーバラ
ップ量は減少され、上記タイアップは軽減又は解消す
る。As a result, the fast fill time t SA is corrected by the learning value based on the tie-up amount, and becomes shorter.
The servo activation amount in the servo activation control becomes small.
As a result, the amount of overlap between the disengagement side and engagement side frictional engagement elements is reduced, and the tie-up is reduced or eliminated.
【0040】図4はエンジン吹き時を示す図で、該エン
ジン吹きは、係合側油圧の立上りが遅すぎ、解放側摩擦
係合要素のトルク容量が充分に小さくなっても、係合側
摩擦係合要素のトルク容量の増加が充分でない場合(ア
ンダーラップ状態)に発生し、入力回転加速度αが所定
量l 以上の下限値Lよりプラス方向に突出する。該加速
度αの上昇は、係合側及び解放側摩擦係合要素のトルク
分担がうまくいかない場合又は個々のバラツキ等によっ
ても生ずるが、この場合、吹き量はそれ程大きくなく、
一般に加速度αが上記下限値Lを超えることはなく、従
って該下限値Lを越えた場合のみ、係合側及び解放側摩
擦係合要素のタイミング不良と判断して、ファストフィ
ル時間の学習による補正を行う。FIG. 4 is a diagram showing the time of engine blowing. In the case of engine blowing, even if the rise of the hydraulic pressure on the engagement side is too slow and the torque capacity of the disengagement side frictional engagement element becomes sufficiently small, the friction on the engagement side is reduced. This occurs when the torque capacity of the engagement element is not sufficiently increased (underlap state), and the input rotational acceleration α projects in the plus direction from the lower limit L equal to or more than the predetermined amount l. The acceleration α increases when the torque distribution of the engagement-side and release-side frictional engagement elements does not work well or due to individual variations, but in this case, the blowing amount is not so large,
In general, the acceleration α does not exceed the lower limit value L. Therefore, only when the acceleration α exceeds the lower limit value L, it is determined that the timing of the engagement side and the release side frictional engagement elements is defective, and the correction by learning the fast fill time is performed. I do.
【0041】サーボ起動制御中(t<tSE)又は経過後
所定時間内にプラス方向に所定下限値L以上の加速度α
が現出すると、エンジン吹きと判断して、加速度αの量
により吹き量を算出する。そして、加速度が小さい場合
(c)、算出される学習値[C](Y=C)も小さく、
ファストフィル時間tSEは、初期値Xに上記学習値
[C]を加算して設定される(tSE=X+C)。また、
加速度が大きい場合(d)、算出される学習値[D]
(Y=D)も大きく、ファストフィル時間tSEは、初期
値Xに上記学習値[D]を加算して設定される(tSE=
X+D)。During the servo activation control (t <t SE ) or within a predetermined time after the elapse of the acceleration, the acceleration α which is equal to or more than the predetermined lower limit L in the plus direction.
Appears, engine blowing is determined, and the blowing amount is calculated based on the amount of acceleration α. When the acceleration is small (c), the calculated learning value [C] (Y = C) is also small,
The fast fill time t SE is set by adding the learning value [C] to the initial value X (t SE = X + C). Also,
When the acceleration is large (d), the calculated learning value [D]
(Y = D) is also large, and the fast fill time t SE is set by adding the learning value [D] to the initial value X (t SE =
X + D).
【0042】これにより、エンジン吹き時には、その吹
き量に応じてファストフィル時間tSEが長くなるように
補正される。これにより、係合側油圧の上昇に伴い、素
早く係合側摩擦係合要素は比較的大きなトルク容量を備
え、係合側及び解放側摩擦係合要素のアンダーラップ量
を減少してエンジン吹きを軽減又は解消する。Thus, when the engine is blown, correction is made so that the fast fill time t SE becomes longer in accordance with the blowing amount. With this, as the engagement-side hydraulic pressure increases, the engagement-side friction engagement element quickly has a relatively large torque capacity, and reduces the amount of underlap of the engagement-side and release-side friction engagement elements to reduce engine blowing. Reduce or eliminate.
【0043】なお、上述実施の形態は、タイアップ量及
びエンジン吹き量を入力軸回転数センサ5に基づく入力
回転加速度αにより求めたが、これに限らず、車速セン
サ6とギヤ比とにより算出される出力側回転数と、入力
軸回転数センサ5による入力側回転数との差により求め
てもよい。また、上記実施の形態は、サーボ起動制御を
ファストフィル時間tSAにより変更補正したが、ファス
トフィル圧PS1を変更制御するようにしてもよく、更に
これに限らず、全体で一定時間(tSE)からなるサーボ
起動制御において、ファストフィル時間tSAと待機時間
のバランスを変更制御するようにすればよい。更に、上
記実施の形態は、アップシフトについて説明したが、掴
み換えによるダウンシフトに際しても適用可能である。In the above-described embodiment, the tie-up amount and the engine blowing amount are obtained by the input rotation acceleration α based on the input shaft speed sensor 5. However, the present invention is not limited to this, and is calculated by the vehicle speed sensor 6 and the gear ratio. Alternatively, the difference may be obtained from the difference between the output-side rotation speed and the input-side rotation speed detected by the input shaft speed sensor 5. In the above-described embodiment, the servo start control is changed and corrected by the fast fill time t SA . However, the change may be controlled by changing the fast fill pressure P S1 , and the present invention is not limited to this. In the servo activation control consisting of SE ), the balance between the fast fill time t SA and the standby time may be changed and controlled. Further, although the above embodiment has been described with reference to an upshift, it is also applicable to a downshift by gripping.
【図1】本発明に係る電気ブロック図。FIG. 1 is an electric block diagram according to the present invention.
【図2】本発明に係る油圧回路の概略を示す図。FIG. 2 is a diagram schematically showing a hydraulic circuit according to the present invention.
【図3】タイアップ時におけるタイムチャートを示す
図。FIG. 3 is a diagram showing a time chart at the time of tie-up.
【図4】エンジン吹き時におけるタイムチャートを示す
図。FIG. 4 is a diagram showing a time chart at the time of engine blowing.
【図5】(a) は本発明の実施の形態を示すフローチャー
トで、(b) はタイアップ量、吹き量と学習値との関係を
示す図。5A is a flowchart illustrating an embodiment of the present invention, and FIG. 5B is a diagram illustrating a relationship between a tie-up amount, a blowing amount, and a learning value.
1 制御部 1a タイアップ・エンジン吹き検出手段 1b サーボ起動(ファストフィル制御)手段 5 入力軸回転数センサ 9,10 油圧サーボ SLS,SLU 調圧手段(リニアソレノイドバル
ブ) α 入力回転加速度 PA 係合側油圧 PB 解放側油圧 PS1 所定高圧 PS2 所定低圧 tSE ファストフィル時間 Y 学習値1 control unit 1a tie-up engine racing detection unit 1b servo activation (fast fill control) unit 5 input shaft rotational speed sensor 9, 10 hydraulic servo SLS, SLU pressure regulating means (linear solenoid valve) alpha input revolution acceleration P A engagement side hydraulic P B disengagement side pressure P S1 predetermined pressure P S2 predetermined low pressure t SE fast fill time Y learning value
───────────────────────────────────────────────────── フロントページの続き (72)発明者 鈴木 研司 愛知県安城市藤井町高根10番地 アイシ ン・エィ・ダブリュ株式会社内 (72)発明者 筒井 洋 愛知県安城市藤井町高根10番地 アイシ ン・エィ・ダブリュ株式会社内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Kenji Suzuki 10 Takane, Fujiimachi, Anjo, Aichi Prefecture Inside Aisin AW Co., Ltd. (72) Inventor Hiroshi Tsutsui 10 Takane, Fujiimachi, Anjo, Aichi Prefecture Aisin・ AW Co., Ltd.
Claims (6)
力軸と、車輪に連結される出力軸と、これら入力軸と出
力軸との間で動力伝達経路を変更する複数の摩擦係合要
素と、これら摩擦係合要素を断・接作動する油圧サーボ
と、を備え、前記複数の摩擦係合要素の内の第1の摩擦
係合要素を係合すると共に、第2の摩擦係合要素を解放
することにより所定変速段への変速を達成するに先立
ち、前記第1の摩擦係合要素を、その油圧サーボに所定
特性にて油圧を供給してピストンをストロークし、トル
ク伝達直前の状態にするサーボ起動制御を行う、自動変
速機の変速制御装置において、 少なくとも前記第1の摩擦係合要素の油圧サーボに供給
される係合圧を調圧する調圧手段と、 前記変速中におけるタイアップ又はエンジン吹きを検出
する検出手段と、 該検出手段の検出値に基づき、前記サーボ起動制御にお
ける前記所定特性を補正するサーボ起動制御手段と、 を備えることを特徴とする自動変速機の変速制御装置。An input shaft to which power is input from an engine output shaft, an output shaft connected to wheels, and a plurality of friction engagement elements for changing a power transmission path between the input shaft and the output shaft. A hydraulic servo for disconnecting and engaging these friction engagement elements, and engaging a first friction engagement element among the plurality of friction engagement elements and a second friction engagement element. Prior to achieving a shift to a predetermined gear by releasing, the first friction engagement element is stroked by supplying hydraulic pressure to its hydraulic servo with predetermined characteristics to bring the first friction engagement element into a state immediately before torque transmission. A shift control device for an automatic transmission, which performs servo start control to perform at least one of: a pressure adjusting unit that adjusts an engagement pressure supplied to a hydraulic servo of at least the first friction engagement element; Inspection to detect engine blowing And means, based on a detection value of the detection means, the shift control device for an automatic transmission, characterized in that it comprises a servo activation control means, the correcting said predetermined characteristics in the servo activation control.
定高圧を供給するファストフィルと、前記所定高圧を所
定低圧に向けてスイープダウンする制御と、該所定低圧
にて保持する制御とを有すると共に、該サーボ起動制御
時間が略々一定時間からなり、 前記サーボ起動制御手段は、前記ファストフィルを制御
するファストフィル制御手段である、 請求項1記載の自動変速機の変速制御装置。2. The servo activation control includes a fast fill for supplying a predetermined high pressure to a hydraulic servo, a control for sweeping down the predetermined high pressure to a predetermined low pressure, and a control for holding the predetermined high pressure at the low pressure. The shift control device for an automatic transmission according to claim 1, wherein the servo start control time is substantially constant, and the servo start control means is a fast fill control means that controls the fast fill.
トフィル時間を補正してなる、 請求項2記載の自動変速機の変速制御装置。3. The shift control device for an automatic transmission according to claim 2, wherein said fast fill control means corrects a fast fill time.
であり、前記検出手段の検出値が、前記入力軸の回転を
検出するセンサの信号に基づき演算される入力回転加速
度である、 請求項1、2又は3記載の自動変速機の変速制御装置。4. The shift to the predetermined gear position is an upshift, and the detection value of the detection means is an input rotation acceleration calculated based on a signal of a sensor that detects rotation of the input shaft. 4. The shift control device for an automatic transmission according to claim 1, 2, or 3.
する検出値が、所定値以上のときにエンジン吹きと判断
し、前記所定値からの吹き量に応じて前記ファストフィ
ル制御手段の補正量を学習する、 請求項1ないし4のいずれか記載の自動変速機の変速制
御装置。5. When the detection value for detecting engine blowing by the detecting means is equal to or more than a predetermined value, it is determined that the engine is blowing, and the correction amount of the fast fill control means is learned according to the blowing amount from the predetermined value. The shift control device for an automatic transmission according to claim 1.
の所定時間中における前記入力回転加速度のマイナス方
向の突出を検出することによりタイアップと判断し、前
記入力回転加速度の量に応じて前記ファストフィル制御
手段の補正量を学習する、 請求項4記載の自動変速機の変速制御装置。6. A tie-up is detected by detecting a projection of the input rotational acceleration in a negative direction during a predetermined time within the servo control time, and the detecting means determines the tie-up according to an amount of the input rotational acceleration. The shift control device for an automatic transmission according to claim 4, wherein a correction amount of the fast fill control means is learned.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10974297A JP3427671B2 (en) | 1997-04-25 | 1997-04-25 | Transmission control device for automatic transmission |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10974297A JP3427671B2 (en) | 1997-04-25 | 1997-04-25 | Transmission control device for automatic transmission |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH10299880A true JPH10299880A (en) | 1998-11-13 |
JP3427671B2 JP3427671B2 (en) | 2003-07-22 |
Family
ID=14518104
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10974297A Expired - Fee Related JP3427671B2 (en) | 1997-04-25 | 1997-04-25 | Transmission control device for automatic transmission |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3427671B2 (en) |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002031226A (en) * | 2000-07-12 | 2002-01-31 | Honda Motor Co Ltd | Gear control device for automatic transmission for vehicle |
JP2002031223A (en) * | 2000-07-12 | 2002-01-31 | Honda Motor Co Ltd | Shift control device for automatic transmission for vehicle |
JP2005155848A (en) * | 2003-11-27 | 2005-06-16 | Jatco Ltd | Gear shift controller for automatic transmission |
JP2007016933A (en) * | 2005-07-08 | 2007-01-25 | Toyota Motor Corp | Power output device, automobile mounted therewith, and control method for power output device |
JP2007100927A (en) * | 2005-10-07 | 2007-04-19 | Toyota Motor Corp | Automatic transmission control device |
JP2011038634A (en) * | 2009-07-17 | 2011-02-24 | Nissan Motor Co Ltd | Automatic transmission |
WO2012063715A1 (en) * | 2010-11-10 | 2012-05-18 | アイシン・エィ・ダブリュ株式会社 | Gear shift apparatus and control method thereof |
US8353799B2 (en) | 2009-07-17 | 2013-01-15 | Nissan Motor Co., Ltd. | Control of and control method for vehicle continuously variable transmission |
US8360920B2 (en) | 2009-07-17 | 2013-01-29 | Nissan Motor Co., Ltd. | Continuously variable transmission and control method thereof |
US8371985B2 (en) | 2009-07-17 | 2013-02-12 | Nissan Motor Co., Ltd. | Shift control of continuously variable transmission |
US8467946B2 (en) | 2009-07-17 | 2013-06-18 | Nissan Motor Co., Ltd. | Shift control of continuously variable transmission |
US8571768B2 (en) | 2009-07-17 | 2013-10-29 | Nissan Motor Co., Ltd. | Control of and control method for vehicle continuously variable transmission |
US8585542B2 (en) | 2009-07-17 | 2013-11-19 | Nissan Motor Co., Ltd. | Control of and control method for vehicle continuously variable transmission |
KR20160109934A (en) * | 2015-03-13 | 2016-09-21 | 현대자동차주식회사 | Learning control apparatus and method for automatic transmission |
JP2018083509A (en) * | 2016-11-22 | 2018-05-31 | トヨタ自動車株式会社 | Vehicle control device |
-
1997
- 1997-04-25 JP JP10974297A patent/JP3427671B2/en not_active Expired - Fee Related
Cited By (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002031226A (en) * | 2000-07-12 | 2002-01-31 | Honda Motor Co Ltd | Gear control device for automatic transmission for vehicle |
JP2002031223A (en) * | 2000-07-12 | 2002-01-31 | Honda Motor Co Ltd | Shift control device for automatic transmission for vehicle |
JP2005155848A (en) * | 2003-11-27 | 2005-06-16 | Jatco Ltd | Gear shift controller for automatic transmission |
JP2007016933A (en) * | 2005-07-08 | 2007-01-25 | Toyota Motor Corp | Power output device, automobile mounted therewith, and control method for power output device |
JP4600185B2 (en) * | 2005-07-08 | 2010-12-15 | トヨタ自動車株式会社 | Power output apparatus, automobile equipped with the same, and control method of power output apparatus |
JP2007100927A (en) * | 2005-10-07 | 2007-04-19 | Toyota Motor Corp | Automatic transmission control device |
US7637833B2 (en) | 2005-10-07 | 2009-12-29 | Toyota Jidosha Kabushiki Kaisha | Control apparatus and control method for automatic transmission |
JP4604951B2 (en) * | 2005-10-07 | 2011-01-05 | トヨタ自動車株式会社 | Control device for automatic transmission |
US8360920B2 (en) | 2009-07-17 | 2013-01-29 | Nissan Motor Co., Ltd. | Continuously variable transmission and control method thereof |
US8467946B2 (en) | 2009-07-17 | 2013-06-18 | Nissan Motor Co., Ltd. | Shift control of continuously variable transmission |
US8585542B2 (en) | 2009-07-17 | 2013-11-19 | Nissan Motor Co., Ltd. | Control of and control method for vehicle continuously variable transmission |
US8353799B2 (en) | 2009-07-17 | 2013-01-15 | Nissan Motor Co., Ltd. | Control of and control method for vehicle continuously variable transmission |
JP2011038634A (en) * | 2009-07-17 | 2011-02-24 | Nissan Motor Co Ltd | Automatic transmission |
US8371985B2 (en) | 2009-07-17 | 2013-02-12 | Nissan Motor Co., Ltd. | Shift control of continuously variable transmission |
US8386139B2 (en) | 2009-07-17 | 2013-02-26 | Nissan Motor Co., Ltd. | Shift control of automatic transmission |
US8571768B2 (en) | 2009-07-17 | 2013-10-29 | Nissan Motor Co., Ltd. | Control of and control method for vehicle continuously variable transmission |
CN103261754A (en) * | 2010-11-10 | 2013-08-21 | 爱信艾达株式会社 | Transmission device and control method thereof |
WO2012063715A1 (en) * | 2010-11-10 | 2012-05-18 | アイシン・エィ・ダブリュ株式会社 | Gear shift apparatus and control method thereof |
JP2012102810A (en) * | 2010-11-10 | 2012-05-31 | Aisin Aw Co Ltd | Transmission and its control method |
US8652003B2 (en) | 2010-11-10 | 2014-02-18 | Aisin Aw Co., Ltd. | Transmission device and controlling method thereof |
DE112011102387B4 (en) | 2010-11-10 | 2019-07-11 | Aisin Aw Co., Ltd. | Transmission device and control method for the same |
KR20160109934A (en) * | 2015-03-13 | 2016-09-21 | 현대자동차주식회사 | Learning control apparatus and method for automatic transmission |
US9618111B2 (en) | 2015-03-13 | 2017-04-11 | Hyundai Motor Company | Apparatus for learn control of automatic transmission and method thereof |
JP2018083509A (en) * | 2016-11-22 | 2018-05-31 | トヨタ自動車株式会社 | Vehicle control device |
Also Published As
Publication number | Publication date |
---|---|
JP3427671B2 (en) | 2003-07-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4821409B2 (en) | Hydraulic control device for automatic transmission | |
EP0900957B1 (en) | Hydraulic control system for automatic transmission | |
US7503875B2 (en) | Ratio shift control for a multiple ratio automatic transmission | |
US7074158B2 (en) | Shift control apparatus of automatic transmission of motor vehicle | |
JP3334485B2 (en) | Hydraulic control device for automatic transmission | |
EP0780602B1 (en) | Hydraulic pressure control apparatus of automatic transmission | |
US6259983B1 (en) | Hydraulic control system for automatic transmission | |
US6503165B1 (en) | Hydraulic control device for automatic transmission | |
JP3427671B2 (en) | Transmission control device for automatic transmission | |
JP2881175B2 (en) | Servo hydraulic controller for automatic transmission | |
JPH1089455A (en) | Hydraulic control device of automatic transmission | |
JPH1182721A (en) | Shift control device of automatic transmission | |
JPH10184410A (en) | Shift controller of automatic transmission | |
KR20080041992A (en) | Upshift control apparatus of automatic transmission | |
KR100325222B1 (en) | A device and the method for piston stroke detects automatic transmission of vehicle | |
JP3656506B2 (en) | Creep force control device for vehicle automatic transmission | |
JP3371747B2 (en) | Transmission control device for automatic transmission | |
JP3630072B2 (en) | Creep force control device for vehicle automatic transmission | |
JP3528537B2 (en) | Hydraulic control device for automatic transmission | |
JPH1182704A (en) | Hydraulic control device of automatic transmission | |
JP3600714B2 (en) | Control device for automatic transmission | |
JPH10181386A (en) | Shift control device automatic transmission | |
JP2001124196A (en) | Shift control device of automobile | |
JP3679242B2 (en) | Hydraulic control device for automatic transmission | |
JP3399313B2 (en) | Hydraulic control device for automatic transmission |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080516 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090516 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100516 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100516 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110516 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120516 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120516 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130516 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140516 Year of fee payment: 11 |
|
LAPS | Cancellation because of no payment of annual fees |