JP3599628B2 - Composite hard film coated member - Google Patents

Composite hard film coated member Download PDF

Info

Publication number
JP3599628B2
JP3599628B2 JP2000049530A JP2000049530A JP3599628B2 JP 3599628 B2 JP3599628 B2 JP 3599628B2 JP 2000049530 A JP2000049530 A JP 2000049530A JP 2000049530 A JP2000049530 A JP 2000049530A JP 3599628 B2 JP3599628 B2 JP 3599628B2
Authority
JP
Japan
Prior art keywords
hard film
composite hard
composite
atomic ratio
coated member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000049530A
Other languages
Japanese (ja)
Other versions
JP2001234328A (en
Inventor
護 木幡
敏行 渡邉
克彦 関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tungaloy Corp
Original Assignee
Tungaloy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tungaloy Corp filed Critical Tungaloy Corp
Priority to JP2000049530A priority Critical patent/JP3599628B2/en
Publication of JP2001234328A publication Critical patent/JP2001234328A/en
Application granted granted Critical
Publication of JP3599628B2 publication Critical patent/JP3599628B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Laminated Bodies (AREA)
  • Physical Vapour Deposition (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、超高温高圧焼結体でなる基材上にチタンーアルミニウム含有複合化合物でなる複合硬質膜を含む被覆層が被覆された複合硬質膜被覆部材に関するものである。
【0002】
【従来の技術】
従来から金属、合金、焼結合金、セラミックス焼結体または超高温高圧焼結体の基材上に、化学蒸着法(以下、「CVD法」という),物理蒸着法(以下、「PVD法」という)またはプラズマCVD法を利用して硬質膜を被覆し、基材と硬質膜とを有効に利用した硬質膜被覆部材が実用されてきている。現在、実用されている硬質膜被覆部材における硬質膜の材質は、Tiの窒化物,炭窒化物,炭化物などのTi元素含有硬質膜と,TiとAlを含有の複合窒化物,複合炭窒化物などのTiーAl元素含有複合硬質膜と、酸化アルミニウム硬質膜を代表例として挙げることができる。
【0003】
これらの硬質膜被覆部材のうち、基材上に、TiーAl元素含有複合硬質膜を被覆し、TiーAl元素含有複合硬質膜の特性を有効に引き出して、長寿命を達成しようとした複合硬質膜被覆部材が多数提案されている。これらのうち、複合硬質膜の結晶構造から長寿命を達成させることについて提案されている代表的なものに、特開平8ー209335号公報、特開平9−291353号公報、特開平9ー295204号公報、特開平9ー300105号公報、特開平9ー300106号公報、特開平9ー323204号公報、特開平9ー323205号公報、特開平10ー76407号公報、特開平10ー76408号公報、特開平11ー1762号公報、特開平11ー131214号公報、特開平11ー131215号公報、特開平11ー131216号公報、および特開平11ー131217号公報がある。また、TiーAl元素含有複合硬質膜ではなく、Ti元素含有化合物硬質膜を被覆した被覆超硬合金について提案されている代表的なものに、特開昭52ー28478号公報がある。
【0004】
【発明が解決しようとする課題】
TiーAl元素含有複合硬質膜を被覆した複合硬質膜被覆部材に関する先行技術文献のうち、特開平8ー209335号公報、特開平9ー295204号公報、特開平9ー300105号公報、特開平9ー300106号公報、特開平9ー323204号公報、特開平9ー323205号公報、特開平10ー76407号公報、特開平10ー76408号公報、特開平11ー131215号公報、および特開平11ー131217号公報には、Ti−Al元素含有複合硬質膜のX線回折における(111)結晶面のピーク高さに対する(200)結晶面のピーク高さの比が1以上、1.5以上または2以上である構成要件を含む被覆部材について開示されている。また、先行技術文献のうち、特開平9ー291353号公報、特開平11ー131214号公報および特開平11ー131216号公報には、Ti−Al元素含有複合硬質膜のX線回折における(111)結晶面のピーク高さに対する(200)結晶面のピーク高さの比が2以下である構成要件を含む被覆部材について開示されている。
【0005】
また、特開平10ー317123号公報には、Cu,Kα線を線源とするX線回折における(Ti,Al)Nに代表される複合硬質膜の回折ピークのうち、(200)結晶面が最高回折ピーク高さとなる構成要件を含む複合硬質膜部材について、さらに特開平11ー1762号公報には、Cu,Kα線を線源とするX線回折における同複合硬質膜の回折ピークのうち、42.5〜44.5度内の回折角(2θ)に最高回折ピーク高さを構成要件とする複合硬質膜被覆部材について開示されている。
【0006】
これら15件の公開特許公報には、Ti−Al元素含有複合硬質膜における複合硬質膜内の残留圧縮応力、または複合硬質膜内の結晶配向を考慮し、複合硬質膜内の粒界破壊の抑制、基材と複合硬質膜との密着性の向上、耐摩耗性の向上を発揮させることにより、安定した切削加工と長寿命を可能としたことが開示されている。しかしながら、これら15件の同公報に記載されている複合硬質膜被覆部材は、複合硬質膜に存在する結晶の欠陥および歪みに配慮されていないことから、複合硬質膜自体の強度,耐摩耗性に満足できなく、その結果基材と複合硬質膜との密着性および複合硬質膜と隣接する他の膜との密着性に満足できなく、寿命のバラツキが大きく、切削工具として実用したときに低温領域から高温領域まで広範囲の領域において、安定して長寿命を得ることが困難であるという問題を有している。
【0007】
その他、Ti−Al元素含有複合硬質膜に関する先行技術文献ではないが、特開昭52ー28478号公報には、硬質膜の(200)結晶面におけるX線回折線が2θで半価幅が0.4度以上である硬質膜部材について開示されている。同公報に開示の硬質膜部材は、物理蒸着法による硬質膜であり、化学蒸着法による硬質膜との相違を半価幅により表現しており、硬質膜の結晶の欠陥および歪みを配慮していないことから、上述した複合硬質膜と同様に硬質膜の強度、耐摩耗性および密着性に満足できなく、寿命のバラツキが大きく、切削工具として実用したときに低温領域から高温領域まで広範囲の領域において、安定して長寿命を得ることが困難であるという問題を有している。
【0008】
本発明は、上述のような問題点を解決したもので、具体的には、チタンーアルミニウムを含む複合化合物でなる複合硬質膜の結晶の欠陥,歪み,結晶構造および結晶配向を配慮し、特に切削工具としての使用領域を拡大し、複合硬質膜の特性のバラツキを抑制し、高靭性,高硬度性,耐摩耗性,耐酸化性,耐熱衝撃性,耐欠損性,耐溶着性のある複合硬質膜、特に高強度および耐剥離性を高めて被削材との耐溶着性を向上させた複合硬質膜とすることにより一層長寿命を達成させた複合硬質膜被覆部材の提供を目的とするものである。
【0009】
【課題を解決するための手段】
本発明者らは、CVD法,PVD法およびプラズマPVD法に関する硬質膜の成膜についての研究、特にPVD法による硬質膜についての研究を長期に亘って行ってきた結果、硬質膜の中でもTi−Al含有の複合硬質膜の成膜時におけるプラズマ密度の向上およびイオン化効率の向上を行い、さらに気相法エピタキシャル成長させて、結晶を最適に配向させると、複合硬質膜内の歪みが均一に緩和されること、複合硬質膜の結晶の欠陥が抑制されること、微細結晶の複合硬質膜が得られることから、複合硬質膜自体の強度,耐摩耗性,耐酸化性および耐熱性を向上させることが可能となり、複合硬質膜と基材または下地層や外層との密着性の向上が顕著になるという第1の知見と、このように硬質膜が完全な結晶に近似する場合には、X線回折における最高ピークを含めた少なくとも2本の回折線ピークの高さ比および半価幅比から判断することが簡易であるという第2の知見とを得るに至ったものである。これらの知見に基づいて、本発明を完成するに至ったものである。
【0010】
本発明の複合硬質膜被覆部材は、超高温高圧焼結体でなる基材の表面にチタンとアルミニウムとを含む複合窒化物、複合炭化物、複合炭窒化物、複合窒酸化物、複合炭酸化物、複合炭窒酸化物の中から選ばれた少なくとも1種の複合硬質膜を含む単層または積層の被覆層として被覆されており、該複合硬質膜の表面から銅ターゲットを用いてX線回折したときに、(200)結晶面のピーク高さをh(200)とし、(111)結晶面のピーク高さをh(111)としたときに、h(200)/h(111)≧4.0からなり、該(200)結晶面のピークの半価幅をd(200)とし、該(111)結晶面のピークの半価幅をd(111)としたときに、1.5≧d(200)/d(111)≧0.8からなるものである。
【0011】
本発明の複合硬質膜被覆部材は、気相法エピタキシャル成長を利用して、チタンとアルミニウムとを含む複合硬質膜における(200)結晶面の配向を強くし、複合硬質膜内の歪みを極力抑制することにより、複合硬質膜自体の強度、靱性を高めると共に、耐摩耗性もすぐれるというシナージ効果を発揮させたものであり、複合硬質膜の表面から銅ターゲットを用いてX線回折したときに、h(200)/h(111)<4.0になる場合、d(200)/d(111)>1.5またはd(200)/d(111)<0.8になる場合には、(200)結晶面への配向性が弱く、膜内の欠陥および歪みが大きくなり、上述のシナージ効果が弱くなることから、上述のようなピーク高さ比および半価幅比と定めたものである。
【0012】
【発明の実施の形態】
本発明の複合硬質膜被覆部材における基材は、立方晶窒化硼素系焼結体,ダイヤモンド系焼結体に代表される超高温高圧焼結体を挙げることができる。これらのうち、従来から切削用工具または耐摩耗用工具として用いられている材料または物質を基材とする場合には、被覆切削用工具または被覆耐摩耗用工具としての寿命向上の効果が高くなることから、好ましいことである。
【0013】
これらの基材のうち、70体積%以上のダイヤモンドと残部の粒界相とからなるダイヤモンド系焼結体、ならびに20体積%以上の立方晶窒化硼素と粒界結合相とからなる立方晶窒化硼素系焼結体でなる場合が好ましいことである。これらのうち、ダイヤモンド系焼結体は、ダイヤモンド(以下、「DIA」と記す)が85〜98体積%と残部の粒界相が従来のダイヤモンド系焼結体に含有されている金属、合金、具体的には、Co,Ni,Fe,Siおよびこれらの相互固溶体の中から選ばれた少なくとも1種を含む場合には、基材と複合硬質膜との両特性を最適に発揮させることができ、切削工具としての寿命向上が顕著になることから好ましいことである。立方晶窒化硼素系焼結体は、立方晶窒化硼素が35〜95体積%と残部の粒界結合相が周期律表の4a,5a,6a族元素の炭化物、窒化物、硼化物、Si,Mg,Alの窒化物、硼化物、酸化物およびこれらの相互固溶体、Co,Ni,Ti,Alの金属、合金、金属間化合物の中から選ばれた少なくとも1種からなる場合には、基材と複合硬質膜との両特性を最適に発揮させることができ、切削工具としての寿命向上が顕著になることから好ましいことである。
【0014】
これらの基材に共通した問題として、基材の表面精度があり、基材の表面精度を高くすると、複合硬質膜の表面精度も高くなり、例えば、切削工具として使用した場合に摩擦抵抗が低くなって複合硬質膜表面および被削材表面の荒れが抑制されて、寿命向上効果が高くなることから好ましいことである。基材の表面精度は、JIS規格B0601に規定されている表面粗さにおける中心線平均粗さであるRaで0.1μm以下が好ましく、より好ましいのはRaが0.05μm以下からなるものである。
【0015】
これらの基材表面に被覆される複合硬質膜を含む被覆層の構成は、基材に隣接して密着性を目的に被覆される下地層、この下地層に隣接して被覆される本発明における複合硬質膜でなる中間層、この中間層に隣接して被覆される外層、この外層の表面に使用前後の判別および装飾目的で被覆される最外層などを2層以上に積層する構成、具体的には、例えば基材の表面に順次被覆される被覆層が基材ー下地層ー複合硬質膜(中間層)ー外層ー最外層からなる積層の構成、基材ー下地層ー複合硬質膜(中間層)ー外層からなる積層の構成、基材ー下地層ー複合硬質膜(中間層)の積層からなる構成、基材ー下地層ー複合硬質膜(中間層)ー最外層からなる積層の構成、基材ー複合硬質膜(中間層)ー外層ー最外層からなる積層の構成、基材ー複合硬質膜(中間層)ー外層からなる積層の構成、基材ー複合硬質膜(中間層)ー最外層の積層からなる構成、または基材ー複合硬質膜(中間層)の構成、を挙げることができる。これらのうち、基材表面に直接に複合硬質膜を被覆する構成の場合には、製造時における工程の煩雑さがないこと、工程時間の短縮となること、品質管理上のバラツキが少なくなることから、好ましいことである。
【0016】
これらの被覆層のうち、下地層は、金属、合金,金属間化合物または金属化合物でなり、具体的には、例えばTi,Al,Ni,Co,Wの金属,これなの相互合金,Ti−Al,Ti−Ni,Ti−Co,Al−Ni,Al−Co,Co−W,Ti−Al−Ni,Ti−Al−Coの金属間化合物,周期律表の4a,5a,6a族金属の炭化物、窒化物、炭酸化物、窒酸化物,これらの相互固溶体でなる金属化合物から選ばれた少なくとも1種の単層または多層でなる場合を挙げることができる。また、外層は、具体的には、例えば周期律表の4a,5a,6a族金属の炭化物、窒化物、炭酸化物、窒酸化物,これらの相互固溶体,Alの酸化物,窒化物,酸窒化物,ダイヤモンド,硬質カーボン(ダイヤモンド状カーボンともいわれる),立方晶窒化硼素,硬質窒化硼素これら2種以上の混合物の中から選ばれた少なくとも1種の単層または多層でなる場合を挙げることができる。さらに、最外層は、使用前後の判別が容易な色彩を有する被覆層、装飾的効果のある被覆層であればよく、具体的には、例えば4a,5a,6a族金属の窒化物、炭窒化物、窒酸化物,これらの相互固溶体の中から選ばれた少なくとも1種の単層または多層でなる場合を挙げることができる。
【0017】
本発明の骨子となる複合硬質膜は、被覆層自体が複合硬質膜でなる場合、別の表現をすると、基材表面に複合硬質膜のみが被覆された構成でなる場合、基材表面に上述の下地層と複合硬質膜とが被覆されている構成の場合、または前述の被覆層の構成のように中間層として被覆されている構成の場合がある。この複合硬質膜の組成成分、膜質は、具体的な例示として化学式により記載すると、(Ti,Al)N、(Ti,Al)C、(Ti,Al)(C,N)、(Ti,Al)(N,O)、(Ti,Al)(C,O)、(Ti,Al)(C,N,O)、(Ti,Al,M)N、(Ti,Al,M)C、(Ti,Al,M)(C,N)、(Ti,Al,M)(N,O)、(Ti,Al,M)(C,O)、および(Ti,Al,M)(C,N,O)の中から選ばれた少なくとも1種の単層または積層でなる場合を挙げることができる。(ただし、Mは、Ti,Alを除いた金属および半金属の元素の1種以上を表わし、特に周期律表の4a,5a,6a族元素、希土類元素、Mn元素、Mg元素、Si元素、B元素の中の少なくとも1種からなる場合が好ましい)
【0018】
これらの複合硬質膜は、金属元素がTiとAlのみを含有している場合には、次の化学式で表せる(Tia,Alb)(Cx,Ny,OzWの複合硬質膜[ただし、aは金属元素中のTi(チタン)元素の原子比、bは金属元素中のAl(アルミニウム)元素の原子比、xは非金属元素中の炭素(C)元素の原子比、yは非金属元素中の窒素(N)元素の原子比、zは非金属元素中の酸素(O)元素の原子比、wは金属元素の合計に対する非金属元素の原子比を表し、それぞれがa+b=1、0.8≧a≧0.4、x+y+z=1、0.5≧x≧0、1≧y≧0.5、0.5≧z≧0、1.05≧w≧0.7の関係にある]でなる場合には、複合硬質膜自体の強度、耐摩耗性および靱性にすぐれること、しかも歪み,欠陥が少なく耐剥離性にすぐれることから好ましいことである。
【0019】
また、TiとAl以外の金属元素を含有した複合硬質膜でなる場合には、次の化学式で表せる(Tia,Alb,M1-a-b)(Cx,Ny,OzWの複合硬質膜[ただし、aは金属元素中のTi(チタン)元素の原子比、bは金属元素中のAl(アルミニウム)元素の原子比、Mは周期律表の4a,5a,6a族元素、希土類元素、Si元素、Mn元素、Mg元素、B元素の中の少なくとも1種を表し、xは非金属元素中の炭素(C)元素の原子比、yは非金属元素中の窒素(N)元素の原子比、zは非金属元素中の酸素(O)元素の原子比、wは金属元素の合計に対する非金属元素の原子比を表し、それぞれが0.8≧a≧0.4、0.6>b>0.2、x+y+z=1、0.5≧x≧0、1≧y≧0.5、0.5≧z≧0、1.05≧w≧0.7の関係にある]でなる場合には、複合硬質膜自体の強度、耐摩耗性および靱性にすぐれること、しかも歪み,欠陥が少なく耐剥離性にすぐれることから好ましいことである。
【0020】
これらの複合硬質膜は、複合硬質膜の結晶粒子の界面に金属元素からなる複合硬質膜強化物質が極微量に含有されていると、より一層複合硬質膜自体の強度、靱性がすぐれること、歪みが緩和されること、耐剥離性の向上が顕著になることから好ましいことである。このときの複合硬質膜強化物質は、基材を構成している金属元素からなる場合には、基材と複合硬質膜との整合性を高めること、密着性を高めることから好ましいことである。この複合硬質膜強化物質は、被覆層を被覆する前に、メッキ法や真空蒸着法などにより形成しておいて、これを拡散させることも可能であるが、基材を構成している金属元素を複合硬質膜中に拡散させると簡易に得られることから、好ましいことである。
【0021】
これらの複合硬質膜は、複合硬質膜中のTiとAlとの金属元素の合計含有量に対するAl元素の含有量が基材表面から複合硬質膜の表面に向かって増加していること、別の表現をすると、Ti元素の含有量が複合硬質膜の表面から基材表面に向かって増加していること、いわゆる傾斜組成の複合硬質膜にすると基材と複合硬質膜との密着性がすぐれること、複合硬質膜自体の強度,靱性にすぐれて、欠陥,歪みおよび残留応力が減少すること、複合硬質膜表面の耐酸化性,耐摩耗性および耐腐食性がすぐれることから、好ましいことである。このときのAl元素およびTi元素の増加は、階段状,ノコギリの刃状にミクロ的には増減があるとしてもマクロ的には段階的に増加する場合、放物線状,直線状に連続的に増加している場合でもよいものである。
【0022】
この複合硬質膜は、複合硬質膜自体の構造からすると、基材表面に対し垂直方向に柱状に成長した柱状結晶が含まれている場合には、複合硬質膜の表面からの耐圧壊強度が向上し、耐剥離性、耐微小チッピング性にすぐれることから、好ましいことである。この柱状結晶を含む複合硬質膜は、具体的には、複合硬質膜全体が柱状結晶の層でなる場合、粒状結晶と柱状結晶との混在した層でなる場合、粒状結晶の層と柱状結晶の層との積層でなる場合、またはこれらの粒状結晶と柱状結晶のそれぞれの中に前述した複合硬質膜強化物質が微量含有されている場合を例示することができる。これらのうち、複合硬質膜強化物質が複合硬質膜と複合硬質膜強化物質との合計に対し、3体積%以下、好ましくは1体積%以下含有していると、複合硬質膜の表面からの垂直方向および水平方向の両方からの耐圧壊強度,耐圧縮強度にすぐれるとともに、耐摩耗性にもすぐれるというシナージ効果を発揮することができることから、好ましいことである。
【0023】
これらの複合硬質膜は、前述した被覆層の構成のどの位置に存在するかにより複合硬質膜自体の構造を考配慮ることが好ましく、この被覆層の構成として、基材に直接複合硬質膜を被覆する場合、または基材に下地層を被覆した後、下地層に複合硬質膜を被覆し、複合硬質膜の表面が他の物質(例えば、切削工具における被削材)と接触する状態で使用される第1の構成による複合硬質膜部材と、複合硬質膜の表面に外層を被覆した場合、または複合硬質膜の表面に外層および最外層を被覆し、複合硬質膜の表面が他の物質と直接接触しない状態で使用される第2の構成による複合硬質膜部材とに大別することができる。
【0024】
これらのうち、第1の構成による複合硬質膜部材の場合には、複合硬質膜の表面は、JIS規格B0601に規定されている表面粗さにおける中心線平均粗さRaで0.1μm以下、好ましくは0.05μm以下にすると、切削工具として使用した場合に、被削材への損傷が緩和されること、切削抵抗が緩和されること、切粉の排出が容易になることから、より一層の長寿命となり、好ましいことである。また、第2の構成による複合硬質膜部材においても、外層の膜厚さ、または外層と最外層との合計膜厚さにより異なるが、複合硬質膜の表面粗さを上述のようにしておくと、外層および最外層の表面粗さも滑らかで、平坦となり、上述と同様の効果を発揮できることから、好ましいことである。
【0025】
被覆層を構成する各層の膜厚さは、用途、形状および被覆層の構成により、選択されるのであるが、上述の第1の構成による複合硬質膜部材の場合には、被覆層の主体が複合硬質膜となり、この場合には複合硬質膜の膜厚さを1〜20μm、主として密着性を目的として下地層を介在させる場合には、下地層の膜厚さを0.2〜2μmとすると、被覆層自体の強度、耐摩耗性、靱性および耐剥離性から、好ましいことである。また、上述の第2の構成による複合硬質膜部材でなる場合には、下地層の膜厚さを0.2〜2μm、複合硬質膜の膜厚さを1〜10μm、外層の膜厚さを1〜10μm、最外層の膜厚さを0.5〜2μmとすると、各膜層の特性を最適に発揮させることができることから、好ましいことである。以上に詳述してきた複合硬質膜を初め、下地層,外層,および最外層は、化学量論組成でなる場合、または非化学量論組成でなる場合でもよく、実質的には非化学量論組成からなっている場合が多いものである。
【0026】
以上のような形態でなる本発明の複合硬質膜部材は、各種の用途に実用できるものであり、具体的には、例えば旋削工具,フライス工具,ドリル,エンドミルに代表される切削工具、特に被削材が鋳物や鋼であり、耐衝撃性を必要とする断続切削工具や回転切削工具として、ダイス,パンチなどの型工具からスリッタ−などの切断刃,裁断刃などの耐摩耗用工具として、ノズルや塗付工具などの耐腐食耐摩耗用工具として、鉱山,道路,土建などに用いられる切断工具,掘削工具,窄孔工具,破砕工具に代表される土木建設用工具として実用できるものである。これらのうち、本発明の複合硬質膜部材は、ミクロ的に温度,摩擦、熱衝撃および圧縮衝撃などが最も過酷な条件となる切削工具、特にドリル,エンドミルなどの回転切削工具,スローアウエイチップなどの切削工具として使用する場合には、複合硬質膜の特性を最適に発揮させ得ることから、好ましいことである。この複合硬質膜部材を切削工具として使用する場合には、複合硬質膜の膜厚さは、切削工具の切刃に形成される稜線部に向かって減少するように形成すると、耐剥離性、微小チッピング性にすぐれることから好ましいことである。また、これらの複合硬質膜を含む被覆層の膜厚さが切削工具の切刃に形成される稜線部に向かって減少するように形成されることも、同様の効果を惹起させることになり、好ましいことである。
【0027】
この本発明の複合硬質膜被覆部材は、従来から市販されている立方晶窒化硼素系焼結体,ダイヤモンド系焼結体に代表される超高温高圧焼結体を基材とし、この基材の表面を、必要に応じて研磨し、超音波洗浄、有機溶剤洗浄などを行った後に、従来から行われているPVD法,CVD法またはプラズマCVD法により基材上に被覆層を被覆して作製することができるが、以下の本発明の方法で作製すると、プラズマ密度の向上とイオン化効率の向上が可能となること、複合硬質膜自体の気相エピタキシャル結晶成長および結晶配向が容易となること、複合硬質膜の特性および密着性がよりすぐれることから、好ましいことである。
【0028】
この複合硬質膜被覆部材を得るための製造方法として、重要な特徴について具体的に詳述すると、基材の表面は、従来から行われているブラスト処理,ショットピーニング処理,研磨処理,バレル処理の中の少なくとも1種の機械的処理と、酸性もしくはアルカリ性の電解液による電解エッチング,酸溶液,アルカリ溶液による表面腐食、または水,有機溶液による洗浄の中の少なくとも1種の化学的処理と、この機械的処理と化学的処理を同時または別々に行う処理方法とから選択される処理を行うと、基材表面の欠陥を除去できること、複合硬質膜の密着性を高め得ること、膜内歪みを抑制できること、膜内の欠陥を抑制できることから、好ましいことである。また、基材は、このような機械的処置および/または化学的処理と、低温による熱処理を付加して、上述の効果を高めることも好ましいことである。
【0029】
基材の表面に複合硬質膜を被覆する場合は、スパッター法やイオンプレーテイング法に代表されるPVD法により行うことが好ましく、これらのうち、マグネトロンスパッター法またはアークプラズマイオンプレーテイング法により行うと、複合硬質膜の調整が容易であることから、特に好ましいことである。具体的には、例えばイオンプレーテイング装置の反応容器内に基材を配置し、基材表面をボンバード処理する場合に、金属元素イオンによるボンバード処理、もしくは金属元素イオンと非金属元素イオンとの両方によるボンバード処理を施すと、上述の効果を高めることになることから、好ましいことである。特に、前述の下地層のうち、金属,合金または金属間化合物の下地層を必要とする場合は、金属元素イオンを含むイオンボンバードを施すと、下地層の形成が容易であること、基材と下地層との密着性が高くなることから、好ましいことである。
【0030】
複合硬質膜の被覆条件は、反応容器の構造、プラズマの調整など装置自体の影響を重要視する必要があり、具体的には、例えば高電圧、(場合によってはパルス状高電圧と高周波を付加)の電源でイオンを加速し、プラズマを発生させる装置、さらに磁界によるプラズマの調整可能な装置を使用すること、その他、反応容器内の雰囲気圧力,温度,アーク放電電流.電圧,基材バイアス電圧,試料の配置などについて配慮する必要があり、これらのうち、従来の条件に対し、特にアーク放電電圧を高くすること、基材バイアス電圧を高くすること、試料の回転および上下動などが重要な要件である。
【0031】
【実施試験】
以上に詳述してきた本発明の実施形態について、さらに具体的な代表例として実施試験により説明する。
40体積%cBNー5体積%Al23−5体積%AlNー10体積%Al−10体積%Mgー10体積%B−20体積%TiN(配合組成)により作製された超高温高圧の立方晶窒化硼素系焼結体の基材と、85体積%cBNー2体積%Coー5体積%Al−2体積%Mgー6体積%TiN(配合組成)により作製された超高温高圧の立方晶窒化硼素系焼結体の基材と、95体積%DIAー2体積%Coー2体積%Niー1体積%ZrC(配合組成)により作製された超高温高圧のDIA系焼結体の基材と、97体積%DIAー1体積%Coー1体積%Niー1体積%Mg(配合組成)により作製された超高温高圧のDIA系焼結体の基材を用いて、これらの基材の上下面と外周面を270#のダイヤモンド砥石で研削加工を施し、刃先部に400#ダイヤモンド砥石により−25°×0.10mmのホーニング加工を施し、さらに表面を湿式ブラスト処理,洗浄処理および乾燥処理を行った後、アークイオンプレーテイング装置により複合硬質膜を被覆した。基材と基材の表面に約1μm膜厚さのTiを蒸着し、基材と基材の表面に約1μm厚さのNi無電解メッキを施した後に、複合硬質膜を被覆し、本発明品1〜4を得た。また、比較として、基材と基材を用いて、比較品および比較品を得た。
【0032】
基材と基材の表面に約1μm膜厚さのTiを蒸着し、基材と基材の表面に約1μm厚さのNi無電解メッキを施した後に、以下の処理条件により複合硬質膜を被覆し、本発明品5〜8を得た。また、比較として、基材と基材を用いて、本発明品1〜4を得た。また、比較として、基材と基材を用いて、比較品および比較品を得た。
処理条件は、各基材表面をボンバード処理した後、複合硬質膜を被覆した。ボンバード処理は、反応容器内の雰囲気:真空,基材温度:873K,アーク電流:70A,基材バイアス電圧:ー600V,Arガスボンバードの条件で行った。複合硬質膜の被覆は、反応容器内のガス流量:200〜350SCCM,蒸発源:Ti−Al合金,アーク電圧:200〜300V,アーク電流:150〜200A,基材温度:773〜873K,基材バイアス電圧:ー100〜ー200Vにより複合硬質膜を被覆した。
【0033】
比較品1および2における基材処理は、上述した本発明品の基材表面処理のうち、湿式ブラスト処理を除いて、その他はほぼ同様に処理した。また、同比較品1および2における複合硬質膜の被覆は、上述した本発明品における複合硬質膜の処理条件のうち、アーク電圧:10〜50V,アーク電流:200〜250A,基材バイアス電圧:ー30〜ー80Vとした以外は、ほぼ同様に処理した。ただし、比較品1および2の複合硬質膜処理時の蒸発源は、Ti−Al元素比が一定のものを使用した。
【0034】
こうして得た本発明品1〜4と比較品及び比較品の複合硬質膜について、X線回 折装置、走査型電子顕微鏡,金属顕微鏡,EDS装置,ビッカース硬さ試験機および引っ掻き硬さ試験機に相当するスクラッチ試験機を用いて、複合硬質膜表面からのX線回折によるh(200)/h(111),d(200)/d(111),複合硬質膜表面のTiとAlの含有率,複合硬質膜表面の硬さ,スクラッチ強度を求めて、それぞれの結果を表1に示した。また、本発明品と本発明品と比較品は、被削材:SCM415(硬さ:約HRC61),切削速度:150m/min,切込み:0.5mm,送り:0.1mm/rev,工具形状:TNMA160408,ホーニング:0.15×ー25°,外周連続乾式旋削試験を行い、その結果を表に併記した。この外周連続乾式旋削試験の評価は、切刃のチッピング、被覆層の剥離したとき、平均逃げ面摩耗量または境界摩耗量が0.3mmに達したときを工具寿命とし、比較品に対する寿命比として表した。なお、本発明品1〜4と比較品1および比較品2の複合硬質膜厚さは、約5μmであった。
【0035】
【表1】

Figure 0003599628
【0036】
【発明の効果】
本発明の複合硬質膜被覆部材は、気相法エピタキシャルによる結晶成長と結晶配向による複合硬質膜が被覆されていること、複合硬質膜自体の歪み,欠陥が抑制されていること、微細結晶であること、場合によっては柱状晶結晶および/または微量の金属などの複合硬質膜強化物質が含まれた複合硬質膜であることから、従来の複合硬質膜被覆部材または本発明から外れた複合硬質膜被覆部材に対比して、基材と複合硬質膜,下地層と複合硬質膜,複合硬質膜と外層など、複合硬質膜に隣接する物質に対し、密着性および耐剥離性が非常にすぐれること、複合硬質膜自体の高靱性,高強度,耐熱性,耐熱衝撃性,耐酸化性および耐摩耗性がすぐれていること、その結果として例えば切削工具として使用した場合に、切削工具として重要視される高靭性,耐摩耗性,耐熱衝撃性,耐欠損性,耐酸化性および耐溶着性が顕著に向上し、長寿命化が達成されること、切削加工における高効率化が達成されること、バラツキが小さく安定しているという顕著な効果がある。[0001]
TECHNICAL FIELD OF THE INVENTION
The present inventionMade of ultra-high temperature and high pressure sintered bodyThe present invention relates to a composite hard film-coated member in which a base material is coated with a coating layer including a composite hard film made of a titanium-aluminum-containing composite compound.
[0002]
[Prior art]
Conventionally, chemical vapor deposition (hereinafter, referred to as "CVD") and physical vapor deposition (hereinafter, referred to as "PVD") are applied to a substrate of a metal, an alloy, a sintered alloy, a ceramic sintered body, or an ultra-high-temperature high-pressure sintered body. Or a hard film-coated member in which a hard film is coated using a plasma CVD method and a base material and a hard film are effectively used. At present, the hard film material used in the hard film covering member is a hard film containing a Ti element such as a nitride, a carbonitride or a carbide of Ti, a composite nitride containing Ti and Al, and a composite carbonitride. Typical examples thereof include a Ti—Al element-containing composite hard film and an aluminum oxide hard film.
[0003]
Among these hard film-coated members, a composite material for covering a base material with a Ti-Al element-containing composite hard film, effectively extracting the properties of the Ti-Al element-containing composite hard film, and achieving a long life. Many hard film-coated members have been proposed. Among these, typical ones that have been proposed to achieve a long life from the crystal structure of the composite hard film include JP-A-8-209335 and JP-A-8-209335.9-JP-A-291353, JP-A-9-295204, JP-A-9-300105, JP-A-9-300106, JP-A-9-323204, JP-A-9-323205, JP-A-10-76407 JP-A-10-76408, JP-A-11-1762, JP-A-11-131214, JP-A-11-131215, JP-A-11-131216, and JP-A-11-131217 There is. Japanese Patent Laid-Open Publication No. Sho 52-28478 discloses a typical example of a coated cemented carbide coated with a Ti element-containing compound hard film instead of a Ti-Al element-containing composite hard film.
[0004]
[Problems to be solved by the invention]
Among prior art documents related to a composite hard film coating member coated with a Ti-Al element-containing composite hard film, JP-A-8-209335, JP-A-9-295204, JP-A-9-300105, and JP-A-9-09105 -300106, JP-A-9-323204, JP-A-9-323205, JP-A-10-76407, JP-A-10-76408, JP-A-11-131215 and JP-A-11-131215 JP-A-131217 discloses that the ratio of the peak height of the (200) crystal plane to the peak height of the (111) crystal plane in X-ray diffraction of a Ti—Al element-containing composite hard film is 1 or more, 1.5 or more, or 2 or more. A covering member including the constituent elements described above is disclosed. Among the prior art documents, JP-A-9-291353, JP-A-11-131214 and JP-A-11-131216 disclose (111) in X-ray diffraction of a Ti—Al element-containing composite hard film. A covering member is disclosed that includes a constituent feature in which the ratio of the peak height of the (200) crystal plane to the peak height of the crystal plane is 2 or less.
[0005]
Japanese Patent Application Laid-Open No. Hei 10-317123 discloses that, among the diffraction peaks of a composite hard film typified by (Ti, Al) N in X-ray diffraction using Cu and Kα rays as a source, the (200) crystal plane is With respect to the composite hard film member including the constituent requirement of the highest diffraction peak height, Japanese Patent Application Laid-Open No. H11-1762 further discloses that among the diffraction peaks of the same composite hard film in X-ray diffraction using Cu and Kα rays as a radiation source. A composite hard film-coated member having a maximum diffraction peak height at a diffraction angle (2θ) within 42.5 to 44.5 degrees is disclosed.
[0006]
In these fifteen patent publications, the residual compressive stress in the composite hard film in the Ti-Al element-containing composite hard film or the crystal orientation in the composite hard film is taken into consideration, and the suppression of grain boundary fracture in the composite hard film is disclosed. It discloses that by improving the adhesion between the substrate and the composite hard film and the abrasion resistance, stable cutting and long life can be achieved. However, the composite hard film-coated members described in these fifteen patent publications do not consider the crystal defects and strains present in the composite hard film, and therefore, the strength and wear resistance of the composite hard film itself are reduced. Unsatisfactory, as a result, the adhesion between the base material and the composite hard film and the adhesion between the composite hard film and other adjacent films are not satisfactory, and the variation in life is large. There is a problem that it is difficult to stably obtain a long life in a wide range from a high temperature region to a high temperature region.
[0007]
In addition, although it is not a prior art document relating to a Ti—Al element-containing composite hard film, JP-A-52-28478 discloses that the X-ray diffraction line at the (200) crystal plane of the hard film is 2θ and the half width is 0. A hard film member having an angle of 4 degrees or more is disclosed. The hard film member disclosed in the publication is a hard film formed by a physical vapor deposition method, and expresses a difference from a hard film formed by a chemical vapor deposition method using a half-value width, in consideration of crystal defects and distortion of the hard film. Since it is not available, the strength, wear resistance and adhesion of the hard film cannot be satisfied as in the case of the above-mentioned composite hard film, and the life varies widely. Has a problem that it is difficult to obtain a long life stably.
[0008]
The present invention has solved the above-mentioned problems. Specifically, the present invention takes into account crystal defects, distortion, crystal structure and crystal orientation of a composite hard film made of a composite compound containing titanium-aluminum. The range of use as a cutting tool has been expanded, and the variation in the characteristics of the composite hard film has been suppressed, and a composite with high toughness, high hardness, abrasion resistance, oxidation resistance, thermal shock resistance, fracture resistance, and welding resistance has been developed. An object of the present invention is to provide a hard film, particularly a composite hard film-coated member that achieves a longer service life by forming a composite hard film having high strength and peel resistance, thereby improving the welding resistance to a work material. Things.
[0009]
[Means for Solving the Problems]
The inventors of the present invention have conducted a long-term study on the formation of a hard film relating to the CVD method, the PVD method, and the plasma PVD method, particularly a study on a hard film by the PVD method. Improving the plasma density and ionization efficiency during the formation of the Al-containing composite hard film, and further performing epitaxial growth by the vapor phase method to optimally align the crystals, the strain in the composite hard film is uniformly relaxed. In addition, it is possible to improve the strength, wear resistance, oxidation resistance, and heat resistance of the composite hard film itself because the crystal defects of the composite hard film are suppressed and a fine crystal composite hard film is obtained. The first finding that the adhesion between the composite hard film and the base material or the underlayer or the outer layer becomes remarkable, and the case where the hard film approximates a perfect crystal as described above, the X-ray Which has led to obtain a second finding that it is simple to determine the height ratio and the half width ratio of at least two diffraction peaks including the highest peak in the fold. Based on these findings, the present invention has been completed.
[0010]
The composite hard film-coated member of the present invention,Made of ultra-high temperature and high pressure sintered bodyAmong composite nitrides, composite carbides, composite carbonitrides, composite nitrides, composite carbonates, composite carbonitrides containing titanium and aluminum on the surface of the base materialChosen fromA peak height of a (200) crystal plane when X-ray diffracted from a surface of the composite hard film by using a copper target and coated as a single layer or a laminated coating layer containing at least one type of composite hard film. Is h (200), and when the peak height of the (111) crystal plane is h (111), h (200) / h (111) ≧ 4.0, and the peak of the (200) crystal plane is When the half width of the peak of the (111) crystal plane is d (111), 1.5 ≧ d (200) / d (111) ≧ 0.8 It consists of
[0011]
The composite hard film-coated member of the present invention makes use of vapor phase epitaxial growth to strengthen the orientation of the (200) crystal plane in the composite hard film containing titanium and aluminum, and to minimize distortion in the composite hard film. By doing so, the strength and toughness of the composite hard film itself are increased, and the synergy effect of having excellent wear resistance is exhibited.When X-ray diffraction is performed from the surface of the composite hard film using a copper target, If h (200) / h (111) <4.0, then d (200) / d (111)> 1.5 or d (200) / d (111) <0.8, (200) Since the orientation to the crystal plane is weak, the defects and strain in the film are large, and the synergistic effect is weak, the peak height ratio and the half width width ratio are determined as described above. is there.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
In the composite hard film-coated member of the present inventionThe base material is a cubic boron nitride sintered bodyAnd ultra-high-temperature and high-pressure sintered bodies represented by diamond-based sintered bodies. Among these, when the base material is a material or substance conventionally used as a cutting tool or a wear-resistant tool, the effect of improving the life as a coated cutting tool or a coated wear-resistant tool is increased. This is preferable.
[0013]
70% by volume or more of these substratesAnd a cubic boron nitride-based sintered body composed of at least 20% by volume of cubic boron nitride and a grain boundary bonding phase. is there. Among these, diamond-based sintered bodies include metals (metals, alloys, etc.) in which diamond (hereinafter referred to as “DIA”) has a volume of 85 to 98% by volume and the rest of the grain boundary phase is contained in conventional diamond-based sintered bodies. Specifically, in Co, Ni, Fe, Si and their mutual solid solutions,Chosen fromWhen at least one kind is contained, both properties of the base material and the composite hard film can be optimally exhibited, and the life of the cutting tool is significantly improved, which is preferable. In the cubic boron nitride-based sintered body, cubic boron nitride is 35 to 95% by volume, and the rest of the grain boundary bonding phases are carbides, nitrides, borides, Si, and the like of elements of Groups 4a, 5a, and 6a in the periodic table. In the case where it is composed of at least one selected from nitrides, borides, oxides of Mg and Al, and their mutual solid solutions, metals, alloys and intermetallic compounds of Co, Ni, Ti and Al, This is preferable since both properties of the composite hard film and the composite hard film can be exhibited optimally, and the life of the cutting tool is significantly improved.
[0014]
As a problem common to these base materials, there is a surface accuracy of the base material, and when the surface accuracy of the base material is increased, the surface accuracy of the composite hard film is also increased.For example, when used as a cutting tool, the frictional resistance is low. This is preferable because roughness of the surface of the composite hard film and the surface of the work material are suppressed, and the effect of improving the life is enhanced. The surface accuracy of the substrate is preferably 0.1 μm or less in Ra, which is the center line average roughness in the surface roughness specified in JIS B0601, and more preferably Ra is 0.05 μm or less. .
[0015]
The configuration of the coating layer including the composite hard film coated on the surface of the base material is an underlayer coated for the purpose of adhesion adjacent to the base material, and in the present invention coated adjacent to the underlayer. A configuration in which an intermediate layer made of a composite hard film, an outer layer coated adjacent to the intermediate layer, and an outermost layer coated on the surface of the outer layer for the purpose of discriminating before and after use and decorative purposes, etc., are laminated in two or more layers, specifically For example, for example, the coating layer sequentially coated on the surface of the base material has a laminated structure of a base material-underlayer-composite hard film (intermediate layer) -outer layer-outermost layer, and a base material-underlayer-composite hard film ( Intermediate layer) -Layer composed of outer layer, Substrate-underlayer-Composite hard film (intermediate layer) laminated structure, Substrate-Underlayer-Composite hard film (intermediate layer) -Layer composed of outermost layer Composition, base material-composite hard film (intermediate layer)-outer layer-outermost layer Hard film (intermediate layer) -laminated structure of outer layer, base material-composite hard film (intermediate layer) -composed of outermost layer, or base material-composite hard film (intermediate layer) Can be. Among these, in the case of a configuration in which the composite hard film is directly coated on the base material surface, there is no complexity in the manufacturing process, the process time is reduced, and the variation in quality control is reduced. This is preferable.
[0016]
Among these coating layers, the underlayer is made of a metal, an alloy, an intermetallic compound or a metal compound. Specifically, for example, a metal of Ti, Al, Ni, Co, W, a mutual alloy thereof, Ti-Al , Ti-Ni, Ti-Co, Al-Ni, Al-Co, Co-W, Ti-Al-Ni, Ti-Al-Co intermetallic compounds, carbides of metals of groups 4a, 5a and 6a of the periodic table , Nitrides, carbonates, nitrides, their mutual solid solutionsConsists ofExamples include a case of a single layer or a multilayer of at least one kind selected from metal compounds. The outer layer may be made of, for example, carbides, nitrides, carbonates, and nitrides of metals belonging to groups 4a, 5a, and 6a of the periodic table, their mutual solid solutions, oxides, nitrides, and oxynitrides of Al. , Diamond, hard carbon (also called diamond-like carbon), cubic boron nitride, hard boron nitride, or a mixture of at least one of these two or more layers. . Further, the outermost layer may be a coating layer having a color that can be easily distinguished before and after use, or a coating layer having a decorative effect. Specifically, for example, a nitride of a 4a, 5a, or 6a group metal, a carbonitride And at least one single layer or multilayer selected from the group consisting of a substance, a nitric oxide, and a mutual solid solution thereof.
[0017]
The composite hard film that forms the essence of the present invention is, when the coating layer itself is a composite hard film, in other words, when the substrate surface has a configuration in which only the composite hard film is coated, In which the underlayer and the composite hard film are covered with each other, or the structure in which the underlayer is covered with an intermediate layer as in the above-described configuration of the covering layer. The composition components and film quality of this composite hard film can be described by chemical formulas as specific examples. (Ti, Al) N, (Ti, Al) C, (Ti, Al) (C, N), (Ti, Al) ) (N, O), (Ti, Al) (C, O), (Ti, Al) (C, N, O), (Ti, Al, M) N, (Ti, Al, M) C, ( (Ti, Al, M) (C, N), (Ti, Al, M) (N, O), (Ti, Al, M) (C, O), and (Ti, Al, M) (C, N , O) may be at least one kind of a single layer or a laminate. (However, M represents one or more elements of metals and metalloids excluding Ti and Al, particularly elements of groups 4a, 5a and 6a of the periodic table, rare earth elements, Mn elements, Mg elements, Si elements, It is preferable that it is made of at least one of the B elements.)
[0018]
When the metal elements contain only Ti and Al, these composite hard films can be represented by the following chemical formula (Tia, Alb) (Cx, Ny, Oz)W[Where a is the atomic ratio of the Ti (titanium) element in the metal element, b is the atomic ratio of the Al (aluminum) element in the metal element, and x is the atomic ratio of the carbon (C) element in the nonmetal element. Atomic ratio, y is the atomic ratio of the nitrogen (N) element in the nonmetallic element, z is the atomic ratio of the oxygen (O) element in the nonmetallic element, and w is the atomic ratio of the nonmetallic element to the total of the metal elements. A + b = 1, 0.8 ≧ a ≧ 0.4, x + y + z = 1, 0.5 ≧ x ≧ 0, 1 ≧ y ≧ 0.5, 0.5 ≧ z ≧ 0, 1.05 ≧ w ≧ 0.7] is preferable because the composite hard film itself has excellent strength, abrasion resistance and toughness, and has little distortion and defects and excellent exfoliation resistance. .
[0019]
When the composite hard film contains a metal element other than Ti and Al, it can be represented by the following chemical formula (Tia, Alb, M1-ab) (Cx, Ny, Oz)W[Where a is the atomic ratio of the Ti (titanium) element in the metal element, b is the atomic ratio of the Al (aluminum) element in the metal element, and M is an element of groups 4a, 5a and 6a in the periodic table] , Rare earth element, Si element, Mn element, Mg element, and B element, x is the atomic ratio of carbon (C) element in the nonmetal element, and y is nitrogen (N ) Element atomic ratio, z is the atomic ratio of the oxygen (O) element in the non-metallic element, w is the atomic ratio of the non-metallic element to the total of the metallic elements, each being 0.8 ≧ a ≧ 0.4, 0.6> b> 0.2, x + y + z = 1, 0.5 ≧ x ≧ 0, 1 ≧ y ≧ 0.5, 0.5 ≧ z ≧ 0, 1.05 ≧ w ≧ 0.7 Yes], the composite hard film itself has excellent strength, abrasion resistance and toughness, and has few distortions and defects, and has excellent peel resistance. Is it preferable from Rukoto.
[0020]
When these composite hard films contain a very small amount of a composite hard film reinforcing material composed of a metal element at the interface of the crystal grains of the composite hard film, the strength and toughness of the composite hard film itself are further improved, This is preferable because distortion is alleviated and peel resistance is significantly improved. In this case, when the composite hard film reinforcing substance is made of a metal element constituting the base material, it is preferable because it enhances the consistency between the base material and the composite hard film and enhances the adhesion. Before coating the coating layer, the composite hard film reinforcing material may be formed by a plating method or a vacuum evaporation method, and may be diffused, but the metal element constituting the base material may be diffused. Is easily obtained by diffusing the compound into the composite hard film, which is preferable.
[0021]
In these composite hard films, the content of Al element with respect to the total content of metal elements of Ti and Al in the composite hard film increases from the substrate surface toward the surface of the composite hard film. In other words, the content of the Ti element increases from the surface of the composite hard film toward the surface of the base material. In the case of a composite hard film having a so-called gradient composition, the adhesion between the base material and the composite hard film is excellent. It is preferable because the composite hard film itself has excellent strength and toughness, reduces defects, distortion and residual stress, and has excellent oxidation resistance, abrasion resistance and corrosion resistance of the surface of the composite hard film. is there. At this time, the increase of the Al element and the Ti element increases continuously in the form of a parabola or a straight line if the increase is macro-stepwise even though there is a microscopic increase or decrease in a stepped or saw-toothed shape. It is good even if you do.
[0022]
In view of the structure of the composite hard film itself, when the composite hard film contains columnar crystals grown in a columnar direction in a direction perpendicular to the substrate surface, the pressure crush strength from the surface of the composite hard film is improved. However, it is preferable because it has excellent peeling resistance and micro chipping resistance. The composite hard film containing the columnar crystals is, specifically, when the entire composite hard film is formed of a columnar crystal layer, when the composite hard film is formed of a layer in which a granular crystal and a columnar crystal are mixed, a layer of a granular crystal and a columnar crystal. Examples thereof include a case where the composite hard film strengthening material is contained in each of the granular crystals and the columnar crystals. Of these, when the composite hard film reinforcing material contains 3% by volume or less, preferably 1% by volume or less of the total of the composite hard film and the composite hard film reinforcing material, the perpendicularity from the surface of the composite hard film is This is preferable because it can exhibit a synergistic effect of being excellent in pressure-resistant crushing strength and compressive strength in both directions and horizontal direction and also excellent in wear resistance.
[0023]
For these composite hard films, it is preferable to consider the structure of the composite hard film itself depending on where in the configuration of the coating layer described above, and as the configuration of the coating layer, the composite hard film is directly applied to the base material. When coating, or after coating the base layer with the base material, coat the base layer with a composite hard film, and use it in a state where the surface of the composite hard film is in contact with another substance (for example, a work material in a cutting tool). When the outer surface is coated on the surface of the composite hard film, or the outer layer and the outermost layer are coated on the surface of the composite hard film, and the surface of the composite hard film is It can be broadly classified into a composite hard film member according to the second configuration used in a state where it is not in direct contact.
[0024]
Among these, in the case of the composite hard film member according to the first configuration, the surface of the composite hard film has a center line average roughness Ra of 0.1 μm or less in the surface roughness specified in JIS B0601, preferably. When the thickness is 0.05 μm or less, when used as a cutting tool, damage to the work material is reduced, cutting resistance is reduced, and chips are easily discharged, so that the This is preferable because it has a long life. Also, in the composite hard film member according to the second configuration, although it depends on the thickness of the outer layer or the total thickness of the outer layer and the outermost layer, if the surface roughness of the composite hard film is set as described above. The surface roughness of the outer layer and the outermost layer is smooth and flat, and the same effect as described above can be exerted.
[0025]
The thickness of each layer constituting the coating layer is selected depending on the application, the shape and the configuration of the coating layer. In the case of the composite hard film member according to the first configuration, the main component of the coating layer is selected. It becomes a composite hard film. In this case, when the thickness of the composite hard film is 1 to 20 μm, and when an underlayer is interposed mainly for the purpose of adhesion, the thickness of the underlayer is 0.2 to 2 μm. It is preferable from the viewpoint of the strength, abrasion resistance, toughness and peeling resistance of the coating layer itself. In the case of the composite hard film member having the second configuration described above, the thickness of the underlayer is 0.2 to 2 μm, the thickness of the composite hard film is 1 to 10 μm, and the thickness of the outer layer is When the thickness is 1 to 10 μm and the thickness of the outermost layer is 0.5 to 2 μm, the characteristics of each film layer can be optimally exhibited, which is preferable. The underlayer, outer layer, and outermost layer, including the composite hard film described in detail above, may have a stoichiometric composition or a non-stoichiometric composition. Often composed of a composition.
[0026]
The composite hard film member of the present invention having the above-described form can be put to practical use in various applications. Specifically, for example, a cutting tool represented by a turning tool, a milling tool, a drill, and an end mill, particularly The cutting material is cast or steel, and as an intermittent cutting tool or rotary cutting tool that requires impact resistance, as a tool for wear resistance such as cutting tools such as dies and punches, slitters and cutting blades, etc. As a tool for corrosion and abrasion resistance such as nozzles and coating tools, it can be used as a tool for civil engineering construction represented by cutting tools, drilling tools, burrow tools, crushing tools used in mining, roads, civil engineering, etc. . Among these, the composite hard film member of the present invention is a cutting tool in which temperature, friction, thermal shock, compression impact, and the like are subjected to the most severe conditions microscopically, especially a rotary cutting tool such as a drill and an end mill, a throw-away tip, and the like. When used as a cutting tool, it is preferable because the characteristics of the composite hard film can be optimally exhibited. When this composite hard film member is used as a cutting tool, if the thickness of the composite hard film is formed so as to decrease toward the ridgeline formed on the cutting edge of the cutting tool, peeling resistance and fine This is preferable because of its excellent chipping property. In addition, the same effect can also be caused when the thickness of the coating layer including the composite hard film is formed so as to decrease toward the ridgeline portion formed on the cutting edge of the cutting tool, It is preferable.
[0027]
This composite hard film-coated member of the present inventionCommercially available cubic boron nitride sintered bodyThe base material is an ultra-high-temperature and high-pressure sintered body typified by a diamond-based sintered body, and the surface of the base material is polished if necessary and subjected to ultrasonic cleaning, organic solvent cleaning, and the like. It can be produced by coating a coating layer on a substrate by a conventional PVD method, CVD method or plasma CVD method. However, when produced by the following method of the present invention, the plasma density and ionization efficiency can be improved. This is preferable because the composite hard film itself can be easily grown in vapor phase epitaxial crystal and crystal orientation, and the characteristics and adhesion of the composite hard film are more excellent.
[0028]
An important feature of the manufacturing method for obtaining the composite hard film-coated member will be specifically described in detail. The surface of the base material is subjected to a conventional blasting, shot peening, polishing, or barrel processing. And at least one chemical treatment of electrolytic etching with an acidic or alkaline electrolyte, surface corrosion with an acid solution or an alkaline solution, or cleaning with water or an organic solution. By performing a treatment selected from a treatment method of performing mechanical treatment and chemical treatment simultaneously or separately, it is possible to remove defects on the surface of the base material, to improve the adhesion of the composite hard film, and to suppress distortion in the film. This is preferable because it can be performed and defects in the film can be suppressed. It is also preferred that the substrate be subjected to such a mechanical treatment and / or a chemical treatment and a heat treatment at a low temperature to enhance the above-mentioned effect.
[0029]
When coating the composite hard film on the surface of the base material, it is preferable to perform by a PVD method typified by a sputtering method or an ion plating method. Of these, when performed by a magnetron sputtering method or an arc plasma ion plating method, This is particularly preferable because the adjustment of the composite hard film is easy. Specifically, for example, when a substrate is placed in a reaction vessel of an ion plating apparatus and the surface of the substrate is bombarded, bombardment with a metal element ion, or both a metal element ion and a nonmetal element ion It is preferable to perform the bombarding process because the above-described effect is enhanced. In particular, among the above-described underlayers, when an underlayer of a metal, an alloy, or an intermetallic compound is required, application of an ion bombardment containing metal element ions facilitates formation of the underlayer, This is preferable because the adhesion to the underlayer increases.
[0030]
It is necessary to emphasize the influence of the apparatus itself, such as the structure of the reaction vessel and the adjustment of the plasma, for the coating conditions of the composite hard film. Specifically, for example, high voltage, (in some cases, pulsed high voltage and high frequency Use a device that generates plasma by accelerating ions with a power supply, and a device that can control plasma by means of a magnetic field. In addition, atmospheric pressure, temperature, arc discharge current in the reaction vessel. It is necessary to consider the voltage, the substrate bias voltage, the arrangement of the sample, etc. Among these, in particular, it is necessary to increase the arc discharge voltage, the substrate bias voltage, the rotation of the sample, Vertical movement is an important requirement.
[0031]
[Implementation test]
The embodiment of the present invention described in detail above will be described by a practical test as a more specific representative example.
40% by volume cBN-5% by volume AlTwoOThreeSubstrate of cubic boron nitride based sintered body at ultra-high temperature and high pressure made of -5% by volume AlN-10% by volume Al-10% by volume Mg-10% by volume B-20% by volume TiN (mixing composition)1Of a cubic boron nitride-based sintered body at an ultra-high temperature and a high pressure made of 85% by volume cBN-2% by volume Co-5% by volume Al-2% by volume Mg-6% by volume TiN (mixing composition)2And a base material of an ultra-high-temperature and high-pressure DIA-based sintered body made of 95% by volume DIA-2% by volume Co-2% by volume Ni-1% by volume ZrC (mixing composition)3And a base material of an ultra-high-temperature and high-pressure DIA-based sintered body made of 97% by volume DIA-1% by volume Co-1% by volume Ni-1% by volume Mg (mixing composition)4Using,The upper and lower surfaces and the outer peripheral surface of these base materials are subjected to grinding with a 270 # diamond grindstone, the cutting edge portion is subjected to -25 ° × 0.10mm honing with a 400 # diamond grindstone, and the surface is further wet blasted. After performing the washing treatment and the drying treatment, the composite hard film was covered with an arc ion plating apparatus.Base material1And substrate2About 1 μm thick Ti is deposited on the surface of3And substrate4After applying a Ni electroless plating having a thickness of about 1 μm to the surface of1-4Got. In addition, as a comparison,1And substrate3Using a comparative product1And comparative products2Got.
[0032]
Base material1And substrate2About 1 μm thick Ti is deposited on the surface of3And substrate4After applying about 1 μm thick Ni electroless plating to the surface ofAccording to the following processing conditionsThe product of the present invention coated with a composite hard film5-8Got. In addition, as a comparison,1And substrate3Using,Inventive products 1 to 4 were obtained.In addition, as a comparison,1And substrate3Using a comparative product1And comparative products2Got.
The processing conditions were such that after each substrate surface was bombarded, a composite hard film was coated. The bombarding treatment was performed under the following conditions: atmosphere in the reaction vessel: vacuum, substrate temperature: 873 K, arc current: 70 A, substrate bias voltage: -600 V, and Ar gas bombardment. The coating of the composite hard film is as follows: gas flow rate in the reaction vessel: 200 to 350 SCCM, evaporation source: Ti-Al alloy, arc voltage: 200 to 300 V, arc current: 150 to 200 A, base material temperature: 773 to 873 K, base material The composite hard film was coated with a bias voltage of -100 to -200 V.
[0033]
The substrate treatment in Comparative Products 1 and 2 was substantially the same as the above-described substrate surface treatment of the product of the present invention except for the wet blast treatment. The coating of the composite hard film in the comparative products 1 and 2 is the same as the processing conditions of the composite hard film in the present invention described above, but the arc voltage: 10 to 50 V, the arc current: 200 to 250 A, the base material bias voltage: Substantially the same treatment was carried out except that the voltage was -30 to -80 V. However, as the evaporation source at the time of treating the composite hard films of the comparative products 1 and 2, those having a constant Ti-Al element ratio were used.
[0034]
The product of the present invention thus obtained1-4And comparison products1And comparative products2About the composite hard film ofX-ray times H (200) / by X-ray diffraction from the surface of the composite hard film using a folding device, a scanning electron microscope, a metallographic microscope, an EDS device, a scratch tester corresponding to a Vickers hardness tester and a scratch hardness tester h (111), d (200) / d (111),TiAnd the Al content, the hardness of the surface of the composite hard film, and the scratch strength were determined. The results are shown in Table 1.Also, the product of the present invention1And the present invention2And comparison products1Is a work material: SCM415 (hardness: about HRC61), cutting speed: 150 m / min, depth of cut: 0.5 mm, feed: 0.1 mm / rev, tool shape:TNMA160408, Honing: 0.15 x -25 °, outer circumference continuous dry turning test, and the results are shown1It was also described in. The evaluation of this peripheral continuous dry turning test is as follows:When the cutting edge chipping, the coating layer peels off, the average flank wear amount or boundary wear amount reaches 0.3 mm and the tool life,Comparative product1It was expressed as a life ratio with respect to. The product of the present invention1-4And comparison products1 and comparative product 2The composite hard film thickness was about 5 μm.
[0035]
[Table 1]
Figure 0003599628
[0036]
【The invention's effect】
The composite hard film-coated member of the present invention is that the composite hard film is coated by crystal growth and crystal orientation by vapor phase epitaxy, distortion and defects of the composite hard film itself are suppressed, and the composite hard film is a fine crystal. In some cases, since the composite hard film contains a composite hard film reinforcing material such as columnar crystals and / or a trace amount of metal, a conventional composite hard film coating member or a composite hard film coating deviating from the present invention is used. Very good adhesion and peeling resistance to materials adjacent to the composite hard film such as the base material and the composite hard film, the base layer and the composite hard film, and the composite hard film and the outer layer, The high toughness, high strength, heat resistance, thermal shock resistance, oxidation resistance, and abrasion resistance of the composite hard film itself are excellent. As a result, when used as a cutting tool, for example, it is regarded as important as a cutting tool. High toughness, abrasion resistance, thermal shock resistance, fracture resistance, oxidation resistance and welding resistance are remarkably improved to achieve long life, high efficiency in cutting, and variation. Has a remarkable effect that it is small and stable.

Claims (8)

超高温高圧焼結体でなる基材の表面にチタンとアルミニウムとを含む複合窒化物、複合炭化物、複合炭窒化物、複合窒酸化物、複合炭酸化物、複合炭窒酸化物の中から選ばれた少なくとも1種の複合硬質膜を含む単層または積層の被覆層として被覆されており、該複合硬質膜の表面から銅ターゲットを用いてX線回折したときに、(200)結晶面のピーク高さをh(200)とし、(111)結晶面のピーク高さをh(111)としたときに、h(200)/h(111)≧4.0からなり、該(200)結晶面のピークの半価幅をd(200)とし、該(111)結晶面のピークの半価幅をd(111)としたときに、1.5≧d(200)/d(111)≧0.8からなる複合硬質膜被覆部材。Composite nitride containing titanium and aluminum on the surface of a substrate made of an ultra high temperature and high pressure sintered body, composite carbide, the composite carbonitride, composite oxynitride, composite carbonate, selected from among the composite oxycarbonitride And a X-ray diffraction from the surface of the composite hard film using a copper target, the peak height of the (200) crystal plane. Where h (200) is the height of the (200) crystal plane and h (111) is the peak height of the (111) crystal plane, h (200) / h (111) ≧ 4.0. When the half width of the peak is d (200) and the half width of the peak of the (111) crystal plane is d (111), 1.5 ≧ d (200) / d (111) ≧ 0. 8 is a composite hard film-coated member. 上記基材は、立方晶窒化硼素を20〜90重量%と、残部がTi,Al,Mg,Siの窒化物、硼化物およびこれらの相互固溶体の中から選ばれた少なくとも1種の粒界結合相とを含有する超高温高圧焼結体からなる請求項1に記載の複合硬質膜被覆部材。The base material contains 20 to 90% by weight of cubic boron nitride, and the balance is at least one type of grain boundary bond selected from nitrides, borides and mutual solid solutions of Ti, Al, Mg, and Si. 2. The composite hard film-coated member according to claim 1, comprising an ultra-high temperature and high pressure sintered body containing a phase. 上記複合硬質膜は、膜厚さが1〜15μmでなる立方晶型結晶構造からなる請求項1または2に記載の複合硬質膜被覆部材。The composite hard film is a composite hard film-coated member according to claim 1 or 2 film thickness and made of cubic crystal structure consisting of 1 to 15 m. 上記複合硬質膜は、(Tia,Alb)(Cx,Ny,OzW[ただし、aは金属元素中のTi(チタン)元素の原子比、bは金属元素中のAl(アルミニウム)元素の原子比、xは非金属元素中の炭素(C)元素の原子比、yは非金属元素中の窒素(N)元素の原子比、zは非金属元素中の酸素(O)元素の原子比、wは金属元素の合計に対する非金属元素の原子比を表し、それぞれがa+b=1、0.8≧a≧0.4、x+y+z=1、0.5≧x≧0、1≧y≧0.5、0.5≧z≧0、1.05≧w≧0.7の関係にある]で表される複合硬質膜を含有する請求項1〜3のいずれか1項に記載の複合硬質膜被覆部材。The composite hard film, (Ti a, Al b) (C x, N y, O z) W [ where, a is the atomic ratio of Ti (titanium) element in the metal element, b is Al in the metal element ( Aluminum) element atomic ratio, x is the atomic ratio of carbon (C) element in the nonmetallic element, y is the atomic ratio of nitrogen (N) element in the nonmetallic element, z is the oxygen (O) in the nonmetallic element The atomic ratio of the element, w, represents the atomic ratio of the non-metallic element to the total of the metal elements, and a + b = 1, 0.8 ≧ a ≧ 0.4, x + y + z = 1, 0.5 ≧ x ≧ 0, a ≧ y ≧ 0.5,0.5 ≧ z ≧ 0,1.05 claim 1 containing composite hard film represented by certain] in relation ≧ w ≧ 0.7 The composite hard film-coated member according to the above. 上記複合硬質膜は、(Tia,Alb,M1-a-b)(Cx,Ny,OzW[ただし、aは金属元素中のTi(チタン)元素の原子比、bは金属元素中のAl(アルミニウム)元素の原子比、Mは周期律表の4a,5a,6a族元素、Si,Mn,Mg,Bの中の少なくとも1種を表し、xは非金属元素中の炭素(C)元素の原子比、yは非金属元素中の窒素(N)元素の原子比、zは非金属元素中の酸素(O)元素の原子比、wは金属元素の合計に対する非金属元素の原子比を表し、それぞれが0.8≧a≧0.4、0.6>b>0.2、x+y+z=1、0.5≧x≧0、1≧y≧0.5、0.5≧z≧0、1.05≧w≧0.7の関係にある]で表される複合硬質膜を含有する請求項1〜3のいずれか1項に記載の複合硬質膜被覆部材。The composite hard film is made of (Ti a , Al b , M 1 -ab ) (C x , N y , O z ) W [where a is the atomic ratio of the Ti (titanium) element in the metal element, and b is the metal The atomic ratio of the Al (aluminum) element in the elements, M represents at least one element from the group 4a, 5a, 6a of the periodic table, Si, Mn, Mg, and B, and x represents carbon in the nonmetal element. (C) Atomic ratio of element, y is atomic ratio of nitrogen (N) element in nonmetallic element, z is atomic ratio of oxygen (O) element in nonmetallic element, w is nonmetallic element with respect to total of metallic elements Where 0.8 ≧ a ≧ 0.4, 0.6>b> 0.2, x + y + z = 1, 0.5 ≧ x ≧ 0, 1 ≧ y ≧ 0.5, 0. 5 ≧ z ≧ 0, 1.05 ≧ w ≧ 0.7]. The composite hard film-coated member according to any one of claims 1 to 3 . 上記複合硬質膜は、該複合硬質膜中にNi,Co,W,Mo,Al,Tiの金属、これらの相互合金,これらの金属間化合物の中から選ばれた少なくとも1種の複合硬質膜強化物質が含有されている請求項1〜5のいずれか1項に記載の複合硬質膜被覆部材。The composite hard film is formed by reinforcing at least one type of composite hard film selected from Ni, Co, W, Mo, Al, and Ti metals, their alloys, and their intermetallic compounds. The composite hard film-coated member according to any one of claims 1 to 5, further comprising a substance. 上記複合硬質膜と上記基材との間に、Tiおよび/またはAlの金属、TiとAlの合金、Tiおよび/またはAlを含む金属間化合物でなる薄層が1μm以下の膜厚さで介在されている請求項1〜6のいずれか1項に記載の複合硬質膜被覆部材。A thin layer made of a metal of Ti and / or Al, an alloy of Ti and Al, or an intermetallic compound containing Ti and / or Al with a thickness of 1 μm or less is interposed between the composite hard film and the base material. The composite hard film-coated member according to any one of claims 1 to 6, wherein the member is formed. 上記請求項1〜7のいずれか1項に記載の複合硬質膜被覆部材は、切削工具として用いられる複合硬質膜被覆部材。The composite hard film-coated member according to any one of claims 1 to 7 , which is used as a cutting tool.
JP2000049530A 2000-02-25 2000-02-25 Composite hard film coated member Expired - Fee Related JP3599628B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000049530A JP3599628B2 (en) 2000-02-25 2000-02-25 Composite hard film coated member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000049530A JP3599628B2 (en) 2000-02-25 2000-02-25 Composite hard film coated member

Publications (2)

Publication Number Publication Date
JP2001234328A JP2001234328A (en) 2001-08-31
JP3599628B2 true JP3599628B2 (en) 2004-12-08

Family

ID=18571457

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000049530A Expired - Fee Related JP3599628B2 (en) 2000-02-25 2000-02-25 Composite hard film coated member

Country Status (1)

Country Link
JP (1) JP3599628B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015052762A1 (en) * 2013-10-08 2015-04-16 Tpr株式会社 Piston ring and seal ring for turbocharger
WO2015052761A1 (en) * 2013-10-08 2015-04-16 Tpr株式会社 Piston ring and seal ring for turbocharger
US11453063B2 (en) 2017-05-31 2022-09-27 Kennametal Inc. Multilayer nitride hard coatings

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE441737T1 (en) 2000-12-28 2009-09-15 Kobe Steel Ltd TARGET FOR FORMING A HARD LAYER
KR100681741B1 (en) 2001-10-30 2007-02-15 미츠비시 마테리알 고베 툴스 가부시키가이샤 Surface coated cemented carbide cutting tool having hard coating layer exhibiting excellent wear resistance in high speed machining
JP2003251503A (en) 2001-12-26 2003-09-09 Sumitomo Electric Ind Ltd Surface covering cutting tool
SE523826C2 (en) 2002-03-20 2004-05-25 Seco Tools Ab Cutter coated with TiAIN for high speed machining of alloy steels, ways of making a cutter and use of the cutter
ES2552056T3 (en) * 2002-06-25 2015-11-25 Mitsubishi Materials Corporation Member of coated cutting tool
SE526338C2 (en) * 2002-09-04 2005-08-23 Seco Tools Ab Cut with a hardened, hardened refractory coating
SE526339C2 (en) * 2002-09-04 2005-08-23 Seco Tools Ab Cut with durable refractory coating with composite structure
JP4714022B2 (en) * 2003-06-27 2011-06-29 住友電工ハードメタル株式会社 Surface hard coating material for tools
IL166652A (en) * 2004-03-12 2010-11-30 Sulzer Metaplas Gmbh Carbon containing hard coating and method for depositing a hard coating onto a substrate
JP4747268B2 (en) * 2005-05-25 2011-08-17 三菱マテリアル株式会社 Surface coated cemented carbide cutting tool with high temperature strength with excellent hard coating layer
JP4985919B2 (en) 2005-12-22 2012-07-25 三菱マテリアル株式会社 Cutting tool made of surface-coated cubic boron nitride-based ultra-high pressure sintered material that provides excellent long-term surface accuracy in high-speed cutting of hardened steel
JP5005262B2 (en) 2006-05-26 2012-08-22 三菱マテリアル株式会社 Cutting tool made of surface-coated cubic boron nitride-based ultra-high pressure sintered material that exhibits excellent surface finish accuracy over a long period of time in high-speed cutting of hardened steel
JP5065758B2 (en) * 2007-05-16 2012-11-07 住友電気工業株式会社 Coated cutting tool
JP5065756B2 (en) * 2007-05-16 2012-11-07 住友電気工業株式会社 Coated cutting tool
JP5065757B2 (en) * 2007-05-16 2012-11-07 住友電気工業株式会社 Coated cutting tool
JP5293330B2 (en) * 2009-03-26 2013-09-18 三菱マテリアル株式会社 Cutting tool made of surface coated cubic boron nitride based ultra high pressure sintered material
JP5623800B2 (en) * 2010-06-14 2014-11-12 Ntn株式会社 TiAlN film forming body
US8409702B2 (en) * 2011-02-07 2013-04-02 Kennametal Inc. Cubic aluminum titanium nitride coating and method of making same
JP5995080B2 (en) * 2012-12-20 2016-09-21 三菱マテリアル株式会社 Surface coated cutting tool made of cubic boron nitride based ultra-high pressure sintered material with excellent crack resistance
US9103036B2 (en) 2013-03-15 2015-08-11 Kennametal Inc. Hard coatings comprising cubic phase forming compositions
JP6510771B2 (en) * 2013-06-26 2019-05-08 日立金属株式会社 Coated cutting tool for milling titanium or titanium alloy and method of manufacturing the same
US9168664B2 (en) 2013-08-16 2015-10-27 Kennametal Inc. Low stress hard coatings and applications thereof
US9896767B2 (en) 2013-08-16 2018-02-20 Kennametal Inc Low stress hard coatings and applications thereof
JP5879664B2 (en) * 2013-12-26 2016-03-08 住友電工ハードメタル株式会社 Cutting tools
KR102610954B1 (en) * 2017-08-31 2023-12-06 발터 악티엔게젤샤프트 Wear-resistant PVD tool coating containing TiAlN nanolayer films

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015052762A1 (en) * 2013-10-08 2015-04-16 Tpr株式会社 Piston ring and seal ring for turbocharger
WO2015052761A1 (en) * 2013-10-08 2015-04-16 Tpr株式会社 Piston ring and seal ring for turbocharger
US11453063B2 (en) 2017-05-31 2022-09-27 Kennametal Inc. Multilayer nitride hard coatings

Also Published As

Publication number Publication date
JP2001234328A (en) 2001-08-31

Similar Documents

Publication Publication Date Title
JP3599628B2 (en) Composite hard film coated member
JP3476749B2 (en) Ultra-high pressure and high pressure sintered body
JP3934136B2 (en) Hard film coating member and coating method thereof
CN100418679C (en) Composite coatings for finishing of hardened steels
WO2010150335A1 (en) Tool having coated cubic boron nitride sintered body
JP5368335B2 (en) Hard coating and method for manufacturing hard coating
JP5099586B2 (en) Surface-coated cutting tool with excellent fracture resistance due to hard coating layer
JP2006152321A (en) Coated member with hard film and coating method therefor
JP2006249574A (en) Hard coating, target for forming hard coating, and method for forming hard coating
CN114846176B (en) Coated cutting tool
US6589602B2 (en) Highly adhesive surface-coated cemented carbide and method for producing the same
JP4112296B2 (en) Coated cutting tool and coating method thereof
JP5239292B2 (en) Surface-coated cutting tool with excellent fracture resistance due to hard coating layer
JP5207105B2 (en) Surface-coated cutting tool with excellent fracture resistance due to hard coating layer
JP2014014895A (en) Surface coated cutting tool
JP2001181825A (en) Composite high hardness material
JP5309733B2 (en) Surface-coated cutting tool with excellent fracture resistance due to hard coating layer
JP2004249394A (en) Coated drill
JP5239392B2 (en) Surface-coated cutting tool with excellent fracture resistance due to hard coating layer
JP4936742B2 (en) Surface coating tools and cutting tools
JP5099587B2 (en) Surface-coated cutting tool with excellent fracture resistance due to hard coating layer
JPH07145483A (en) Wear resistant coated member
JP2011189499A (en) Hard film coated tool
JP5240498B2 (en) Surface-coated cutting tool with excellent fracture resistance due to hard coating layer
JP6172519B2 (en) Surface-coated cutting tool that exhibits excellent chipping resistance over a long period of time when cutting hardened steel

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040914

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040914

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3599628

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070924

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080924

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090924

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090924

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100924

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100924

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100924

Year of fee payment: 6

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100924

Year of fee payment: 6

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100924

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100924

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110924

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110924

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110924

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120924

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120924

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120924

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130924

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees