JP3599623B2 - Explosive composition - Google Patents

Explosive composition Download PDF

Info

Publication number
JP3599623B2
JP3599623B2 JP2000019567A JP2000019567A JP3599623B2 JP 3599623 B2 JP3599623 B2 JP 3599623B2 JP 2000019567 A JP2000019567 A JP 2000019567A JP 2000019567 A JP2000019567 A JP 2000019567A JP 3599623 B2 JP3599623 B2 JP 3599623B2
Authority
JP
Japan
Prior art keywords
explosive
weight
explosive composition
nitrate
porous prill
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000019567A
Other languages
Japanese (ja)
Other versions
JP2001213686A (en
Inventor
秀明 杉原
弘幸 谷口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Kayaku Co Ltd
Original Assignee
Nippon Kayaku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kayaku Co Ltd filed Critical Nippon Kayaku Co Ltd
Priority to JP2000019567A priority Critical patent/JP3599623B2/en
Publication of JP2001213686A publication Critical patent/JP2001213686A/en
Application granted granted Critical
Publication of JP3599623B2 publication Critical patent/JP3599623B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06BEXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
    • C06B31/00Compositions containing an inorganic nitrogen-oxygen salt
    • C06B31/28Compositions containing an inorganic nitrogen-oxygen salt the salt being ammonium nitrate
    • C06B31/285Compositions containing an inorganic nitrogen-oxygen salt the salt being ammonium nitrate with fuel oil, e.g. ANFO-compositions

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Air Bags (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、爆薬組成物に関する。更に詳しくは採石、採鉱等の産業用爆破作業に広く利用され、被破壊物の穿孔に直接装填しうるポーラスプリル硝酸アンモニウム(硝安)系の爆薬組成物に関する。
【0002】
【従来の技術】
爆破作業等に用いられる産業用爆薬としては、ダイナマイト、含水爆薬、硝安爆薬、硝安油剤爆薬(以下ANFO爆薬と呼ぶ)等が良く知られている。これらの爆薬のうち、ANFO爆薬は比較的簡単に製造できる爆薬であり、通常流動性のある粒状を呈しているので、穿孔内に直接流し込んだり、ローダー等の装填機によって装填することもできるという特徴がある。
【0003】
【発明が解決しようとする課題】
ポーラスプリル硝安の反応性がニトログリセリンやニトログリコールのような爆発性化合物に比べてかなり低いことは良く知られている。従って、ポーラスプリル硝安が酸化剤として爆薬全体の90重量%以上を占めることの多いANFO爆薬は、他の産業用爆薬と比較して威力は低いが、安価で安定であるという点から、広く使用されている。また、ANFO爆薬の起爆感度は、火薬学会規格ES−32(2)に爆轟起爆試験方法として規定されている塩ビ雨どい試験又はカートン試験において6号雷管で完爆しないこととされており、その低感度故に例えば25kg入り重袋への収納及びそれによる輸送が許されている。
【0004】
ANFO爆薬において、吸油率が高く、粒径の細かいポーラスプリル硝安を使用することにより反応性の向上及び爆速の上昇が達成できることは既に確かめられている(特開平7−69772号)。しかしながら、この方法によると塩ビ雨どい試験又はカートン試験において6号雷管で完爆することとなり、ANFO爆薬としての規格を外れてしまい、重袋による収納及び輸送が許されないものとなるため、取扱性の煩雑化及びコストアップを招くことになる。
【0005】
これら課題の解決手段として、爆薬の酸素平衡値を大幅に負とする方法(特開平8−259365号)がある。一般に酸素平衡値が負の方向に向かう程、爆発反応により発生するガス(以下後ガスと呼ぶ)中に含まれる一酸化炭素の量は増加する傾向を示し、逆に酸素平衡値が正の方向に向かう程、一酸化炭素の発生量は減少するが、一酸化炭素と同様に有毒成分である二酸化窒素等の窒素酸化物の発生量が増加する傾向を示すため、できるだけ酸素平衡値を0(零)付近に収まるように設計されている。もっともこれらの有毒成分の発生量は微量であるため、ANFO爆薬が使用されている採石等、坑外等における発破では、酸素平衡値が零からぶれることによる有毒成分の発生による周囲への影響は無視できる程度のものであるが、近年、後ガスの換気を十分に行う必要のあるトンネル等、坑内における発破にANFO爆薬が頻繁に使用されるようになっており、前記方法による高威力・低感度化は、発破作業者への影響を考慮すると作業環境上好ましくない状況となる虞がある。
【0006】
【課題を解決するための手段】
本発明者らは、ANFO爆薬において使用するポーラスプリル硝安の吸油率、嵩比重等の物性及び爆薬組成物の酸素平衡値等がその爆轟性能へ与える影響について鋭意研究をした結果、特定の特性を有するポーラスプリル硝安を使用することにより、有害ガスの発生に悪影響を与えたり、ANFO爆薬としての感度上昇を招くことなく、威力を著しく向上させることが出来ることを見出し、本発明を完成させたものである。
【0007】
すなわち本発明は、
(1)吸油率が15.0〜24.0%、嵩比重が0.55〜0.70であるポーラスプリル硝酸アンモニウム及び燃料油を含有する爆薬組成物、
(2)ポーラスプリル硝酸アンモニウムがその粒径が2.36mm以上及び0.98mm以下のものの含有量がそれぞれ、0.5〜25.0重量%及び1.0重量%以下のポーラスプリル硝酸アンモニウムである(1)に記載の爆薬組成物、
(3)ポ−ラスプリル硝酸アンモニウムの硬度が0.1〜20.0%である(1)乃至(2)に記載の爆薬組成物、
(4)爆薬組成物の酸素平衡値が爆薬組成物1g当たり−0.034〜0.100gである(1)乃至(3)に記載の爆薬組成物、
に関する。
【0008】
【発明の実施の形態】
以下本発明を詳細に記載する。
本発明の爆薬組成物においては、嵩比重が0.55〜0.70、好ましくは0.60〜0.70で、吸油率が15.0〜24.0%、好ましくは16.0〜20.0%のポーラスプリル硝安が使用され、これを粉砕したポーラスプリル硝安を併用することも可能である。
ポーラスプリル硝安の粒度分布(重量%)は、一定量のポーラスプリル硝安を篩目の異なる各種篩を通し、各篩目毎の篩網上残留分重量から測定されるが、本発明の爆薬組成物に使用されるポーラスプリル硝安としてはその粒径が2.36mm以上及び0.98mm以下のものの含有量がそれぞれ、0.5〜25.0重量%及び1.0重量%以下であるものが好ましい。
【0009】
ポーラスプリル硝安の嵩比重はJIS K−6721に規定の方法に準じて測定される。即ち、一定量の試料ポーラスプリル硝安を一定の高さから、支持棒に支持された下部にダンパーを有する漏斗を用いて、支持台上に設置した円筒形コップ内に落下させ、コップ上に盛り上がった試料のポーラスプリル硝安を除去した後、コップ内の試料ポーラスプリル硝安を秤量することによって測定される。詳しくは、上端の直径90mm、下端の直径15mm、高さ115mmの漏斗を、漏斗下端と支持台上の深さ80mm、容積100cmのコップ上端との距離が45mmとなるように設置し、漏斗内に試料のポーラスプリル硝安100gをに入れ、ダンパーをスライドさせてコップ内に試料のポーラスプリル硝安を落下させる。振動を与えないように注意してコップの上に盛り上がった試料のポーラスプリル硝安をヘラでコップの上端と同じ高さで水平になるように払いのける。次いでコップの外側に付着した試料のポーラスプリル硝安はこれを除去して、コップ内の試料ポーラスプリル硝安の重量を上皿直示天秤で秤量する。以上の測定を終えた後、下記(1)式により嵩比重を算出する。
嵩比重=試料重量(g)/100(cm) (1)
【0010】
ポーラスプリル硝安の吸油率は、一定量の試料ポーラスプリル硝安を、軽油に一定時間浸しておいた後、吸引ろ過し、試験前後の重量差より軽油の吸着量を算出することによって測定される。詳しくは試料ポーラスプリル硝安50gを直径40mm、深さ50mmのガラスフィルター(11G−1)に入れ、上皿直示天秤で秤量し、これを真空装置にセットする。ついでガラスフィルター中に軽油40mlを注入し、細い棒でよく撹拌し、ポーラスプリル硝安と軽油の混合接触を図る。5分間放置後、ガラスフィルターに付属した外部のコックを開放し、2分間軽油を自然流下させる。引き続き真空ポンプにて5分間吸引(流速:約30l/min)した後、軽油を吸着した試料のポーラスプリル硝安の入ったままのガラスフィルターを、上皿直示天秤で秤量する。ここで増量分が軽油の吸着分である。以上の測定を終えた後、元の試料ポ−ラスプリル硝安50gに対する軽油吸着分(g)の比率(%)を、吸油率(%)として表示する。計算式は下記(2)式の通りである。
吸油率(%)=軽油吸着分(g)/試料50(g)×100 (2)
【0011】
ポーラスプリル硝安の硬度は、一定量のポーラスプリル硝安の試料を硬度測定装置により一定の条件で機械的に粉砕し、粉砕された量を計ることにより測定される。
測定に使用される装置は、試料注入用漏斗、圧縮空気流入孔(内径4mm、長さ55mm)に接続した流送管(内径16mm、長さ175mm)、それら接続部上部と漏斗を垂直に接続する試料注入管(内径12mm、長さ52mm)及び流送管と垂直に接続した試料粉砕管(内径50mm、長さ315mm)から構成されている。
【0012】
35mesh篩で粉末を除去した試料硝安100gを漏斗から試料注入管を通して流送管に落下注入し、流入孔から流入した圧縮空気(4kg/cm)により、試料を流送管を通して粉砕管内壁に衝突させ試料硝安を粉化させる。流送後の試料ポ−ラスプリル硝安を35meshで篩分けし、+35mesh量(N)を秤量し、元の試料硝安100gに対する粉化量の比率(%)として表示する。計算式は下記(3)式の通り。
硬度(%)=100(g)−N(g) (3)
本発明の爆薬組成物に使用されるポ−ラスプリル硝安としては、その硬度が0.1〜20.0%、好ましくは0.1〜10.0%であるものを使用するのが好ましい。
【0013】
本発明の爆薬組成物に用いられる燃料油としては、混合時に液状である可燃性の有機物質であればいずれも使用しうるが、好ましい燃料油の具体例としては軽油、灯油等の鉱物油、大豆油、ナタネ油、ヒマシ油等の植物油、牛脂、スクワレン等の動物油等が挙げられる。
この他、必要により、メチルアルコール、エチルアルコール等のアルコール類、パラフィンワックス、マイクロクリスタリンワックス等のワックス類、ジニトロトルエン、ジニトロキシレン等のニトロ化合物等を燃料油として単独又は混合して用いることができる。融点の高い燃料油は、それが液状になる温度以上で、ポーラスプリル硝安と混合する事によって用いることができる。
【0014】
本発明の爆薬組成物に用いられる可燃性物質は、爆薬組成物の酸素平衡値が爆薬組成物1g当たり−0.034〜0.100g、好ましくは−0.027〜0.046gとなるように配合される。爆薬の酸素平衡値は、例えば、平成9年日本火薬工業会発行の「一般火薬学」pp9〜12、昭和62年火薬学会発行の「火薬ハンドブック」pp28〜29に述べられているように、爆薬1gに含まれている可燃性成分のすべての成分(後記するような添加物のうち可燃性の物も含む)を、完全に酸化反応させた場合の酸素の過不足量をgで表示した値である。
【0015】
本発明の爆薬組成物は必要によって、静電気発生防止の措置を施すことができる。例えば水溶性及び油溶性の帯電防止剤(特開昭55−51794号、特開平11−147784号、特開平11−278974号)として知られる各種界面活性剤や、デンプン類(特開平10−291883号)、脂肪酸アミド等の添加剤を加えることができる。
【0016】
本発明の爆薬は、必要によりポーラスプリル硝安以外の酸化剤、例えば硝酸カリウムや過塩素酸塩、更には、木粉、アルミニウム粉のような粉末追加燃料あるいは、ポリアクリル酸ナトリウムのような増粘安定剤(特開平8−295588号)、シラスバルーンのような比重調整材(特開平8−26877号)、アンモニアガス抑制剤として知られる有機酸(特開平11−79878号)、吸水剤等、他の添加剤を加えることが可能である。
【0017】
本発明の爆薬組成物は、ニーダーあるいは回転ミキサーのような混合機で、ポーラスプリル硝安と燃料油を必須の成分として、さらに必要によりその他の添加剤を均一に混合することによって、製造される。また、撹拌、混合の機能を備えているならば、他の混合機も使用可能である。
【0018】
本発明のANFO爆薬はANFO爆薬としての規格に適合し、なお且つ従来のANFO爆薬に比べて威力に優れ、かつ後ガス中の有毒成分濃度が従来のANFO爆薬に比べて悪くないという特徴を有している。
【0019】
【実施例】
本発明を実施例を挙げてさらに詳しく説明するが、本発明がこれらの実施例のみに限定されるものではない。
【0020】
実施例1
吸油率17.0%、嵩比重0.68、粒径2.36mm以上及び0.98mm以下の粒径のものがそれぞれ、0.7重量%及び0.5重量%、硬度9.0%のポーラスプリル硝安94.2重量部を室温のシグマ翼を備えた横型ニーダーに移し、室温の2号軽油5.5重量部、脂肪酸アミド(脂肪酸アマイドS:花王(株)製)0.3重量部を添加し、1分当たり80回転の速度で5分間混合し、本発明の爆薬組成物100重量部を得た。この爆薬組成物の酸素平衡値(g/g)は−0.009である。
【0021】
実施例2
実施例1と同様のポーラスプリル硝安94.7重量部を室温のコンクリートミキサーに移し、室温の2号軽油5.0重量部、塩化ジメチルジアリルアンモニウム・アクリルアミド共重合体の20%水溶液(カヤクリルレジンEC−315:日本化薬(株)製)0.3重量部を添加し、1分当たり100回転の速度で3分間混合し、本発明の爆薬組成物100重量部を得た。この爆薬組成物の酸素平衡値(g/g)は0.011である。
【0022】
実施例3
嵩比重0.66、粒径2.36mm以上及び0.98mm以下のものがそれぞれ、20.5重量%及び0.3重量%、吸油率15.0%、硬度0.7%のポーラスプリル硝安73.0重量部とその粉砕品20.8重量部を室温のコンクリートミキサーに移し、室温の2号軽油6.2重量部を添加し、1分当たり80回転の速度で5分間混合し、本発明の爆薬組成物100重量部を得た。この爆薬組成物の酸素平衡値(g/g)は−0.025である。
【0023】
比較例1
嵩比重0.76、粒径2.36mm以上及び0.98mm以下のものがそれぞれ、0.0重量%及び2.0重量%、吸油率13.5%、硬度7.0%のポーラスプリル硝安94.0重量部を室温のシグマ翼を備えた横型ニーダーに移し、室温の2号軽油6.0重量部を添加し、1分当たり70回転の速度で5分間混合し、比較用の爆薬組成物100重量部を得た。この爆薬組成物の酸素平衡値(g/g)は −0.018である。
【0024】
比較例2(特開平8−259365号)
嵩比重0.71、粒径2.36mm以上及び0.98mm以下のものがそれぞれ、0.0重量%及び0.1重量%、吸油率16.0%、硬度15.5%のポーラスプリル硝安92.0重量部を室温のシグマ翼を備えた横型ニーダーに移し、室温の2号軽油8.0重量部を添加し、1分当たり80回転の速度で5分間混合し、比較用の爆薬組成物100重量部を得た。この爆薬組成物の酸素平衡値(g/g)は− 0.090である。
【0025】
性能試験
(1)弾動振子試験
実施例1〜3及び比較例1〜2で得られた各爆薬組成物を内径30mm、厚さ5.0mmの紙管中に90g流し込み、10gのペントライトをブースターとして6号雷管で起爆し、弾動振子値を測定した。
【0026】
(2)爆速試験
実施例1〜3及び比較例1〜2で得られた各爆薬組成物を内径35mm、厚さ3.5mmの鋼管中に200g流し込み、40gのペントライトをブースターとして6号雷管で起爆し、爆速を測定した。
【0027】
(3)起爆感度試験
実施例1〜3及び比較例1〜2で得られた各爆薬組成物を火薬学会規格ES−32(2)で規定されている塩ビ雨どい試験において6号雷管で起爆した。
【0028】
(4)後ガス測定試験
実施例1〜3及び比較例1〜2で得られた各爆薬組成物を内径30mmの紙筒中に270g流し込み、容積35m3の鋼板製円筒形の後ガス試験坑道内において30gの含水爆薬(アルテックス:日本化薬(株)製)をブースターとして臼砲内で6号雷管で起爆し、ガス検知管(Drager社製)を用いて、後ガス中の一酸化炭素及び窒素酸化物の濃度を測定した。
【0029】
これらの試験結果を表1に示す。

Figure 0003599623
【0030】
比較例1の爆薬は、弾動振子値が68.3mm、爆速が2950m/secであり、起爆感度が6号雷管で不完爆(塩ビ法)である。また、比較例2の爆薬は、弾動振子値及び爆速が著しく上昇し、起爆感度も低く、ANFO爆薬本来の優れた取扱性が損なわれることはないが、後ガス中の一酸化炭素の濃度が従来のANFO爆薬(比較例1)に比べて著しく増加することが分かる。これら比較例に対して、実施例1〜3の本発明の爆薬組成物は、弾動振子値及び爆速がそれぞれ78.8〜80.0mm及び3150〜3300m/secと上昇し、起爆感度及び後ガス中の有毒成分の濃度も従来のANFO爆薬と同等乃至以下であり、本発明の爆薬組成物は、起爆感度が低いにも拘わらず、高威力であり、かつ有毒成分の増加を引き起こさないという特性を有することが明らかである。
【0031】
【発明の効果】
起爆感度が低いため、従来のANFO爆薬と同様に取扱うことが可能であるという特性を損なうことなく、従来のANFO爆薬に比べて威力に優れ、かつ後ガス中の有毒成分濃度が従来のANFO爆薬に比べて優れた爆薬組成物が得られた。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to explosive compositions. More specifically, the present invention relates to a porous prill ammonium nitrate (ammonium nitrate) based explosive composition widely used in industrial blasting operations such as quarrying and mining, and can be directly loaded into perforations of objects to be destroyed.
[0002]
[Prior art]
As industrial explosives used for blasting operations and the like, dynamite, hydrous explosives, nitrite explosives, and nitrate oil explosives (hereinafter referred to as ANFO explosives) are well known. Among these explosives, the ANFO explosive is an explosive that can be manufactured relatively easily, and is usually in the form of fluid granules, so it can be poured directly into a perforation or loaded by a loading machine such as a loader. There are features.
[0003]
[Problems to be solved by the invention]
It is well known that the reactivity of porous prill ammonium nitrate is significantly lower than explosive compounds such as nitroglycerin and nitroglycol. Accordingly, ANFO explosives, in which porous prill nitrate often accounts for 90% by weight or more of the entire explosive as an oxidizing agent, are less powerful than other industrial explosives, but are widely used because they are inexpensive and stable. Have been. In addition, the detonation sensitivity of the ANFO explosives is determined not to be completely detonated with a No. 6 primer in a PVC gutter test or a carton test specified as a detonation detonation test method in the Pharmaceutical Society of Japan standard ES-32 (2). Due to its low sensitivity, for example, storage in a heavy bag containing 25 kg and transport by the bag are permitted.
[0004]
It has already been confirmed that the use of porous prill nitrate having a high oil absorption rate and a small particle diameter in an ANFO explosive can achieve an improvement in reactivity and an increase in explosion speed (Japanese Patent Application Laid-Open No. 7-69772). However, according to this method, a No. 6 primer detonates in a PVC gutter test or a carton test, deviating from the standard as an ANFO explosive, and storage and transportation in heavy bags are not allowed. And the cost is increased.
[0005]
As a means for solving these problems, there is a method of making the oxygen equilibrium value of the explosive significantly negative (Japanese Patent Laid-Open No. 8-259365). Generally, as the oxygen equilibrium value goes in the negative direction, the amount of carbon monoxide contained in the gas generated by the explosion reaction (hereinafter referred to as gas) tends to increase, and conversely, the oxygen equilibrium value goes in the positive direction. , The amount of generated carbon monoxide decreases, but the amount of generated nitrogen oxides, such as nitrogen dioxide, which is a toxic component, tends to increase as in the case of carbon monoxide. It is designed to be close to zero. However, since the amount of these toxic components generated is very small, the impact on the surroundings due to the generation of toxic components due to the deviation of the oxygen equilibrium value from zero during blasting in the pits, such as quarries where ANFO explosives are used, etc. Although it is negligible, in recent years ANFO explosives have been frequently used for blasting in pits, such as tunnels where sufficient ventilation of post-gas is necessary, and high power and low Sensitivity may be unfavorable in the work environment when considering the effect on the blasting worker.
[0006]
[Means for Solving the Problems]
The present inventors have conducted intensive studies on the properties of the porous prill nitrate used in ANFO explosives, such as the oil absorption rate, bulk specific gravity, and the like, and the effect of the oxygen equilibrium value of the explosive composition on its detonation performance. It has been found that the use of a porous prill nitrate having the following features can significantly improve the power without adversely affecting the generation of harmful gas or increasing the sensitivity as an ANFO explosive, and completed the present invention. Things.
[0007]
That is, the present invention
(1) an explosive composition comprising a porous prill ammonium nitrate having an oil absorption of 15.0 to 24.0% and a bulk specific gravity of 0.55 to 0.70, and a fuel oil,
(2) Porous prill ammonium nitrate having a particle size of 2.36 mm or more and 0.98 mm or less has a content of 0.5 to 25.0% by weight and 1.0% by weight or less, respectively. Explosive composition according to 1),
(3) The explosive composition according to (1) or (2), wherein the hardness of porous prill ammonium nitrate is 0.1 to 20.0%.
(4) The explosive composition according to (1) to (3), wherein the oxygen equilibrium value of the explosive composition is -0.034 to 0.100 g per 1 g of the explosive composition.
About.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail.
In the explosive composition of the present invention, the bulk specific gravity is 0.55 to 0.70, preferably 0.60 to 0.70, and the oil absorption is 15.0 to 24.0%, preferably 16.0 to 20. Porous prill nitrate of 0.0% is used, and it is also possible to use the prilled ammonium nitrate in combination.
The particle size distribution (% by weight) of the porous prill nitrate is measured from the weight of the residual amount on the sieve net of each of a certain amount of porous prill nitrate through various sieves having different sieves. The porous prill nitrate used in the product has a particle size of not less than 2.36 mm and not more than 0.98 mm, the content of which is 0.5 to 25.0% by weight and 1.0% by weight, respectively. preferable.
[0009]
The bulk specific gravity of porous prill nitrate is measured according to the method specified in JIS K-6721. That is, a certain amount of sample porous prill nitrate is dropped from a certain height into a cylindrical cup placed on a support base using a funnel having a damper at the lower part supported by a support rod, and swells on the cup. After removing the porous prill nitrate from the sample, the sample is measured by weighing the sample porous prill nitrate in the glass. Specifically, a funnel having a diameter of 90 mm at the upper end, a diameter of 15 mm at the lower end, and a height of 115 mm was installed such that the distance between the lower end of the funnel and the upper end of the cup having a depth of 80 mm on the support base and a volume of 100 cm 3 was 45 mm. 100 g of porous prill nitrate of the sample is put in the container, and the damper is slid to drop the porous prill nitrate of the sample into the cup. Carefully take care not to vibrate, and use a spatula to remove the porous prilled ammonium salt of the sample raised on the cup so that it is horizontal at the same height as the top of the cup. Next, the porous prill nitrate of the sample adhering to the outside of the cup is removed, and the weight of the sample porous prill nitrate in the cup is weighed by a direct reading balance. After the above measurement, the bulk specific gravity is calculated by the following equation (1).
Bulk specific gravity = sample weight (g) / 100 (cm 3 ) (1)
[0010]
The oil absorption rate of porous prill nitrate is measured by immersing a certain amount of sample porous prill nitrate in light oil for a certain period of time, performing suction filtration, and calculating the adsorption amount of light oil from the weight difference before and after the test. Specifically, 50 g of sample porous prill nitrate is placed in a glass filter (11G-1) having a diameter of 40 mm and a depth of 50 mm, weighed with a direct balance on an upper plate, and set in a vacuum apparatus. Then, 40 ml of light oil is poured into the glass filter, and the mixture is thoroughly stirred with a thin rod to achieve mixed contact between porous prill nitrate and light oil. After standing for 5 minutes, the external cock attached to the glass filter is opened, and light oil is allowed to flow naturally for 2 minutes. Subsequently, after suctioning with a vacuum pump for 5 minutes (flow rate: about 30 l / min), the glass filter containing the gas oil adsorbed porous prill nitrate is weighed with an upper plate direct balance. Here, the increased amount is the absorbed amount of light oil. After the above measurement is completed, the ratio (%) of the light oil adsorption (g) to 50 g of the original sample, porous prill nitrate, is indicated as the oil absorption (%). The calculation formula is as shown in the following formula (2).
Oil absorption rate (%) = light oil adsorption (g) / sample 50 (g) x 100 (2)
[0011]
The hardness of porous prill ammonium nitrate is measured by mechanically pulverizing a fixed amount of a sample of porous prill ammonium nitrate under a predetermined condition using a hardness measuring device, and measuring the amount of the pulverized ammonium nitrate.
The device used for the measurement is a funnel for sample injection, a flow pipe (inner diameter 16 mm, length 175 mm) connected to the compressed air inlet (inner diameter 4 mm, length 55 mm), and the upper part of these connections and the funnel are connected vertically And a sample crushing tube (inner diameter: 50 mm, length: 315 mm) which is vertically connected to a flow pipe.
[0012]
100 g of sample nitrate from which powder was removed by a 35 mesh sieve was dropped from the funnel into the flow tube through the sample injection tube, and the compressed air (4 kg / cm 2 ) flowing from the inlet hole passed the sample through the flow tube to the inner wall of the grinding tube. Collision causes powder of sample ammonium nitrate. The sample porous ammonium nitrate after the flow is sieved with 35 mesh, the amount (N) of +35 mesh is weighed, and the ratio is expressed as the ratio (%) of the powdered amount to 100 g of the original sample nitrate. The calculation formula is as shown in the following formula (3).
Hardness (%) = 100 (g) −N (g) (3)
As the ammonium salt of porous prill used in the explosive composition of the present invention, one having a hardness of 0.1 to 20.0%, preferably 0.1 to 10.0% is preferably used.
[0013]
As the fuel oil used in the explosive composition of the present invention, any flammable organic substance that is liquid at the time of mixing can be used, and specific examples of preferred fuel oils include light oil, mineral oil such as kerosene, and the like. Vegetable oils such as soybean oil, rapeseed oil and castor oil, and animal oils such as beef tallow and squalene.
In addition, if necessary, alcohols such as methyl alcohol and ethyl alcohol, waxes such as paraffin wax and microcrystalline wax, and nitro compounds such as dinitrotoluene and dinitroxylene can be used alone or as a mixture as a fuel oil. . Fuel oils with high melting points can be used by mixing with porous prill nitrate above the temperature at which it becomes liquid.
[0014]
The combustible material used in the explosive composition of the present invention is such that the oxygen equilibrium value of the explosive composition is -0.034 to 0.100 g, preferably -0.027 to 0.046 g per 1 g of the explosive composition. Be blended. The oxygen equilibrium value of the explosive is, for example, as described in “General Explosives”, pp 9 to 12, published by the Japan Explosives Industry Association in 1997, and “Explosive Handbook”, pp. 28 to 29, published by the Explosives Association in 1987. A value in g indicating the excess or deficiency of oxygen when all the combustible components contained in 1 g (including combustibles among the additives described below) are completely oxidized. It is.
[0015]
The explosive composition of the present invention can be subjected to measures for preventing generation of static electricity, if necessary. For example, various surfactants known as water-soluble and oil-soluble antistatic agents (JP-A-55-51794, JP-A-11-147784, JP-A-11-278974), and starches (JP-A-10-291883). ), Fatty acid amide and the like.
[0016]
The explosive of the present invention may be used, if necessary, with an oxidizing agent other than porous prill ammonium nitrate, for example, potassium nitrate or perchlorate, or a powdered additional fuel such as wood powder or aluminum powder, or a thickening stable material such as sodium polyacrylate. (JP-A-8-295588), a specific gravity adjusting material such as shirasu balloon (JP-A-8-26877), an organic acid known as an ammonia gas inhibitor (JP-A-11-79878), a water absorbing agent, and the like. It is possible to add additives.
[0017]
The explosive composition of the present invention is produced by using a mixer such as a kneader or a rotary mixer, by uniformly mixing porous prill nitrate and fuel oil as essential components, and if necessary, other additives. In addition, other mixers can be used as long as they have stirring and mixing functions.
[0018]
The ANFO explosive of the present invention conforms to the standard as an ANFO explosive, is superior in power to the conventional ANFO explosive, and has a characteristic that the concentration of toxic components in the post-gas is not worse than that of the conventional ANFO explosive. are doing.
[0019]
【Example】
The present invention will be described in more detail with reference to examples, but the present invention is not limited to only these examples.
[0020]
Example 1
Those having an oil absorption of 17.0%, a bulk specific gravity of 0.68, and a particle diameter of not less than 2.36 mm and not more than 0.98 mm have 0.7% and 0.5% by weight and a hardness of 9.0%, respectively. 94.2 parts by weight of porous prill nitrate was transferred to a horizontal kneader equipped with a sigma wing at room temperature, 5.5 parts by weight of No. 2 light oil at room temperature, and 0.3 parts by weight of fatty acid amide (fatty acid amide S: manufactured by Kao Corporation). Was added and mixed at a speed of 80 revolutions per minute for 5 minutes to obtain 100 parts by weight of the explosive composition of the present invention. The oxygen equilibrium value (g / g) of this explosive composition is -0.009.
[0021]
Example 2
94.7 parts by weight of the same porous prill nitrate as in Example 1 was transferred to a concrete mixer at room temperature, and 5.0 parts by weight of light oil No. 2 at room temperature and a 20% aqueous solution of dimethyldiallylammonium chloride-acrylamide copolymer (Kayacryl resin) EC-315: Nippon Kayaku Co., Ltd.) 0.3 part by weight was added and mixed at a speed of 100 revolutions per minute for 3 minutes to obtain 100 parts by weight of the explosive composition of the present invention. The oxygen equilibrium value (g / g) of this explosive composition is 0.011.
[0022]
Example 3
Porous prill ammonium nitrate having a bulk specific gravity of 0.66, a particle size of not less than 2.36 mm and not more than 0.98 mm, 20.5 wt% and 0.3 wt%, an oil absorption of 15.0% and a hardness of 0.7%, respectively. 73.0 parts by weight and 20.8 parts by weight of the pulverized product were transferred to a concrete mixer at room temperature, 6.2 parts by weight of light oil No. 2 at room temperature were added, and mixed at a speed of 80 revolutions per minute for 5 minutes. 100 parts by weight of the explosive composition of the invention were obtained. The oxygen equilibrium value (g / g) of this explosive composition is -0.025.
[0023]
Comparative Example 1
Porous prill nitrate having a bulk specific gravity of 0.76, a particle size of not less than 2.36 mm and not more than 0.98 mm, 0.0% and 2.0% by weight, an oil absorption of 13.5% and a hardness of 7.0%, respectively. 94.0 parts by weight was transferred to a horizontal kneader equipped with a sigma wing at room temperature, 6.0 parts by weight of light oil No. 2 at room temperature was added, and mixed at a speed of 70 revolutions per minute for 5 minutes to prepare an explosive composition for comparison. 100 parts by weight of the product were obtained. This explosive composition has an oxygen equilibrium value (g / g) of -0.018.
[0024]
Comparative Example 2 (JP-A-8-259365)
Porous prill nitrate having a bulk specific gravity of 0.71, a particle size of not less than 2.36 mm and not more than 0.98 mm has 0.0% by weight and 0.1% by weight, an oil absorption of 16.0% and a hardness of 15.5%, respectively. 92.0 parts by weight was transferred to a horizontal kneader equipped with a sigma wing at room temperature, 8.0 parts by weight of No. 2 light oil at room temperature was added, and mixed at a speed of 80 revolutions per minute for 5 minutes to prepare an explosive composition for comparison. 100 parts by weight of the product were obtained. The oxygen equilibrium value (g / g) of this explosive composition is -0.090.
[0025]
Performance Test (1) Ballistic Pendulum Test 90 g of each explosive composition obtained in Examples 1 to 3 and Comparative Examples 1 and 2 was poured into a paper tube having an inner diameter of 30 mm and a thickness of 5.0 mm, and 10 g of pentrite was added. It was detonated with a No. 6 primer as a booster, and the ballistic pendulum value was measured.
[0026]
(2) Explosion velocity test 200 g of each explosive composition obtained in Examples 1 to 3 and Comparative Examples 1 and 2 was poured into a steel pipe having an inner diameter of 35 mm and a thickness of 3.5 mm, and a No. 6 primer using a 40 g pentlite as a booster. Was detonated, and the explosion velocity was measured.
[0027]
(3) Detonation sensitivity test Each of the explosive compositions obtained in Examples 1 to 3 and Comparative Examples 1 and 2 was detonated with a No. 6 primer in a PVC gutter test specified by the Pharmacopoeia Standard ES-32 (2). did.
[0028]
(4) Post-gas measurement test 270 g of each explosive composition obtained in Examples 1 to 3 and Comparative Examples 1 to 2 was poured into a paper cylinder having an inner diameter of 30 mm, and was placed in a 35 m 3 steel plate cylindrical post-gas test tunnel. A 30 g water-containing explosive (Altex: manufactured by Nippon Kayaku Co., Ltd.) was used as a booster and detonated with a No. 6 detonator in a mortar. Using a gas detector tube (manufactured by Drager), carbon monoxide and nitrogen in the back gas were used. The oxide concentration was measured.
[0029]
Table 1 shows the test results.
Figure 0003599623
[0030]
The explosive of Comparative Example 1 has a ballistic pendulum value of 68.3 mm, a detonation speed of 2950 m / sec, and a detonation sensitivity of a No. 6 detonator, which is an incomplete explosion (PVC method). In addition, the explosive of Comparative Example 2 has a remarkably increased ballistic pendulum value and explosion speed, low detonation sensitivity, and does not impair the excellent handling property of the ANFO explosive. Is significantly increased as compared with the conventional ANFO explosive (Comparative Example 1). In contrast to these comparative examples, the explosive compositions of the present invention of Examples 1 to 3 have the ballistic pendulum value and the explosion velocity increased to 78.8 to 80.0 mm and 3150 to 3300 m / sec, respectively. The concentration of toxic components in the gas is also equal to or less than that of the conventional ANFO explosive, and the explosive composition of the present invention has high power and does not cause an increase in toxic components, despite its low detonation sensitivity. It is clear that it has properties.
[0031]
【The invention's effect】
Because of its low detonation sensitivity, it can be handled in the same way as conventional ANFO explosives, without deteriorating the characteristics of conventional ANFO explosives. As a result, an excellent explosive composition was obtained.

Claims (3)

吸油率が15.0〜24.0%、嵩比重が0.55〜0.70であり、硬度が0.1〜10.0%であるポーラスプリル硝酸アンモニウム及び燃料油を必須成分として含有する爆薬組成物Explosive having an oil absorption of 15.0 to 24.0%, a bulk specific gravity of 0.55 to 0.70 and a hardness of 0.1 to 10.0% and containing porous prill ammonium nitrate and fuel oil as essential components Composition ポーラスプリル硝酸アンモニウムがその粒径が2.36mm以上及び0.98mm以下のものの含有量がそれぞれ、0.5〜25.0重量%及び1.0重量%以下のポーラスプリル硝酸アンモニウムである請求項1に記載の爆薬組成物The porous prill ammonium nitrate having a particle size of 2.36 mm or more and 0.98 mm or less is 0.5 to 25.0% by weight and 1.0% by weight or less, respectively. Explosive composition as described 爆薬組成物の酸素平衡値が爆薬組成物1g当たり−0.034〜0.100gである請求項1または2に記載の爆薬組成物The explosive composition according to claim 1 or 2 , wherein the oxygen equilibrium value of the explosive composition is -0.034 to 0.100 g per 1 g of the explosive composition.
JP2000019567A 2000-01-28 2000-01-28 Explosive composition Expired - Fee Related JP3599623B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000019567A JP3599623B2 (en) 2000-01-28 2000-01-28 Explosive composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000019567A JP3599623B2 (en) 2000-01-28 2000-01-28 Explosive composition

Publications (2)

Publication Number Publication Date
JP2001213686A JP2001213686A (en) 2001-08-07
JP3599623B2 true JP3599623B2 (en) 2004-12-08

Family

ID=18546243

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000019567A Expired - Fee Related JP3599623B2 (en) 2000-01-28 2000-01-28 Explosive composition

Country Status (1)

Country Link
JP (1) JP3599623B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103896695B (en) * 2012-12-30 2016-04-20 南京理工大学 Many micropores spherulitic ammonium nitrate and method for making thereof

Also Published As

Publication number Publication date
JP2001213686A (en) 2001-08-07

Similar Documents

Publication Publication Date Title
JP3599623B2 (en) Explosive composition
JP2002047088A (en) Granular explosive composition with water resistance
JP3797826B2 (en) Explosive composition
JP3862828B2 (en) Explosive composition
JP3797840B2 (en) Explosive composition
JP2005132636A (en) Explosive composition
JP2004010412A (en) Explosive cartridge
JP2002338383A (en) Explosive composition
JP2004002169A (en) Explosive composition
JP2011168458A (en) Explosive composition
JP2002348187A (en) Explosive composition
JP2002060293A (en) Water resistant granular explosive composition
JP2002029877A (en) Water resistant granular explosive composition
JP2003176195A (en) Explosive composition
RU2237645C1 (en) Blasting composition
RU2243200C2 (en) Water-containing explosive compound
JP2002047089A (en) Water resistant granular explosive composition
JP2002137983A (en) Explosion composition
JP2002348188A (en) Explosive composition
JP2001181081A (en) Particle state explosive
JP2598318B2 (en) Granular explosive composition
JP2004067458A (en) Explosive composition
JP2004067506A (en) Water resistant granular explosive composition
JP2000016891A (en) Explosive composition
JP2000327473A (en) Explosive composition

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040621

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040818

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040914

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040914

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070924

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100924

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100924

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100924

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110924

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees