JP2001181081A - Particle state explosive - Google Patents

Particle state explosive

Info

Publication number
JP2001181081A
JP2001181081A JP37267599A JP37267599A JP2001181081A JP 2001181081 A JP2001181081 A JP 2001181081A JP 37267599 A JP37267599 A JP 37267599A JP 37267599 A JP37267599 A JP 37267599A JP 2001181081 A JP2001181081 A JP 2001181081A
Authority
JP
Japan
Prior art keywords
explosive
specific gravity
nitrate
porous prill
granular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP37267599A
Other languages
Japanese (ja)
Inventor
Hideaki Sugihara
秀明 杉原
Hiroyuki Taniguchi
弘幸 谷口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Kayaku Co Ltd
Original Assignee
Nippon Kayaku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kayaku Co Ltd filed Critical Nippon Kayaku Co Ltd
Priority to JP37267599A priority Critical patent/JP2001181081A/en
Publication of JP2001181081A publication Critical patent/JP2001181081A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06BEXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
    • C06B31/00Compositions containing an inorganic nitrogen-oxygen salt
    • C06B31/28Compositions containing an inorganic nitrogen-oxygen salt the salt being ammonium nitrate
    • C06B31/285Compositions containing an inorganic nitrogen-oxygen salt the salt being ammonium nitrate with fuel oil, e.g. ANFO-compositions

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Air Bags (AREA)

Abstract

PROBLEM TO BE SOLVED: To develop a particle state explosive hardly generating the separation of its components by transportation, or the like, not causing deterioration of its performance and handling property with time, generating the same after gas components with those of the conventional ANFO explosive, after its blast and further capable of adjusting its specific gravity optionally, i.e., capable of controlling its exploding speed optionally. SOLUTION: This particle state explosive contains a porous prill ammonium nitrate, a fuel oil and an inorganic hollow material having 0.10-0.30 bulk specific gravity.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は爆薬に関する。更に
詳しくは、本発明は採石、採鉱、隧道掘進等の爆破作業
に用いられ、特に岩盤の損傷を出来るだけ少なくする為
の制御発破に用いられる粒状爆薬に関するものである。
The present invention relates to explosives. More specifically, the present invention relates to a granular explosive used for blasting operations such as quarrying, mining, tunneling, etc., and particularly for controlled blasting to minimize rock damage.

【0002】[0002]

【従来の技術】制御発破は、デカップリング効果を求め
て大きい穿孔に細径の樹脂筒入り爆薬、あるいはポリ袋
入り爆薬を用いて行われることが良く知られている。ま
た、孔内に水が無い場合は価格が安く装填が容易という
理由で、硝安油剤爆薬(以下ANFO爆薬と呼ぶ)に発
泡スチロールを混合した粒状の爆薬が使用されることも
ある。
2. Description of the Related Art It is well known that controlled blasting is performed by using an explosive in a small-diameter resin cylinder or an explosive in a plastic bag in a large perforation in order to obtain a decoupling effect. If there is no water in the hole, a granular explosive obtained by mixing styrofoam with an ammonium nitrate explosive (hereinafter referred to as ANFO explosive) may be used because it is inexpensive and easy to load.

【0003】[0003]

【発明が解決しようとする課題】制御発破を行う場合、
孔内に水が無い場合は粒状の爆薬を、横孔では圧縮空気
により吹き込む方法で、また、縦孔では自由流下により
流し込む方法によって装填するのが最も効率的で且つ経
済的でもある。
When control blasting is performed,
It is most efficient and economical to load a granular explosive in a case where there is no water in the hole, by blowing it with compressed air in a horizontal hole, and by flowing it in a free flow in a vertical hole.

【0004】しかし、ANFO爆薬に発泡スチロールを
混合した粒状爆薬は、(1)発泡スチロールの比重がポ
ーラスプリル硝酸アンモニウム(以下ポーラスプリル硝
安と呼ぶ)のそれに較べて極めて低い為、輸送中あるい
は装薬中に成分分離(ポーラスプリル硝安と発泡スチロ
ールとが局所的に偏在する)を生じ、不均一な破砕とな
ったり、爆轟中断が生じ易い。(2)製造後時間が経つ
と発泡スチロールがANFO爆薬中の燃料油に侵され
て、粘稠化して爆薬全体を粘着化し、流動性を失う。
(3)発破後、発泡スチロールと硝安からガス中にシア
ンが発生するという問題が見られ、広汎に使用されてい
ないのが実情である。
However, granular explosives obtained by mixing styrofoam with ANFO explosives are: (1) Since the specific gravity of styrofoam is extremely lower than that of porous prill ammonium nitrate (hereinafter referred to as "porous prill nitrate"), the components are not transported or charged. Separation (porous prill nitrate and styrofoam are locally unevenly distributed) is likely to occur, resulting in uneven crushing or detonation interruption. (2) When a certain time has passed after the production, the styrofoam is attacked by the fuel oil in the ANFO explosive, and becomes viscous, sticking the whole explosive and losing fluidity.
(3) After blasting, there is a problem that cyan is generated in gas from styrofoam and ammonium nitrate, and the fact is that it is not widely used.

【0005】[0005]

【課題を解決する為の手段】上記の問題点を解決するた
め、ポーラスプリル硝安、燃料物質及び無機質中空体を
混合して粒状爆薬とすれば、成分分離が極めて生じ難
く、また、貯蔵中に変質して流動性を失うこともなく、
さらに後ガス中にシアンを発生することも無いというこ
とが知られている(特開平8−26877)。本発明者
等は、鋭意研究した結果、より嵩比重の小さい無機質中
空体を混合使用しても、成分分離が生じ難く、より性能
の安定した爆薬が得られることを見い出し、本発明に至
ったものである。
In order to solve the above-mentioned problems, if porous prill nitrate, a fuel substance and an inorganic hollow body are mixed to form a granular explosive, separation of components is extremely unlikely to occur. Without deterioration and loss of liquidity,
Further, it is known that cyan is not generated in the post-gas (Japanese Patent Laid-Open No. Hei 8-26877). The present inventors have assiduously studied and found that even if an inorganic hollow body having a smaller bulk specific gravity is mixed and used, component separation hardly occurs and an explosive with more stable performance can be obtained, leading to the present invention. Things.

【0006】即ち、本発明は(1)ポーラスプリル硝酸
アンモニウム、燃料物質及び嵩比重が0.10〜0.3
0である無機質中空体を含有することを特徴とする粒状
爆薬、(2)無機質中空体の平均粒径が0.2〜4.5
mmである(1)に記載の粒状爆薬、に関する。
That is, the present invention relates to (1) porous prill ammonium nitrate, a fuel substance and a bulk specific gravity of 0.10 to 0.3.
A granular explosive comprising an inorganic hollow body having a particle diameter of 0, (2) an inorganic hollow body having an average particle size of 0.2 to 4.5.
mm, the granular explosive according to (1).

【0007】以下、本発明を詳細に説明する。本発明の
粒状爆薬に必須の成分として用いられるポーラスプリル
硝安としては、嵩比重が0.60〜0.80、好ましく
は0.65〜0.75、吸油率が5〜24%、好ましく
は10〜22%、硬度が0.1〜20.0%、好ましく
は0.1〜10.0%、平均粒径が0.5〜3.0m
m、好ましくは1.0〜2.5mmであるポーラスプリ
ル硝安が使用出来る。本発明の粒状爆薬では、ポーラス
プリル硝安は、通常25〜90wt.%、好ましくは5
0〜80wt.%粒状爆薬中に含有される。
Hereinafter, the present invention will be described in detail. Porous prill nitrate used as an essential component of the granular explosive of the present invention has a bulk specific gravity of 0.60 to 0.80, preferably 0.65 to 0.75, and an oil absorption of 5 to 24%, preferably 10 to 10. -22%, hardness 0.1-20.0%, preferably 0.1-10.0%, average particle size 0.5-3.0m
m, preferably 1.0 to 2.5 mm of porous prill nitrate. In the granular explosive of the present invention, porous prill ammonium nitrate is usually 25 to 90 wt. %, Preferably 5
0 to 80 wt. % Contained in granular explosives.

【0008】ポーラスプリル硝安の嵩比重はJIS K
−6721に規定の方法に準じて測定される。即ち、一
定量の試料のポーラスプリル硝安を一定の高さから、支
持棒に支持された下部にダンパーを有する漏斗を用い
て、支持台上に設置した円筒形コップ内に落下させ、コ
ップ上に盛り上がった試料ポーラスプリルの硝安を除去
した後、コップ内の試料のポーラスプリル硝安を秤量す
ることによって測定される。詳しくは、上端の直径90
mm、下端の直径15mm、高さ115mmの漏斗を、
漏斗下端と支持台上の深さ80mm、容積100cm3
のコップ上端との距離が45mmとなるように設置し、
漏斗内に試料のポーラスプリル硝安100gを入れ、ダ
ンパーをスライドさせてコップ内に試料のポーラスプリ
ル硝安を落下させる。振動を与えないように注意してコ
ップの上に盛り上がった試料のポーラスプリル硝安をヘ
ラでコップの上端と同じ高さで水平になるように払いの
ける。コップの外側に付着した試料のポーラスプリル硝
安はこれを除去して、コップ内の試料のポーラスプリル
硝安重量を上皿直示天秤で秤量する。以上の測定を終え
た後、下記(1)式により嵩比重を算出する。
[0008] The bulk specific gravity of porous prill nitrate is JIS K
It is measured according to the method specified in -6721. That is, a certain amount of porous prill nitrate of a sample is dropped from a certain height into a cylindrical cup set on a support table using a funnel having a damper at a lower part supported by a support rod, and placed on the cup. After removing the ammonium nitrate of the raised sample porous prill, it is measured by weighing the sample of porous prill nitrate in the cup. Specifically, the upper end diameter 90
mm, the lower end 15mm in diameter, 115mm in height funnel,
Depth of 80 mm on the bottom of the funnel and the support base, volume 100 cm3
Is installed so that the distance from the top of the cup is 45mm,
100 g of porous prill nitrate of the sample is put into the funnel, and the damper is slid to drop the porous prill nitrate of the sample into the cup. Carefully take care not to vibrate, and use a spatula to remove the porous prilled ammonium salt of the sample raised on the cup so that it is horizontal at the same height as the top of the cup. The porous prill nitrate of the sample adhering to the outside of the cup is removed, and the weight of the porous prill nitrate of the sample in the cup is weighed with a direct reading balance. After completing the above measurement, the bulk specific gravity is calculated by the following equation (1).

【0009】 嵩比重=試料重量(g)/100(cm3) (1)Bulk specific gravity = sample weight (g) / 100 (cm 3 ) (1)

【0010】ポーラスプリル硝安の吸油率は、一定量の
試料のポーラスプリル硝安を、軽油に一定時間浸してお
いた後、吸引ろ過し、試験前後の重量差より軽油の吸着
量を見ることによって測定される。詳しくは試料のポー
ラスプリル硝安50gを直径40mm、深さ50mmの
ガラスフィルター(11G−1)に入れ、上皿直示天秤
で秤量し、これを真空装置にセットする。ついでガラス
フィルター中に軽油40mlを注入し、細い棒でよく撹
拌し、ポーラスプリル硝安と軽油の混合接触を図る。5
分間放置後、ガラスフィルターに付属した外部のコック
を開放し、2分間軽油を自然流下させる。引き続き真空
ポンプにて5分間吸引(流速:約30l/min)した
後、軽油を吸着した試料のポーラスプリル硝安の入った
ままのガラスフィルターを、上皿直示天秤で秤量する。
ここで増量分が軽油の吸着分である。以上の測定を終え
た後、元の試料硝安50gに対する軽油吸着分(g)の
比率(%)を、吸油率(%)として表示する。計算式は
下記(2)式の通りである。
[0010] The oil absorption rate of porous prill nitrate is measured by immersing a fixed amount of porous prill nitrate in light oil for a certain period of time, filtering by suction, and observing the adsorption amount of light oil from the weight difference before and after the test. Is done. Specifically, 50 g of porous prill nitrate ammonium as a sample is placed in a glass filter (11G-1) having a diameter of 40 mm and a depth of 50 mm, weighed with a direct balance on an upper plate, and set in a vacuum apparatus. Next, 40 ml of light oil is poured into the glass filter, and the mixture is thoroughly stirred with a fine rod to achieve mixed contact between porous prill nitrate and light oil. 5
After standing for 1 minute, open the external cock attached to the glass filter and let light oil flow naturally for 2 minutes. Subsequently, after suctioning with a vacuum pump for 5 minutes (flow rate: about 30 l / min), the glass filter in which the porous prill nitrate of the sample to which light oil has been adsorbed is weighed with an upper plate direct balance.
Here, the increased amount is the absorbed amount of light oil. After the above measurement, the ratio (%) of the light oil adsorption (g) to 50 g of the original sample nitrate is displayed as the oil absorption (%). The calculation formula is as shown in the following formula (2).

【0011】 吸油率(%)=軽油吸着分(g)/試料50(g)×100 (2)[0011] Oil absorption (%) = light oil adsorption (g) / sample 50 (g) x 100 (2)

【0012】ポーラスプリル硝安の吸油率は、主として
粒の内部に分布する細孔容積や有効径によって左右され
るものであり、例えば細孔容積が大きければ、粒内部に
軽油を保持し得る空間が大となるので、吸油率が大とな
る。
The oil absorption rate of porous prilled ammonium nitrate is mainly determined by the pore volume and effective diameter distributed inside the grains. For example, if the pore volume is large, the space capable of holding light oil inside the grains is reduced. Since it becomes large, the oil absorption rate becomes large.

【0013】ポーラスプリル硝安の硬度は、一定量のポ
ーラスプリル硝安の試料を硬度測定装置により一定の条
件で機械的に粉砕し、粉砕された量を見ることで測定さ
れる。測定に使用される装置は、試料注入用漏斗、圧縮
空気流入孔(内径4mm、長さ55mm)に接続した流
送管(内径16mm、長さ175mm)、それら接続部
上部と漏斗を垂直に接続する試料注入管(内径12m
m、長さ52mm)及び流送管と垂直に接続した試料粉
砕管(内径50mm、長さ315mm)から構成されて
いる。35mesh篩で粉末を除去した試料硝安100
gを漏斗から試料注入管を通して流送管に落下注入し、
流入孔から流入した圧縮空気(4kg/cm2)によ
り、試料を流送管を通して粉砕管内壁に衝突させ試料硝
安を粉化させる。流送後の試料硝安を35meshで篩
分けし、+35mesh量(N)を秤量し、元の試料硝
安100gに対する粉化量の比率(%)として表示す
る。計算式は下記(3)式の通り。
The hardness of porous prill nitrate is measured by mechanically pulverizing a fixed amount of a sample of porous prill ammonium nitrate under a predetermined condition using a hardness measuring device, and observing the pulverized amount. The apparatus used for the measurement is a funnel for sample injection, a flow pipe (inner diameter 16 mm, length 175 mm) connected to the compressed air inlet (inner diameter 4 mm, length 55 mm), and the upper part of these connections and the funnel are connected vertically Sample injection tube (12 m inside diameter)
m, length 52 mm) and a sample pulverizing tube (inner diameter 50 mm, length 315 mm) connected vertically to the flow tube. Sample nitrate 100 with powder removed by 35 mesh sieve
g from the funnel into the flow tube through the sample injection tube,
With the compressed air (4 kg / cm 2 ) flowing from the inflow hole, the sample passes through the flow pipe and collides with the inner wall of the pulverizing tube to pulverize the sample nitrate. The sample ammonium nitrate after the flow is sieved with 35 mesh, the amount (N) of +35 mesh is weighed, and is displayed as a ratio (%) of the amount of powder to 100 g of the original sample ammonium nitrate. The calculation formula is as shown in the following formula (3).

【0014】 硬度(%)=100(g)−N(g) (3)Hardness (%) = 100 (g) −N (g) (3)

【0015】ポーラスプリル硝安の平均粒径は、一定量
のポーラスプリル硝安を篩目の異なる各種篩を通し、各
篩目毎の重量分布から測定される。計算式は下記(4)
式の通り。
The average particle size of the porous prill nitrate is measured from a weight distribution of each of the predetermined amounts of porous prill nitrate through various sieves having different sieves. The calculation formula is (4) below
According to the formula.

【0016】 D=Σ(X×R/100) (4) 但し D=平均粒径(mm) X=篩網の平均目開き(mm) R=篩網上残留分重量(%)D = Σ (X × R / 100) (4) where D = average particle size (mm) X = average size of sieve mesh (mm) R = residue weight on sieve mesh (%)

【0017】次に、本発明の粒状爆薬に必須の成分とし
て含有される燃料油としては、混合時に液体である燃料
油を用いるのが好ましい。使用しうる燃料油の具体例と
しては軽油、灯油等の鉱物油、大豆油、ナタネ油、ヒマ
シ油等の植物油、牛脂、スクワレン等の動物油等が挙げ
られる。この他、用途によってメチルアルコール、エチ
ルアルコール等のアルコール類、パラフィンワックス、
マイクロクリスタリンワックス等のワックス類、ジニト
ロトルエン、ジニトロキシレン等のニトロ化合物等を燃
料油として単独または混合して用いることができる。融
点の高い燃料油は、それが液状になる温度以上で、ポー
ラスプリル硝安と混合することによって用いることがで
きる。本発明において燃料油は粒状爆薬中に通常1.5
〜25.0wt.%、好ましくは3.0〜15.0w
t.%含有される。
Next, as the fuel oil contained as an essential component in the granular explosive of the present invention, it is preferable to use a fuel oil which is liquid at the time of mixing. Specific examples of usable fuel oils include mineral oils such as light oil and kerosene, vegetable oils such as soybean oil, rapeseed oil and castor oil, and animal oils such as tallow and squalene. In addition, alcohols such as methyl alcohol and ethyl alcohol, paraffin wax,
Waxes such as microcrystalline wax and nitro compounds such as dinitrotoluene and dinitroxylene can be used alone or as a mixture as fuel oil. High melting point fuel oils can be used by mixing with porous prill nitrate above the temperature at which it becomes liquid. In the present invention, the fuel oil is usually contained in the granular
~ 25.0 wt. %, Preferably 3.0 to 15.0 w
t. %.

【0018】更に、本発明の粒状爆薬に必須の成分とし
て用いられる無機質中空体としては、嵩比重が0.10
〜0.30、より好ましくは0.20〜0.30のもの
が使用される。本発明の粒状爆薬に用いられる無機質中
空体としては、平均粒径が0.2〜4.5mmのものが
好ましい。本発明の粒状爆薬に用いられる無機質中空体
は、上記の嵩比重のものであれば、どのような成分のも
のでも使用できるが、経済的な観点から、シラスバルー
ン、パーライトのような天然産の無機質中空体を用いる
のが、好ましい。
The inorganic hollow material used as an essential component of the granular explosive of the present invention has a bulk specific gravity of 0.10.
~ 0.30, more preferably 0.20 ~ 0.30. The inorganic hollow body used for the granular explosive of the present invention preferably has an average particle size of 0.2 to 4.5 mm. The inorganic hollow material used in the granular explosive of the present invention may be any component as long as it has the above bulk specific gravity, but from the economical viewpoint, natural balloons such as shirasu balloon and perlite are used. It is preferable to use an inorganic hollow body.

【0019】本発明の粒状爆薬では、使用する無機質中
空体の量が少なければ、爆薬としての破砕効果が大き
く、多ければ破砕効果が減少するが、無機質中空体は通
常10〜70wt.%、好ましくは15〜50wt.%
粒状爆薬中に含有される。
In the granular explosive of the present invention, if the amount of the inorganic hollow material used is small, the crushing effect as an explosive is large, and if the amount is large, the crushing effect is reduced. %, Preferably 15 to 50 wt. %
Contained in granular explosives.

【0020】本発明の粒状爆薬は、ポーラスプリル硝
安、必要な場合には加温して液状とした燃料油、及び無
機質中空体を同時に混合して粒状爆薬を得ることが出来
るが、前2者を混合した後、無機質中空体を加える方法
も採用できる。本発明の粒状爆薬の粒径は使用したポー
ラスプリル硝安、無機質中空体の粒径がほぼそのまま維
持されるので平均的な粒径は通常0.4〜4.0mm程
度となる。
The granular explosive of the present invention can be obtained by simultaneously mixing porous prill nitrate, and, if necessary, heating a liquid fuel oil and an inorganic hollow body, to obtain a granular explosive. And then adding an inorganic hollow body. The average particle size of the granular explosive of the present invention is usually about 0.4 to 4.0 mm because the particle size of the used porous prilled ammonium nitrate and inorganic hollow body is maintained almost as it is.

【0021】本発明の粒状爆薬には必要によって、静電
気発生防止の措置を施すことができる。例えば水溶性及
び油溶性の帯電防止剤(特開昭55−51794号、特
開平11−147784号、特開平11−278974
号)として知られる各種界面活性剤や、デンプン類(特
開平10−291883号)、脂肪酸アミド等(特開平
11−322481号)の添加剤を加えることができ
る。
If necessary, the granular explosive of the present invention may be provided with measures for preventing generation of static electricity. For example, water-soluble and oil-soluble antistatic agents (JP-A-55-51794, JP-A-11-147784, JP-A-11-278974)
), And additives such as starches (JP-A-10-291883) and fatty acid amides (JP-A-11-322481).

【0022】更に本発明の粒状爆薬には、必要によって
ポーラスプリル硝安以外の酸化剤、例えば硝酸カリウム
や過塩素酸塩、さらには、木粉、アルミニウム粉のよう
な粉末の燃料あるいは、ポリアクリル酸ナトリウムのよ
うな増粘安定剤(特開平8−295588号)、アンモ
ニアガス抑制剤として知られる有機酸(特開平11−7
9878号)、吸水剤等、他の添加剤を加えることが可
能である。これらの本発明の粒状爆薬で必須成分以外の
添加剤は本発明の効果を損なわない範囲で適宜添加され
る。
The granular explosive of the present invention may further comprise an oxidizing agent other than porous prill nitrate, such as potassium nitrate or perchlorate, or powdered fuel such as wood powder or aluminum powder, or sodium polyacrylate, if necessary. Thickening stabilizers (JP-A-8-295588), and organic acids known as ammonia gas inhibitors (JP-A-11-7).
9878) and other additives such as a water absorbing agent. In the granular explosive of the present invention, additives other than the essential components are appropriately added within a range that does not impair the effects of the present invention.

【0023】本発明の粒状爆薬は、ポーラスプリル硝
安、燃料油及び嵩比重が0.10〜0.30の無機質中
空体を必須の成分として含有するものであり、成分分離
を起こし難く、貯蔵中の性状変化も生じず、かつ発破後
ガス中にシアンが発生せず、制御発破に好適であると云
う特徴がある。更に本発明の粒状爆薬は広範囲に、しか
も任意に比重調整が可能であり、爆薬の威力を任意に制
御出来るという特徴が有る。
The granular explosive of the present invention contains, as essential components, porous prill nitrate, fuel oil, and an inorganic hollow body having a bulk specific gravity of 0.10 to 0.30. No characteristic change occurs, and no cyan is generated in the gas after blasting, which is suitable for controlled blasting. Further, the granular explosive of the present invention has a feature that the specific gravity can be adjusted over a wide range and arbitrarily, and the power of the explosive can be arbitrarily controlled.

【0024】[0024]

【実施例】本発明を実施例を挙げてさらに詳しく説明す
るが、本発明はこれらの実施例のみに限定されるもので
はない。実施例において部は重量部を示す。
The present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples. In the examples, “parts” indicates “parts by weight”.

【0025】実施例1 ポーラスプリル硝安(嵩比重0.76、吸油率14%、
硬度7.0%、平均粒径1.43mm)76.4部を室
温のコンクリートミキサーに移し、室温の2号軽油3.
6部及び嵩比重0.18、平均粒径1.60mmのシラ
スバルーン20.0部を添加し、1分当たり80回転の
速度で5分間混合し、本発明の粒状爆薬(比重 0.6
5)を得た。
Example 1 Porous prill nitrate (bulk specific gravity 0.76, oil absorption 14%,
Transfer 76.4 parts of 7.0% of hardness (average particle size: 1.43 mm) to a concrete mixer at room temperature, and then use No. 2 light oil at room temperature.
6 parts, 20.0 parts of a shirasu balloon having a bulk specific gravity of 0.18 and an average particle diameter of 1.60 mm were added and mixed at a speed of 80 rotations per minute for 5 minutes to obtain a granular explosive of the present invention (specific gravity of 0.6).
5) was obtained.

【0026】実施例2 ポーラスプリル硝安(嵩比重0.68、吸油率24%、
硬度12.0%、平均粒径1.50mm)57.0部と
嵩比重0.30、平均粒径3.0mmのシラスバルーン
40.0部を室温のシグマ翼を備えた横型ニーダーに移
し、室温の2号軽油3.0部を添加し、1分当たり10
0回転の速度で3分間混合し、本発明の粒状爆薬(比重
0.56)を得た。
Example 2 Porous prill nitrate (bulk specific gravity 0.68, oil absorption 24%,
57.0 parts of hardness 12.0%, average particle size 1.50 mm) and 40.0 parts of a shirasu balloon having a bulk specific gravity of 0.30 and an average particle size of 3.0 mm were transferred to a horizontal kneader equipped with a sigma wing at room temperature. Add 3.0 parts of No. 2 light oil at room temperature and add 10 parts per minute.
The mixture was mixed at 0 speed for 3 minutes to obtain a granular explosive of the present invention (specific gravity 0.56).

【0027】実施例3 ポーラスプリル硝安(実施例1と同じもの)61.5部
を90℃に加熱したシグマ翼を備えた横型ニーダーに移
し、90℃に加熱して液状としたジニトロトルエン8.
5部を添加し、1分当たり80回転の速度で5分間混合
した。その後この混合物に嵩比重0.30、平均粒径
0.5mmのパーライト30.0部及び塩化ジメチルジ
アリルアンモニウム・アクリルアミド共重合物の20%
水溶液(カヤクリルレジンEC−315:日本化薬
(株)製)0.3部を添加し、同回転速度で1分間混合
し、本発明の粒状爆薬(比重 0.69)を得た。
Example 3 61.5 parts of porous prill nitrate (the same as in Example 1) was transferred to a horizontal kneader equipped with a sigma wing heated to 90 ° C., and heated to 90 ° C. to form liquid dinitrotoluene.
5 parts were added and mixed at a speed of 80 revolutions per minute for 5 minutes. Thereafter, 30.0 parts of perlite having a bulk specific gravity of 0.30 and an average particle size of 0.5 mm and 20% of dimethyldiallylammonium chloride / acrylamide copolymer were added to this mixture.
0.3 part of an aqueous solution (Kayacryl Resin EC-315: manufactured by Nippon Kayaku Co., Ltd.) was added and mixed at the same rotation speed for 1 minute to obtain a granular explosive of the present invention (specific gravity: 0.69).

【0028】比較例1 ポーラスプリル硝安(嵩比重0.78、吸油率12.0
%、硬度5.5%、平均粒径1.20mm)94.0部
に室温の2号軽油6.0部を実施例1と同様に混合し、
比較用の粒状爆薬(比重 0.87)を得た。(特開平
8−26877記載の爆薬)
Comparative Example 1 Porous prill nitrate (bulk specific gravity 0.78, oil absorption 12.0
%, Hardness 5.5%, average particle size 1.20 mm) 94.0 parts of light oil No. 2 at room temperature was mixed with 94.0 parts in the same manner as in Example 1,
A comparative granular explosive (specific gravity 0.87) was obtained. (Explosive described in JP-A-8-26877)

【0029】比較例2 ポーラスプリル硝安(嵩比重0.69、吸油率23.0
%、硬度11.5%、平均粒径1.50mm)91.4
部、室温の2号軽油6.0部及び平均粒径約2.0mm
の発砲スチロール2.8部を実施例1と同様に混合し、
比較用の粒状爆薬(比重 0.83)を得た(特開平8
−26877記載の爆薬)。
Comparative Example 2 Porous prill nitrate (bulk specific gravity: 0.69, oil absorption: 23.0)
%, Hardness 11.5%, average particle size 1.50 mm) 91.4
Parts, 6.0 parts of No. 2 light oil at room temperature and average particle size of about 2.0 mm
2.8 parts of styrene foam was mixed in the same manner as in Example 1,
A comparative granular explosive (specific gravity 0.83) was obtained (Japanese Unexamined Patent Application Publication No.
Explosives described in -26877).

【0030】(1)爆速の測定 実施例1〜3及び比較例1〜2で得られた各粒状爆薬を
内径35mm、厚さ3.5mmの鋼管中に200g流し
込み、40gのペントライトをブースターとして起爆
し、爆速を測定した。爆速測定時に検知管により後ガス
中のシアンの有無について調べた。 (2)振とう分離試験 実施例1〜3及び比較例2について、それらの1kgを
2リットルのポリ容器に入れ、振とう機(Retsch
GmbH社製)を用い、振とう強度60で1時間振と
うさせることにより成分が分離するかどうかを調べた。 (3)経時試験(流動性の評価及び爆速の測定) 実施例1〜3及び比較例2の粒状爆薬を3ヶ月保存した
後、取り出し、流動性の有無について評価し、(1)と
同様に爆速の測定を行った。
(1) Measurement of Explosion Speed 200 g of each of the granular explosives obtained in Examples 1 to 3 and Comparative Examples 1 and 2 was poured into a steel pipe having an inner diameter of 35 mm and a thickness of 3.5 mm, and a 40 g pentlite was used as a booster. It detonated and measured the explosion speed. At the time of the explosion velocity measurement, the presence or absence of cyan in the rear gas was checked using a detector tube. (2) Shaking separation test With respect to Examples 1 to 3 and Comparative Example 2, 1 kg thereof was placed in a 2 liter plastic container, and shaken (Retsch).
(Manufactured by GmbH) and shaking at a shaking intensity of 60 for 1 hour to examine whether or not the components were separated. (3) Time-lapse test (evaluation of fluidity and measurement of explosion velocity) After storing the granular explosives of Examples 1 to 3 and Comparative Example 2 for 3 months, they were taken out and evaluated for the presence or absence of fluidity, in the same manner as in (1). The explosion velocity was measured.

【0031】これらの試験結果を表1に示す。Table 1 shows the test results.

【0032】 表1 性能試験 実施例1 実施例2 実施例3 爆速(m/sec) 2200 1650 1860 シアン分 非検知 非検知 非検知 振とう分離 なし なし なし 経時:流動性 流動性あり 流動性あり 流動性あり 爆速(m/sec) 2180 1680 1850 比較例1 比較例2 爆速(m/sec) 2950 1720 シアン分 − 検知 振とう分離 − 発砲スチロールが上部に分離 経時:流動性 流動性あり 発砲スチロールが粘着化し流 動性なし 爆速(m/sec) 2930 1330Table 1 Performance test Example 1 Example 2 Example 3 Explosion velocity (m / sec) 2200 1650 1860 Cyan Not detected Not detected Not detected Shaking separation None None None Over time: Fluid Fluid Fluid Fluid Explosion speed (m / sec) 2180 1680 1850 Comparative example 1 Comparative example 2 Explosion speed (m / sec) 2950 1720 Cyan component-detection Shaking separation-Styrofoam separated at the top Time: fluidity Styrofoam sticks No fluidity Explosion speed (m / sec) 2930 1330

【0033】爆速の低さと制御発破効果は比例すること
が知られており、実施例1〜3と比較例1の爆速を較べ
ると、実施例の粒状爆薬は制御発破に適した爆薬である
ことが分かる。また比較例2の爆速は充分に低いが、シ
アン分が検知され、又振とう分離試験における成分分
離、及び経時による取扱い性及び性能の低下が認めら
れ、ANFO爆薬本来の特性が損なわれることが分か
る。
It is known that the low blast speed is proportional to the controlled blasting effect. Comparing the blast speeds of Examples 1 to 3 with Comparative Example 1, the granular explosive of the Example is an explosive suitable for controlled blasting. I understand. In addition, although the explosion speed of Comparative Example 2 was sufficiently low, cyan components were detected, component separation in the shaking separation test, and deterioration in handleability and performance over time were observed, and the original characteristics of the ANFO explosive were impaired. I understand.

【0034】[0034]

【発明の効果】任意に比重調整が可能、すなわち任意に
爆速を制御でき、後ガス中にシアン分が発生せず、また
成分分離を生じ難く、経時変化を示すことのない粒状爆
薬が得られた。
The specific gravity can be arbitrarily adjusted, that is, the explosion speed can be arbitrarily controlled, and a granular explosive which does not generate cyan components in the post-gas, hardly separates components, and does not change with time can be obtained. Was.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】ポーラスプリル硝酸アンモニウム、燃料物
質及び嵩比重が0.10〜0.30である無機質中空体
を含有することを特徴とする粒状爆薬。
1. A granular explosive comprising a porous prill ammonium nitrate, a fuel substance and an inorganic hollow body having a bulk specific gravity of 0.10 to 0.30.
【請求項2】無機質中空体の平均粒径が0.2〜4.5
mmである請求項1に記載の粒状爆薬。
2. The inorganic hollow body has an average particle size of 0.2 to 4.5.
The granular explosive according to claim 1, which is in mm.
JP37267599A 1999-12-28 1999-12-28 Particle state explosive Withdrawn JP2001181081A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP37267599A JP2001181081A (en) 1999-12-28 1999-12-28 Particle state explosive

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP37267599A JP2001181081A (en) 1999-12-28 1999-12-28 Particle state explosive

Publications (1)

Publication Number Publication Date
JP2001181081A true JP2001181081A (en) 2001-07-03

Family

ID=18500863

Family Applications (1)

Application Number Title Priority Date Filing Date
JP37267599A Withdrawn JP2001181081A (en) 1999-12-28 1999-12-28 Particle state explosive

Country Status (1)

Country Link
JP (1) JP2001181081A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007008753A (en) * 2005-06-30 2007-01-18 Nippon Kayaku Co Ltd Explosive composition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007008753A (en) * 2005-06-30 2007-01-18 Nippon Kayaku Co Ltd Explosive composition

Similar Documents

Publication Publication Date Title
JPS6051685A (en) Water-in-oil emulsion explosive composition
JPS61205690A (en) Stable nitrate/slurry explosive
JP2002047088A (en) Granular explosive composition with water resistance
JP2001181081A (en) Particle state explosive
JP2001039789A (en) Explosive composition
JP2005132636A (en) Explosive composition
JP3797840B2 (en) Explosive composition
JP3599623B2 (en) Explosive composition
JP2002060293A (en) Water resistant granular explosive composition
JP2002003292A (en) Granular explosive
JP2004002169A (en) Explosive composition
JP2004010412A (en) Explosive cartridge
JP2002348187A (en) Explosive composition
JP3998489B2 (en) Granular explosive composition
JP2003176195A (en) Explosive composition
JP2002137983A (en) Explosion composition
JP2002047089A (en) Water resistant granular explosive composition
JP2002338383A (en) Explosive composition
JP2007008753A (en) Explosive composition
CN103896695A (en) Microporous pelletal ammonium nitrate and preparation method thereof
JP2002348188A (en) Explosive composition
KR20030029456A (en) Explosive compositions
JP2005029447A (en) Ammonium nitrate oil agent-base explosive composition and its manufacturing method
JP4009084B2 (en) Sodium nitrate explosive
JP3342711B2 (en) Explosive composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051130

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20080605