JP3598049B2 - ハイドロゲル徐放性製剤 - Google Patents

ハイドロゲル徐放性製剤 Download PDF

Info

Publication number
JP3598049B2
JP3598049B2 JP2000217325A JP2000217325A JP3598049B2 JP 3598049 B2 JP3598049 B2 JP 3598049B2 JP 2000217325 A JP2000217325 A JP 2000217325A JP 2000217325 A JP2000217325 A JP 2000217325A JP 3598049 B2 JP3598049 B2 JP 3598049B2
Authority
JP
Japan
Prior art keywords
tablet
hydrogel
drug
weight
release
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000217325A
Other languages
English (en)
Other versions
JP2001010951A (ja
Inventor
和博 迫
寛 中嶋
豊博 澤田
昭 岡田
宗夫 福井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamanouchi Pharmaceutical Co Ltd
Original Assignee
Yamanouchi Pharmaceutical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamanouchi Pharmaceutical Co Ltd filed Critical Yamanouchi Pharmaceutical Co Ltd
Priority to JP2000217325A priority Critical patent/JP3598049B2/ja
Publication of JP2001010951A publication Critical patent/JP2001010951A/ja
Application granted granted Critical
Publication of JP3598049B2 publication Critical patent/JP3598049B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Medicinal Preparation (AREA)

Description

【0001】
【発明が属する技術分野】
本発明は薬物を長時間にり放出することを可能とした徐放性製剤の製造法に関する。更に詳しくは、消化管上部のみならず消化管下部の結腸においても良好な薬物の放出を可能としたハイドロゲル徐放性製剤の製造法に関する。
【0002】
【従来の技術】
従来、薬物の徐放化を行うことを目的として種々のハイドロゲル製剤が提唱されてきた。これらの一例として、例えば、特開昭62−120315号公報には薬物とハイドロゲル形成能のある水溶性高分子と腸溶性コーティング基剤を形成圧縮したものが、特開昭63−215620号公報には、薬物と水溶性高分子物質からなる核に水溶性高分子物質を基剤とする外層からなるハイドロゲル製剤、また特公昭40−2053号公報には、薬物とエチレンオキサイド高重合物、更に必要に応じて親水性物質等を含有する持続性製剤等が知られている。
【0003】
【発明が解決しようとする課題】
しかしながら、これらの薬剤は、いずれも胃、小腸といった消化管上部に滞留している間に持続的な薬物の放出を行うことを目的としており、結腸等といった水分の少い消化管下部での薬物の放出を目的としてはいない。即ち、消化管内で下降しながら薬物が放出・吸収されていく徐放性製剤では、消化管上部での薬物の吸収性、放出性が生物学的利用能に大きな影響を与えるが、結腸においては、少ない水分量、老廃内容物等の影響により、従来、薬物放出は、困難と考えられており、薬物放出性についての研究は殆どされていなかった(日本薬剤学会第6年会講演要旨集(平成2年)、30頁、Pharm. Tech,Japan 8(1),(1992),41頁)。
更に、薬物自体の生物学的半減期も徐放性製剤を検討するに際し重要な因子となるが、薬物自体の半減期が短い薬物については、十分な徐放化は困難であると考えられてきた(月刊薬事 25(11),(1983),29頁)。
【0004】
【課題を解決するための手段】
本発明者等は、薬物の徐放化研究において胃、小腸といった消化管上部に滞留中に、製剤内部まで水分を吸収し、はぼ完全にゲル化した状態で消化管下部へ移行させることにより、水分の少ない結腸においても薬物を放出できることを見出し本発明を完成した。
即ち、本発明は、(1)一種または二種以上の薬物、(2)一種または二種以上の、1gが溶解するのに必要な水の量が5ml以下の溶解性を示す製剤内部に水を浸入させるための添加剤を製剤全体に対し5乃至80重量%、および(3)一種または二種以上の、平均分子量が200万以上または1%水溶液25℃の粘度が1000cps以上のハイドロゲルを形成する高分子物質1錠あたり70mg以上で、製剤全体に対し10乃至95重量%を配合し、圧縮成形、カプセル圧縮充填、押出成形または射出成形することを特徴とするゲル化率70%以上100%未満のハイドロゲル徐放性錠剤の製造法である。
尚、本発明において製剤がほぼ完全にゲル化した状態とは、製剤の約70%好ましくは約80%以上がゲル化した状態をいう。
本発明の徐放性製剤は、結腸をも吸収部位として利用することにより、薬物の吸収時間を大幅に延長できることから安定した薬物血中濃度を達成できる。即ち、本発明の製剤は、消化管上部に滞留中に水分を吸収し、ほぼ完全にゲル化し、製剤表面が浸蝕を受けながら、消化管下部へ移行し、更に浸蝕を受け薬物を放出し続けるため、水分の少ない結腸においても良好な且つ持続的な薬物吸収が達成される。
【0005】
【発明の実施の形態】
本発明の徐放性製剤を更に詳細に説明すると以下の通りである。
本発明製剤に適用される一種以上の薬物としては、徐放化を目的とした薬物であれば、特に制限はない。
代表的な薬物としては、インドメタシン、ジクロフェナック、ジクロフェナックNa、コデイン、イブプロフェン、フェニルブタゾン、オキシフェンブタゾン、メピリゾール、アスピリン、エテンザミド、アセトアミノフェン、アミノピリン、フェナセチン、臭化ブチルスコポラミン、モルヒネ、エトミドリン、ペンタゾシン、フェノプロフェンカルシウム等の消炎、解熱、鎮痙または鎮痛薬、イソニアジド、塩酸エタンブトール等の抗結核薬、硝酸イソソルビド、ニトログリセリン、ニフェジピン、塩酸バルニジピン、塩酸ニカルジピン、ジピリダモール、アムリノン、塩酸インデノロール、塩酸ヒドララジン、メチルドーパ、フロセミド、スピロノラクトン、硝酸グアネチジン、レセルピン、塩酸アモスラロール等の循環器官用薬、塩酸クロルプロマジン、塩酸アミトリプチリン、ネモナプリド、ハロペリドール、塩酸モペロン、ペルフェナジン、ジアゼパム、ロラゼパム、クロルジアゼポキシド等の抗精神薬、マレイン酸クロルフェニラミン、塩酸ジフェンヒドラミン等の抗ヒスタミン薬、硝酸チアミン、酢酸トコフェロール、シコチアミン、リン酸ピリドキサール、コバマミド、アスコルビン酸、ニコチン酸アミド等のビタミン薬、アロプリノール、コルヒチン、プロベネジド等の痛風薬、アモバルビタール、ブロムワレリル尿素、ミダゾラム、抱水クロラール等の催眠鎮静薬、フルオロウラシル、カルモフール、塩酸アクラルビシン、シクロホスファミド、チオテパ等の抗悪性腫瘍薬、フェニルプロパノールアミン、エフェドリン類等の抗うつ血薬、アセトヘキサミド、インシュリン、トルブタミド等の糖尿病薬、ヒドロクロロチアジド、ポリチアジド、トリアムテレン等の利尿薬、アミノフイリン、フマル酸フォルモテロール、テオフィリン等の気管支拡張薬、リン酸コデイン、ノスカピン、リン酸ジメモルファン、デキストロメトルファン等の鎮咳薬、硝酸キニジン、ジキトキシン、塩酸プロパフェノン、プロカインアミド等の抗不整脈薬、アミノ安息香酸エチル、リドカイン、塩酸ジブカイン等の表面麻酔薬、フェニトイン、エトスクシミド、プリミドン等の抗てんかん薬、ヒドロコルチゾン、プレドニゾロン、トリアムシノロン、べタメタゾン等の合成副腎皮質ステロイド類、ファモチジン、塩酸ラニチジン、シメチジン、スクラルファート、スルピリド、テプレノン、プラウノトール等の消化器官用薬、インデロキサジン、イデベノン、塩酸チアプリド、塩酸ビフェメラン、ホパテン酸カルシウム等の中枢神経系用薬、プラバスタチンナトリウム等の高脂血症治療剤、塩酸アンピシリンフタリジル、セフォテタン、ジョサマイシン等の抗生物質等が挙げられる。これらの薬物の中で特に代表的なものは、塩酸ニカルジピンである。なお、生物学的半減期の短い薬物であってもよい。薬物の量は薬効を呈する量であれば如何程でもよいが、通常は製剤全体の85重量%以下、好ましくは80重量%以下である。
【0006】
これらの薬物は、水分の少い結腸においても吸収させやすくするため、その溶解性を良好にしておくことが好ましい。溶解性を改善する方法(可溶化処理)としては、ハイドロゲル製剤に適用できる公知の方法、例えば界面活性剤(ポリオキシエチレン硬化ヒマシ油類、ポリオキシエチレンソルビタン高級脂肪酸エステル類、ポリオキシエチレンポリオキシプロピレングリコール類、ショ糖脂肪酸エステル類等)を添加する方法、薬物と可溶化剤例えば高分子(ハイドロキシプロピルメチルセルロース(HPMC)、ポリビニルピロリドン(PVP)、ポリエチレングリコール(PEG)等の水溶性高分子、カルボキシメチルエチルセルロース(CMEC)、ハイドロキシプロピルメチルセルロースフタレート(HPMCP)、メタアクリル酸メチル−メタアクリル酸共重合体(オイドラギットL,S、商品名;ローム・アンド・ハース社製)等の腸溶性高分子)との固体分散体を形成する方法が挙げられる。薬物が塩基性物質の場合はクエン酸、酒石酸等の有機酸を添加する方法も挙げられる。更に必要により、可溶性の塩にする方法、サイクロデキストリン等を用いて包接化合物を形成させる方法等も採用できる。可溶化の手段は、目的とする薬物に応じて適宜変更できる
〔「最近の製剤技術とその応用I」,内海勇ら,医薬ジャーナル 157−159(1983)及び「薬学モノグラフNo.1,生物学的利用能」,永井恒司ら,ソフトサイエンス社,78−82(1988)〕。
このうち、好ましくは、薬物と可溶化剤との固体分散体を形成させ溶解性を改善する方法が採用される(特開昭56−49314号,FR2460667号)。
【0007】
次に、本発明製剤の製剤内部まで水を浸入させるための添加剤(以下、この製剤内部まで水を浸入させるための添加剤を親水性基剤という)としては、この親水性基剤1gが溶解するのに必要な水の量が20±5℃下で5ml以下、好ましくは4ml以下のものであり、水への溶解性が高い程、製剤中に水を浸入させる効果が高い。このような親水性基剤としては、例えば、ポリエチレングリコール(PEG;例えば、商品名PEG400,PEG1500,PEG4000,PEG6000,PEG20000日本油脂社製)、ポリビニルピロリドン(PVP;例えば、商品名PVP K30 BASF社製)のような水溶性の高い高分子や、D−ソルビトール、キシリトール等の糖アルコール類、白糖、無水マルトース、D−フルクトース、デキストラン(例えばデキストラン40)、ブドウ糖等の糖類、ポリオキシエチレンポリオキシプロピレングリコール(例えばプルロニックF68旭電化社製等)等の界面活性剤や塩化ナトリウム、塩化マグネシウム等の塩類あるいはクエン酸、酒石酸等の有機酸、グリシン、β−アラニン、塩酸リジン等のアミノ酸類、メグルミン等のアミノ糖類である。
特に好ましいものとしては、PEG6000,PVP,D−ソルビトール等が挙げられる。
【0008】
この親水性基剤の割合は、薬物の特性(溶解性、治療効果等)並びにその含有量、親水性基剤の溶解性、ハイドロゲルを形成する高分子の特性、あるいは、投与時の患者の状態等種々の因子により左右されるが、製剤が消化管上部に滞留する間にほぼ完全にゲル化ができる程度の割合が好ましい。製剤が消化管上部に滞留する時間は、種によって異なり、又個体差もあるが、イヌでは投与後約2時間、ヒトでは、投与後約4〜5時間である(Br.J.Clin.Pharmac.,(1988)
26,435−443)。ヒトの場合であれば投与後4〜5時間で製剤がはぼ完全にゲル化ができる程度の割合が好ましい。一般的には、製剤全体に対して、5〜80重量%、好ましくは5〜60重量%程度である。
親水性基剤の含量は、その含量が少いとゲル化が内部にまで進まず、結腸での放出が十分ではない。一方、含量が多すぎると短時間でゲル化が進むが、ゲルが崩れやすく、薬物の溶出が早まり、十分な徐放化が達成できない恐れがあり、又、基剤の量も多くなることから製剤自体が大型化する等の欠点を夫々有する。
【0009】
次にハイドロゲルを形成する高分子物質としては、本発明製剤がほぼ完全にゲル化された状態で、食物消化に伴う消化管の収縮運動に耐え、ある程度の形状を保ったまま消化管下部の結腸に移行し得る程度の、ゲル化時の粘度等の性状を有することが必要である。
本発明製剤に適用できるハイドロゲルを形成する高分子物質としては、ゲル化時の粘度が高いものが好ましい。例えば、1%水溶液(25℃)の粘度が1000cps以上を有するものが特に好ましい。
また、高分子物質の性状はその分子量に依存し、本発明製剤に適用可能なハイドロゲルを形成する高分子物質としてはより高分子量のものが好ましく、平均分子量200万以上更に好ましくは平均分子量400万以上のものが挙げられる。
このような高分子物質としては、例えば分子量200万以上のポリエチレンオキサイド(PEO)(例えば、商品名Polyox WSR−303(平均分子量:700万、粘度:7500−10000cps(1%水溶液25℃))、Polyox WSR Coagulant(平均分子量500万、粘度:5500−7500cps(同))、Polyox WSR−301(平均分子量:400万、粘度:1650−5500cps(同))、Polyox WSR−N−60K(平均分子量:200万、粘度:2000−4000cps(2%水溶液25℃))いずれもユニオンカーバイド社製)、ハイドロキシプロピルメチルセルロース(HPMC)(例えば商品名メトローズ90SH100000(粘度:4100−5600cps(1%水溶液20℃))、メトローズ90SH50000(粘度:2900−3900cps(同))、メトローズ90SH30000(粘度:25000−35000cps(2%水溶液20℃))いずれも信越化学社製)、カルボキシメチルセルロースナトリウム(CMC−Na)(例えば、商品名サンローズF−150MC(平均分子量:20万、粘度1200−1800cps(1%水溶液25℃))、サンローズF−1000MC(平均分子量:42万、粘度8000−12000cps(同))、サンローズF−300MC(平均分子量:30万、粘度2500−3000cps(同))日本製紙社製)、ハイドロキシエチルセルロース(HEC)(例えば、商品名 HECダイセルSE850(平均分子量:148万、粘度2400−3000CPS(1%水溶液25℃))、HECダイセルSE900(平均分子量:156万、粘度4000−5000cps(同))ダイセル化学工業社製)、もしくはカルボキシビニルポリマー(例えばカーボポール940(平均分子量約250万)B.F.Goodrich Chemical社製)等が挙げられる。
好ましくは平均分子量200万以上のPEOである。長期間、例えば12時間以上の放出の持続を必要とする場合にはより高分子、好ましくは平均分子量400万以上もしくはより粘度の高い、好ましくは1%水溶液25℃の粘度が3000cps以上である高分子が好適なものとして挙げられる。
これらのハイドロゲルを形成する高分子物質は、一種もしくは二種以上を混合して用いることができる。又、二種以上の高分子物質からなり、全体として上記本発明に適する性状を有する混合物も本発明のハイドロゲルを形成する高分子物質として好適に用いることができる。
【0010】
ヒトにおいて、結腸における薬物の放出能を有するためには、投与後少なくとも6〜8時間経過時、更に好ましくは12時間以上経過時において結腸中にゲル化された製剤の一部が残存していることが必要である。
このような性状を有するハイドロゲル製剤を形成するには、製剤の大きさ、高分子物質の種類、薬物および錠剤中に水を浸入させるための添加剤の性質、含有量等によっても異なるが、一般的には一錠600mg以下の製剤において、ハイドロゲルを形成する高分子物質を製剤全体に対する配合割合としては10〜95重量%、好ましくは15〜90重量%、又、製剤一錠当りの配合量としては、一錠中に70mg以上、好ましくは100mg以上含有することが好ましい。これより少ない量では長期間に亘る消化管内での浸蝕に耐えられず、十分な徐放化が達成されない可能性がある。
上記本発明製剤の親水性基剤、ハイドロゲルを形成する高分子物質(以下ハイドロゲル形成基剤という)の種類及び配合量については、以下の実験によりその有用性を確認した。
【0011】
実験例(親水性基剤並びにハイドロゲル形成基剤の種類および配合量について)
(1)本発明ハイドロゲル徐放性製剤の経時的なゲル形成速度
試料
ハイドロゲル形成基剤Polyox WSR−303(以下POLYOX303という)100重量部に対して、親水性基剤PEG6000を150重量部配合し、乳鉢中で混合し、オイルプレスを用いて、打錠圧1ton/杵で打錠し、直径8.0mm、一錠重量200mgの錠剤を得た。
ゲル形成試験
試験液として日本薬局方12改正(以下、日局という)(The Pharmacopoeia of Japan XII)崩壊試験法第2液を用い、日局溶出試験法第2法(パドル法)によりパドル回転速度25rpmで試験を行った。各時間毎に錠剤を取り出し、ゲル層を剥離後、ゲル化していない部分の直径(D obs)を測定した。D obsより、ゲル化率(G)を算出した(表1、図1、数式1)。
ここに、ゲル化率とは錠剤中のゲルを形成した部分の割合を示す。ゲル化率を算出する方法は、特に限定しないが、例えば下記算出方法が挙げられる。
算出方法は、錠剤を一定時間湿潤させた後、ゲル化していない部分の体積(または重量)を測定し、試験開始前の錠剤の体積(または重量)から減じて求める方法である。
具体的には、一定時間湿潤させた錠剤のゲル層を剥離し、ゲル化していない部分の直径(または厚み)を測定し、数式1を用いて算出する方法が挙げられる。同様に、後記数式2から求めてもよい。
さらには、ゲル層とゲル形成していない部分の強度の差を利用して、一定圧力をかけたときの直径(または厚み)をゲル化していない部分の直径(または厚み)とみなして、数式1より算出することができる。
従って、本発明において「ゲル化率」とは、これらの算出方法により算出されたものを意味し、本発明の「70%以上100%未満のゲル化率」とは上記試験法の試験開始後2時間のゲル化率が70%以上100%未満であることを意味する。
【0012】
【表1】
Figure 0003598049
【0013】
【数1】
Figure 0003598049
【0014】
試験結果
親水性基剤として、PEG6000を含むハイドロゲル錠は、ほぼ一定の速度で内径が縮小し、ゲル化が進行した。試験開始2時間でほぼ完全に(80%以上)ゲル化した。
【0015】
(2)親水性基剤の含有量について
試料
ハイドロゲル形成基剤POLYOX303 100重量部に対して、親水性基剤PEG6000を0重量部から150重量部以下の割合で配合し、乳鉢中で混合し、オイルプレスを用いて、打錠圧1ton/杵で打錠し、直径8.0 mm、一錠重量200mgの錠剤を得た。
ゲル形成試験
試験液として日局崩壊試験法第2液を用い、日局溶出試験法第2法(パドル法)によりパドル回転速度25rpmで試験を行った。各時間毎に錠剤を取り出し、ゲル層を剥離後、ゲル化していない部分の直径(D obs)を測定した。D obsより、ゲル化率(G)を算出した(表2、図2)。
【0016】
【表2】
Figure 0003598049
【0017】
試験結果
親水性基剤PEG6000を15重量部(錠剤重量の13.0%)配合することにより、2時間で80%以上ゲル化することが示された。また、親水性基剤PEG6000を10重量部(錠剤重量の9.1%)配合することにより、4時間で80%以上ゲル化することが示された。
【0018】
(3)親水性基剤のスクリーニング
試料
ハイドロゲル形成基剤POLYOX303 100重量部に対して、各種親水性基剤100重量部を配合し、乳鉢中で混合し、オイルプレスを用いて、打錠圧1ton/杵で打錠し、直径8.0mm、一錠重量200mgの錠剤を得た。
ゲル形成試験
試験液として日局崩壊試験法第2液を用い、日局溶出試験法第2法(パドル法)によりパドル回転速度25rpmで試験を行った。試験開始2時間後に錠剤を取り出し、ゲル層を剥離後、ゲル化していない部分の直径(D obs)を測定した。D obsより、ゲル化率(G)を算出した(表3、図3)。
【0019】
【表3】
Figure 0003598049
【0020】
試験結果
添加剤1gを溶解するのに必要な水の量がそれぞれ6mlまたは8mlの溶解性を有するD−マンニ卜ールおよび乳糖を添加した場合、POLYOX303単独時とほぼ同等のゲル化率を示し、錠剤内部までゲル化させる効果は小さいことが示された。
2時間で80%以上ゲル化させる為の親水性基剤としてはグリシン、PVP K30、PEG6000、D−ソルビトール等溶解性の高い基剤(少なくとも添加剤1gが溶解するのに必要な水の量が5ml以下、好ましくは4ml以下)が適当であることが判明した。
【0021】
(4)ハイドロゲル形成基剤の検討
アセトアミノフェン及び塩酸ニカルジピン(Pd)をモデル薬物とし、徐放性製剤として必要なハイドロゲル形成基剤配合量および分子量について検討した。
その1.好適配合量についての検討
ゲル形成基剤の配合量と溶出挙動との関係を調べた。
▲1▼ アセトアミノフェン
【0022】
【表4】
Figure 0003598049
【0023】
表4に示す成分を乳鉢中で混合し、オイルプレスを用いて、打錠圧1ton/杵で打錠し、錠剤(アセトアミノフェン50mg含有)を得た。
▲2▼ 塩酸ニカルジピン(Pd)
Pd l重量部、HCO−60 0.2重量部、ヒドロキシプロピルメチルセルロース(TC−5E、信越化学社製)0.4重量部を水−メタノール混液(1:9)に溶解し、スプレードライヤーを用いて、噴霧乾燥したものを、スプレードライ品1とした。
【0024】
【表5】
Figure 0003598049
【0025】
表5に示す成分を乳鉢中で混合し、オイルプレスを用いて、打錠圧1ton/杵で打錠し、錠剤(Pd 80mg含有)を得た。
溶出試験
試験液として日局崩壊試験法第1液もしくは第2液を用いて日局溶出試験法第2法(パドル法)によりアセトアミノフェン及び塩酸ニカルジピン(Pd)のモデル製剤につき、試験を行った。各時間毎にサンプリングを行い、溶液中の薬剤量はUV法により測定した(図4、図5)。
試験結果
ハイドロゲル形成基剤POLYOX303の含有量により溶出速度をコントロールすることが可能であった。主薬としてアセトアミノフェン50mgを用いた場合、POLYOX303含量100mg(錠剤重量の50%)以上配合することにより、高攪拌下(パドル回転速度200rpm、pH6.8)においても12時間以上放出を持続させることが可能であった。同様に主薬として、Pd 80mgを用いた場合、POLYOX303含量96mg(錠剤重量の37.5%)以上配合することにより、高攪拌下(パドル回転速度200rpm、pHl.2)においても12時間以上放出を持続させることが可能であった。
ハイドロルゲル形成基剤の好適な含有割合は、薬剤や親水性基剤の種類や量、求められる溶出速度等により異なるが、含有割合が大きい程放出が遅くなることが示された。また、12時間以上の放出の持続を期待する場合には、1錠当り、おおむね70mg以上好ましくは100mg以上のハイドロゲル形成基剤の含有が必要であることが示された。
【0026】
その2.ゲル形成基剤の分子量と放出持続時間との関係を検討した。
▲1▼ アセトアミノフェン
【0027】
【表6】
Figure 0003598049
【0028】
ポリエチレンオキサイド(PEO)としては、平均分子量90万、100万、200万、400万、500万または700万のものを用いた。乳鉢中で混合し、オイルプレスを用いて、打錠圧1ton/杵で打錠し、直径9.0mm、一錠重量350mgを得た。
▲2▼ 塩酸ニカルジピン(Pd)
Pd l重量部、HCO−40 0.4重量部、ヒドロキシプロピルメチルセルロース(TC−5E、信越化学社製)0.8重量部を水・メタノール混液(1:9)に溶解し、スプレードライヤーを用いて、噴霧乾燥したものを、スプレードライ品2とした。
【0029】
【表7】
Figure 0003598049
【0030】
ポリエチレンオキサイド(PEO)としては、分子量90万、100万、200万、400万、500万または700万のものを用いた。乳鉢中で混合し、オイルプレスを用いて、打錠圧1ton/杵で打錠し、直径11.0mm、一錠重量568mgの錠剤(Pd 80mg含有)を得た。
溶出試験
前記その1好適配合量についての検討で行った溶出試験と同様にアセトアミノフェン処方製剤及び塩酸ニカルジピン処方製剤を処理した(図6、図7)。
試験結果
ハイドロゲル形成基剤ポリエチレンオキサイド(PEO)の平均分子量により溶出速度が変化した。主薬としてアセトアミノフェン50mgを用いた場合、PEOの平均分子量400万以上のグレードを用いることにより、高攪拌下(パドル回転速度200rpm、pH6.8)においても12時間以上放出を持続させることが可能であった。同様に主薬として、Pd 80mgを用いた場合、PEOの平均分子量200万以上のグレードを用いることにより、12時間以上の放出を持続させることが可能であった。
【0031】
(5)in vivoにおけるゲル形成の確認
試料
ハイドロゲル形成基剤(POLYOX303)に対し、親水性基剤(PEG6000、PVP K30、D−ソルビトール)を、以下の配合割合で添加したものを夫々乳鉢中で混合し、オイルプレスを用いて、打錠圧1ton/杵で打錠し、直径8.0mm、一錠重量200mgの錠剤を得た。
POLYOX303:PEG6000=100:10,25,50,100
POLYOX303:PVP K30=100:10,25,100
POLYOX303:D−ソルビトール=100:10,25,100
イヌ解剖試験
約20時間絶食した雄ビーグル犬(DOG A,B)に各種製剤を水30mlとともに経口投与した。2時間後にペントバルビタールNa麻酔後、脱血し、開腹した。消化管内より、錠剤を回収し、D obsを測定した。D obsよりゲル化率(G)を算出した(表8)。
【0032】
【表8】
Figure 0003598049
【0033】
試験結果
Dog Aでは投与後2時間で錠剤はすでに結腸まで移動しており、錠剤の消化管上部滞留時間は2時間以下であった。しかしながら、PEG6000 10部配合した錠剤以外は、すべて80%以上ゲル化しており、in vitroの結果とはぼ対応していた。
Dog Bでは投与後2時間で錠剤は胃内に滞留しており、すべての錠剤が80%以上ゲル化していた。
以上の結果より、in vitroで80%以上ゲル化させることのできる親水性基剤(PVP K30、PEG6000、D−ソルビトール)を適量配合したハイドロゲル錠はin vivoにおいても水が錠剤内部まで浸入し、ゲル化しやすいことが明らかとなった。
【0034】
本発明製剤には必要に応じ、他の薬学的に許容され得る添加剤、例えば乳糖、マンニトール、バレイショデンプン、コムギデンプン、コメデンプン、トウモロコシデンプン、結晶セルロース等の賦形剤、ハイドロキシプロピルメチルセルロース、ハイドロキシプロピルセルロース、メチルセルロース、アラビアゴム等の結合剤、カルボキシメチルセルロース、カルボキシメチルセルロースカルシウム、クロスカルメロースナトリウム等の膨潤剤、ステアリン酸、ステアリン酸カルシウム、ステアリン酸マグネシウム、クルク、メタケイ酸アルミン酸マグネシウム、リン酸水素カルシウム、無水リン酸水素カルシウム等の潤沢剤、含水二酸化ケイ素、軽質無水ケイ酸、乾燥水酸化アルミニウムゲル等の流動化剤、黄色三二酸化鉄、三二酸化鉄等の着色剤、ラウリル硫酸ナトリウム、ショ糖脂肪酸エステル等の界面活性剤、ゼイン、ハイドロキシプロピルメチルセルロース、ハイドロキシプロピルセルロース等のコーティング剤、l−メントール、ハッカ油、ウイキョウ油等の芳香料、ソルビン酸ナトリウム、ソルビン酸カリウム、バラ安息香酸メチル、パラ安息香酸エチル等の保存剤等を加えることができる。
【0035】
また、本発明製剤は、ハイドロゲル形成能を有する一定の形状を有する固形製剤であり、その製造法としては、通常のハイドロゲル製剤に適用し得る方法であれば、いずれでもよい。例えば、薬物、親水性基剤及びハイドロゲルを形成する高分子物質、更に必要により他の添加剤を加えて混合し、圧縮成形する打錠法、カプセル圧縮充填法、あるいは、混合物を融解後固化して成形する押し出し成形法、射出成形法等が挙げられる。従って、本発明において「錠剤」とは、これらの製法により製造された一定の形状を有する固形製剤を意味する。又、成形後通常の糖衣、フィルムコーティング等のコーティング処理を施すこともできる。あるいは成形後カプセルに充填してもよい。
【0036】
本発明製剤に適用する薬物に可溶化処理を行う場合には上記製剤化の前に行うことができる。可溶化剤を用いて可溶化を行う場合には、本発明の親水性基剤は当該可溶化剤を兼ねていてもよく、例えば親水性基剤、並びに必要により他の添加剤により可溶化された薬物とハイドロゲルを形成する高分子物質、更に必要により他の添加剤を加えて打錠する方法により製造することもできる。
尚、本発明の徐放性製剤は、更に必要に応じて速放部(immediate release part)を有していてもよく、例えば本発明製剤に速放部をコートすることができる。
さらに目的によっては有核錠剤とすることができる。たとえば一定時間後により高い血中濃度が要求される場合には、薬物溶出速度の速い(例えば、薬物含量を多くする、ハイドロゲル形成基剤含量を少なくする、及び/又は親水性基剤含量を多くする等)処方で核錠とし、外層部分は薬物溶出速度を遅くする(薬物含量を少なくする、ハイドロゲル形成基剤含量を多くする及び/又は親水性基剤含量を少なくする等)ことにより、一定時間後薬物溶出速度を早くすることも可能である。
【0037】
【実施例】
以下に本発明製剤を更に詳細に説明する。なお、本発明はこれらの実施例によって何ら限定されるものではない。
実施例1
AAP 100(重量部)
PEG6000 400
POLYOX303 300
アセトアミノフェン(AAP)及びPEG6000を80℃で溶融した後、冷却固化し、粉砕した。粉砕物とPOLYOX303を乳鉢中で混合し、オイルプレスを用いて、打錠圧1ton/杵で打錠し、直径9mm、一錠重量400mg(AAP 50mg含有)の錠剤を得た。
比較処方1
AAP 100(重量部)
POLYOX303 200
AAPとPOLYOX303を乳鉢中で混合し、オイルプレスを用いて、打錠圧1ton/杵で打錠し、直径8.5mm、一錠重量300mg(AAP l00mg含有)の錠剤を得た。
上記で得られた実施例1及び比較処方1につき以下の試験を行った。
(1)溶出試験1
試験液として日局崩壊試験法第2液を用い、日局溶出試験法第2法(パドル法)により試験を行った。各時間毎にサンプリングを行い、溶液中のAAPはUV法にて測定した(表9、図8)。
【0038】
【表9】
Figure 0003598049
【0039】
(2)ゲル形成試験
試験液として日局崩壊試験法第2液を用い、日局溶出試験法第2法(パドル法)によりパドル回転速度25rpmで試験を行った。各時間毎に錠剤を取り出し、ゲル化していない部分の直径(D obs)を測定した。D obs より、ゲル化率 (G)を算出した(表10、図9)
【0040】
【表10】
Figure 0003598049
【0041】
(3)イヌ投与試験1
約20時間絶食した雄ビーグル犬(n=4)に実施例1の錠剤×2錠(AAP 100mg)および比較処方1(AAP 100mg)を水30mlとともに経口投与した。経時的に採血し、血漿中薬物濃度はHPLC/UV法で測定した(表11、図10)。吸収速度は、AAP 100mg水溶液i.v.投与時の血漿中薬物濃度データを重み関数としてDeconvolution法により算出した。実施例の錠剤投与後24時間後の吸収率を100とした(表12)。
【0042】
【表11】
Figure 0003598049
【0043】
【表12】
Figure 0003598049
【0044】
試験結果
in vitro溶出試験では比較処方1と実施例1は、ほば同様の溶出挙動を示した(図8、表9)が、水の浸入速度(ゲル化率)は大きく異なった(図9、表10)。これらの製剤をイヌに経口投与した結果、比較処方1投与時と比較して実施例1投与時の血漿中薬物濃度推移は明らかに持続的である(図10)。また、比較処方1投与時の血漿中薬物濃度時間曲線下面積(AUC)および平均体内滞留時間(MRT)のバラツキは大きく、これは消化管移動時間の個体差に基づくものと推定される(表11)。これに対し、実施例1投与時のAUCおよびMRTはバラツキが小さく、消化管移動速度の影響を受けにくいことが示唆された。さらに、吸収時間が持続することから、実施例1投与時の最高血漿中薬物濃度(C max)は比較処方1投与時とはぼ同等であったが、AUCは約1.8倍増大した。
Deconvolutionによる吸収挙動と溶出試験結果を比較した。比較処方1投与では製剤が消化管上部に滞留する約2時間はin vitro溶出結果と同様の吸収を示したが、2時間以降は顕著に吸収が抑制された(図11、表12)。イヌ絶食条件における製剤の消化管上部滞留時間は約2時間であり、消化管下部では薬物が溶出・吸収されにくいことが判る。これに対して、実施例1投与時は in vitro溶出試験の結果とはぼ同等の吸収を示した。すなわち、消化管上部と同様に、消化管下部においても薬物が良好に溶出・吸収されていることが明らかである(図12、表12)。
(4)イヌ解剖試験
約20時間絶食した雄ビーグル犬3頭を用いた。解剖する2、4及び6時間前に各種製剤を水30mlとともに経口投与した。解剖はペントバルビタールNa麻酔下、脱血後開腹し、製剤の消化管内の位置を調べた(表13)。尚、小腸部は5等分しそれぞれ上部より小腸1、2、3、4、5とした。
試験結果:
【0045】
【表13】
Figure 0003598049
【0046】
ゲル化率の低い比較処方1と親水性基剤を配合することによりゲル化率を向上させた実施例1は、in vivoにおいてはぼ同様な消化管移動を示すことが明らかとなった。投与2時間後では、両製剤とも1例は胃に滞留していたが、残りは小腸5および結腸に存在していた。したがって、これまでの知見通り、イヌ絶食条件下では製剤の消化管上部滞留時間は約2時間であることが示された。すなわち
実施例1投与時、2時間以降に示された高い血中濃度は、製剤が消化管下部に存在していたにも関わらず、製剤から薬物が良好に溶出され、充分に吸収されたことに起因することが確認された。
【0047】
実施例2
Pd 160(重量部)
HCO−60 80
TC−5E 160
PEG6000 400
POLYOX303 240
塩酸ニカルジピン(Pd)、HCO−60、TC−5EおよびPEG6000を混合溶媒(ジクロロメタン・メタノール)に溶解し、スプレードライヤーを用いて、噴霧乾燥した。乾燥品とPOLYOX303を乳鉢中で混合し、オイルプレスを用いて、打錠圧1ton/杵で打錠し、直径9.0mm、一錠重量346.7mg(Pd 53.3mg含有)の錠剤を得た。
比較処方2
Pd 130(重量部)
Tween80 26 徐放部(SR)
CMEC 130
POLYOX303 57.2
Pd 30 速放部(QR)
TC−5E 15
塩酸ニカルジピン(Pd)、Tween80およびCMECを混合溶媒(ジクロロメタン・メタノール)に溶解し、スプレードライヤーを用いて、噴霧乾燥した。乾燥品とPOLYOX303を混合し、オイルプレスを用いて、打錠圧0.8ton/杵で打錠し、直径8.0mm、一錠重量171.6mg(Pd 65mg含有)の錠剤(SR)を得た。別に、PdおよびTC−5Eを混合溶媒(ジクロロメタン・メタノール)に溶解し、ハイコーターを用いて、SR(Pd 65mg)に速放部(QR、Pd 15mg)をコートし、一錠重量194.1mgの比較処方2(Pd 80mg)を得た。
【0048】
上記で得られた実施例2及び比較処方2につき、以下の試験を行った。
(1)溶出試験
試験液として日局崩壊試験法第1液を用い、日局溶出試験法第2法(パドル法)によりパドル回転速度200rpmで試験を行った。各時間毎にサンプリングを行い、溶液中のPdはUV法にて測定した(表14)。
【0049】
【表14】
Figure 0003598049
【0050】
(2)ゲル形成試験
試験液として日局崩壊試験法第1液を用い、日局溶出試験法第2法(パドル法)によりパドル回転速度25rpmで試験を行った。2時間後に錠剤を取り出し、ゲル化していない部分の直径(D obs)を測定した。D obsより、ゲル化率(G)を算出した(表15)。
【0051】
【表15】
Figure 0003598049
【0052】
(3)イヌ投与試験
約20時間絶食した雄ビーグル犬(n=6)に実施例2の錠剤×3錠(Pd 160mg)および比較処方2の錠剤×2錠(Pd 160mg)を水30mlとともに経口投与した。経時的に採血し、血漿中薬物濃度はHPLC/UV法で測定した(表16、図13)。
【0053】
【表16】
Figure 0003598049
【0054】
試験結果
in vitro溶出試験では比較処方2(SR)と実施例2は、ほぼ同様の溶出挙動を示した(表14)が、水の浸入速度(ゲル化率)は大きく異なった(表15)。これらの製剤をイヌに経口投与した結果、比較処方2投与時と比較して実施例2投与時の血漿中薬物濃度推移は明らかに持続的である。比較処方2投与では製剤が消化管下部に移行する2時間以降は顕著に血漿中薬物濃度が減少しており、消化管下部では薬物が溶出・吸収されにくいことが判る。これに対して、実施例2投与時は消化管下部に移行する2時間以降も血漿中薬物濃度が持続しており、消化管下部で薬物が良好に溶出・吸収されていることが明らかである。さらに、吸収時間が持続することから、実施例2投与時のC maxは比較処方2投与時とほぼ同等であったが、AUCは約3.0倍増大した。
【0055】
実施例3
Pd 65(重量部)
Tween80 13 徐放部(SR)
CMEC 65
PEG6000 65
POLYOX303 65
Pd 15 速放部(QR)
塩酸ニカルジピン(Pd)、Tween80およびCMECを混合溶媒(ジクロロメタン・メタノール)に溶解し、スプレードライヤーを用いて、噴霧乾燥した。乾燥品とPEG6000およびPOLYOX303を混合し、オイルプレスを用いて、打錠圧1.0ton/杵で打錠し、直径8.5mm、一錠重量273mg(QR、Pd 65mg含有)の錠剤(SR)を得た。
尚、速放部(QR)として別途Pd 15mgを含有する錠剤を得た。
比較処方3
Pd 65(重量部)
Tween80 13 徐放部(SR)
CMEC 65
POLYOX303 28.6
Pd 15 速放部(QR)
TC−5E 7.5
塩酸ニカルジピン(Pd)、Tween80およびCMECを混合溶媒(ジクロロメタン・メタノール)に溶解し、スプレードライヤーを用いて噴霧乾燥した。乾燥品とPOLYOX303を混合し、オイルプレスを用いて、打錠圧0.8ton/杵で打錠し、直径8.0 mm、一錠重量171.6mg(Pd 65mg含有)の錠剤(SR)を得た。別に、PdおよびTC−5Eを混合溶媒(ジクロロメタン・メタノール)に溶解し、ハイコーターを用いて、SR(Pd 65mg)に速放部(QR、Pd 15mg)をコートし、一錠重量194.1mgの錠剤(Pd 80mg)を得た。
【0056】
(1)溶出試験
試験液として日局崩壊試験法第2液を用い、日局溶出試験法第2法(パドル法)によりパドル回転速度200rpmで試験を行った。各時間毎にサンプリングを行い、溶液中のPdはUV法にて測定した。
比較処方3(SR)と実施例3(SR)の溶出試験結果を図14に示す。
(2)ゲル形成試験
試験液として日局崩壊試験法第1液を用い、日局溶出試験法第2法(パドル法)によりパドル回転速度25rpmで試験を行った。2時間後に錠剤を取り出し、ゲル層を剥離後、ゲル化していない部分の重量(W obs)を測定した。W obsより、以下の数式2を用いてゲル化率(G)を算出した(表17)。
【0057】
【表17】
Figure 0003598049
【0058】
【数2】
Figure 0003598049
【0059】
(3)イヌ投与試験
約20時間絶食した雄ビーグル犬(n=6)に実施例3 SR及びQR各2錠(Pd 160mg)および比較処方3 2錠(Pd 160mg)を水30mlとともに経口投与した。経時的に採血し、血漿中薬物濃度はHPLC/UV法で測定した(図15、表18)。
【0060】
【表18】
Figure 0003598049
【0061】
(4)イヌ解剖試験
約20時間絶食した雄ビーグル犬3頭を用いた。解剖する2,4及び6時間前に各種製剤を水30mlともに経口投与した。解剖はペントバルビタールNa麻酔下、脱血後開腹し、製剤の消化管内の位置を調べた(表19)。尚、小腸は5等分し、それぞれ上部より小腸1,2,3,4及び5とした。
【0062】
【表19】
Figure 0003598049
【0063】
試験結果
in vitro溶出試験では比較処方3(SR)と実施例3(SR)は、ほぼ同様の溶出挙動を示した(図14)が、ゲル化率は大きく異なった(表17)。解剖実験の結果、実施例3及び比較処方3はほぼ同様の消化管移動を示した(表19)。これらの製剤をイヌに経口投与した結果、比較処方3と比較して実施例3投与時の血漿中薬物濃度推移は明らかに持続的である。比較処方3投与では製剤が消化管下部に移行する2時間以降は顕著に血漿中薬物濃度が減少しており、消化管下部では薬物が溶出・吸収されにくいことが判る。これに対して、実施例3投与時は消化管下部に移行する2時間以降も血漿中薬物濃度が持続しており、消化管下部で薬物が良好に溶出・吸収されていることが明らかである(図15)。さらに、吸収時間が持続することから、実施例3投与時のC maXは比較処方3投与時とはぼ同等であったが、AUCは約4.4倍増大した(表18)。
【0064】
実施例4
Pd 80(mg)
PVP K30 32
HCO−60 16
POLYOX303 240
滑沢剤 4
塩酸ニカルジピン(Pd)、PVP K30およびHCO−60をメタノールに溶解した。流動層造粒機を用いてPOLYOX303に溶解液を噴霧造粒した。造粒品に滑沢剤を加え、混合し、打錠し、直径9.5mm、一錠重量372mg(Pd 80mg含有)の錠剤を得た。
【0065】
実施例5
Pd 80(mg)
TC−5E 32
HCO−60 16
PEG6000 32
POLYOX303 240
滑沢剤 8
流動化剤 4
塩酸ニカルジピン(Pd)、TC−5EおよびHCO−60を水・メタノール混液(1:9)に溶解し、その溶解液を噴霧乾燥した。噴霧乾燥品にPOLYOX303、滑沢剤4mg相当量を加え、乾式造粒した。造粒品に滑沢剤4mg相当量および流動化剤を加え、混合し、打錠し、直径9.5mm、一錠重量412mg(Pd 80mg含有)の錠剤を得た。
【0066】
実施例6
Pd 80(mg)
TC−5E 32
HCO−60 32
PEG6000 32
POLYOX303 384
滑沢剤 11.2
流動化剤 5.6
塩酸ニカルジピン(Pd)、TC−5E、HCO−60およびPEG6000を水・メタノール混液(1:9)に溶解し、その溶解液を噴霧乾燥した。噴霧乾燥品にPOLYOX303、滑沢剤5.6mg相当量を加え、乾式造粒した。造粒品に滑沢剤5.6mg相当量および流動化剤を加え、混合し、打錠し、直径11mm、一錠重量576.8mg(Pd 80mg含有)の錠剤を得た。
【0067】
実施例7
Pd 80(mg)
TC−5E 64
Tween80 32
PEG6000 32
POLYOX303 360
滑沢剤 11.4
流動化剤 5.7
塩酸ニカルジピン(Pd)、TC−5EおよびTween80を水・メタノール混液(1:9)に溶解した。溶解液を噴霧乾燥した。噴霧乾燥品にPEG6000、POLYOX303、滑沢剤5.7mg相当量を加え、乾式造粒した。造粒品に滑沢剤5.7mg相当量および流動化剤を加え、混合し、打錠し、直径11mm、一錠重量585.1mg(Pd 80mg含有)の錠剤を得た。
【0068】
実施例8
PdおよびTC−5Eを水・メタノール混液(1:9)に溶解し、ハイコーターを用いて、実施例7(Pd 80mg)に速放部(Pd 20mg)をコートし、一錠重量625.1mgの錠剤(Pd l00mg)を得た。
【0069】
実施例9
PdおよびHPC−SLをメタノールに溶解し、ハイコーターを用いて、実施例7(Pd 80mg)に速放部(Pd 20mg)をコートし、一錠重量625.1mgの錠剤(Pd l00mg)を得た。
【0070】
実施例10
Pd 80(mg)
TC−5E 64
HCO−40 32
PEG6000 48
POLYOX303 344
滑沢剤 11.4
流動化剤 5.7
Pd、TC−5EおよびHCO−40を水・メタノール混液(1:9)した。溶解液を噴霧乾燥した。噴霧乾燥品にPEG6000、POLYOX303、滑沢剤5.7mg相当量を加え、乾式造粒した。造粒品に滑沢剤5.7mg相当量および流動化剤を加え、混合し、打錠し、直径11mm、一錠重量585.1mg(Pd 80mg含有)の錠剤を得た。
【0071】
実施例11
Pd 100(mg)
TC−5E 80
HCO−40 40
PEG6000 48
POLYOX303 300
滑沢剤 11.4
流動化剤 5.7
Pd、TC−5EおよびHCO−40を水・メタノール混液(1:9)に溶解した。溶解液を噴霧乾燥した。噴霧乾燥品にPEG6000、POLYOX303、滑沢剤5.7mg相当量を加え、乾式造粒した。造粒品に滑沢剤5.7mg相当量および流動化剤を加え、混合し、打錠し、直径11mm、一錠重量585.1mg(Pd 100mg含有)の錠剤を得た。
【0072】
(1)溶出試験
試験液として日局崩壊試験法第1液を用い、日局溶出試験法第2法(パドル法)によりパドル回転速度200rpmで試験を行った。各時間毎にサンプリングを行い、溶液中のPdはUV法にて測定した。
実施例4と実施例5の溶出試験結果を図16に示す。
実施例6と実施例7と実施例10の溶出試験結果を図17に示す。
(2)イヌ投与試験
雄ビーグル犬(n=6)に実施例5 2錠または実施例6 2錠を1日1回4日間連続投与した。経時的に採血し、血漿中薬物濃度はHPLC/UV法で測定した。
試験結果
実施例5及び6のいずれも1日1回投与において高いC24h値(投与24時間後の血中濃度)および高い生物学的利用率を示した。
【0073】
実施例12
DF 37.5(mg)
PEG6000 37.5
POLYOX303 75.0
ジクロフェナックNa(DF)、PEG6000およびPOLYOX303を乳鉢中で混合し、オイルプレスを用いて、打錠圧1ton/杵で打錠し、直径7mm、一錠重量150mg(DF 37.5mg)の錠剤を得た。
比較処方4
DF 37.5(mg)
POLYOX 75.0
DFとPOLYOX303を乳鉢中で混合し、オイルプレスを用いて、打錠圧1ton/杵で打錠し、直径6.0 mm、一錠重量112.5mg(DF 37.5mg含有)の錠剤を得た。
(1)溶出試験
試験液として日局崩壊試験法第2液を用い、日局溶出試験法第2法(パドル法)により試験を行った。各時間毎にサンプリングを行い、溶液中のDFはUV法にて測定した(図18)。
(2)ゲル形成試験
試験液として日局崩壊試験法第2液を用い、日局溶出試験法第2法(パドル法)によりパドル回転速度25rpmで試験を行った。2時間毎に錠剤を取り出し、ゲル化していない部分の直径(D obs)を測定した。D obsより、ゲル化率(G)を算出した(表20)。
【0074】
【表20】
Figure 0003598049
【0075】
(3)イヌ投与試験
約20時間絶食した雄ビーグル犬(n=5)に実施例12(DF 37.5mg)および比較処方4(DF 37.5mg)を水30mlとともに経口投与した。経時的に採血し、血漿中薬物濃度はHPLC/UV法で測定した(表21、図19)。
【0076】
【表21】
Figure 0003598049
【0077】
実験結果
in vitro溶出試験では実施例12と比較処方4は、ほぼ同様の溶出挙動を示した(図18)が、水の浸入速度(ゲル化率)はは大きく異なつた(表20)。これらの製剤をイヌに経口投与した結果、比較処方4投与時と比較して実施例12投与時の血中濃度推移は明らかに持続的であった(図19)。さらに、比較処方4と比較して実施例12投与時のAUCは約1.7倍増大した(表21)。すなわち、酸性薬物であるジクロフェナックNaについても本発明を適用することにより、消化管下部において薬物が良好に溶出・吸収されていることが確認された。
【0078】
実施例13
DF 75(mg)
PEG6000 75
POLYOX303 150
ジクロフェナックNa(DF)、PEG6000およびPOLYOX303を乳鉢中で混合し、オイルプレスを用いて、打錠圧1ton/杵で打錠し、直径8.5mm、一錠重量300mg(DF 75mg含有)の錠剤を得た。
【0079】
実施例14
DF 75(mg)
PEG6000 75
POLYOX303 300
ジクロフェナックNa(DF)、PEG6000およびPOLYOX303を乳鉢中で混合し、オイルプレスを用いて、打錠圧1ton/杵で打錠し、直径9.5mm、一錠重量450mg(DF 75mg含有)の錠剤を得た。
【0080】
実施例15
ファモチジン 40(mg)
PEG6000 30
POLYOX303 150
滑沢剤 2
ファモチジン、PEG6000、POLYOX303および滑沢剤を混合後、打錠し、直径8.0mm、一錠重量222mg(ファモチジン40mg含有)の錠剤を得た。
【0081】
実施例16
塩酸バルニジピン 15(mg)
TC−5E 30
HCO−40 5
PEG20000 40
POLYOX303 207
滑沢剤 3
塩酸バルニジピン、TC−5EおよびHCO−40を水・メタノール混液(1:9)に溶解した。別にPEG20000およびPOLYOX303を混合した。流動層造粒機を用いて、混合品に溶解液を噴霧造粒した。造粒品を乾燥後、滑沢剤を混合し、打錠し、直径9.0mm、一錠重量300mg(塩酸バルニジピン15mg含有)の錠剤を得た。
【0082】
実施例17
塩酸アモスラロール 40(mg)
プルロニックF68 40
POLYOX303 196
滑沢剤 4
塩酸アモスラロール、プルロニックF68、POLYOX303および滑沢剤を混合粉砕後、乾式造粒した。造粒品を打錠し、直径8.5mm、一錠重量280mg(塩酸アモスラロール40mg含有)の錠剤を得た。
【0083】
実施例18
塩酸タムスロシン 0.2(mg)
D−ソルビトール 17.8
POLYOX WSR N−60K 180
滑沢剤 2
塩酸タムスロシン、D−ソルビトールおよびPEO(POLYOX WSR N−60K)をエタノールを用いて、湿式造粒し、乾燥した。乾燥品に滑沢剤を加え、混合し、打錠し、直径8mm、一錠重量200mg(塩酸タムスロシン0.2mg含有)の錠剤を得た。
【0084】
実施例19
塩酸インデロキサジン 60(mg)
白糖 37
HPMC(90SH30000) 180
滑沢剤 3
塩酸インデロキサジン、白糖、HPMCおよび滑沢剤を混合後、乾式造粒した。造粒品を打錠し、直径9mm、一錠重量280mg(塩酸インデロキサジン60mg含有)の錠剤を得た。
【0085】
実施例20
フマル酸フォルモテロール 0.16(mg)
無水マルトース 47.84
カーボポール940 100
滑沢剤 2
フマル酸フォルモテロール、無水マルトース、カーボポール940および滑沢剤を混合後、打錠し、直径7mm、一錠重量150mg(フマル酸フォルモテロール0.2mg含有)の錠剤を得た。
【0086】
実施例21
AAP 100(mg)
PEG6000 200
PEO(POLYOX WSR N−60K) 300
アセトアミノフェン(AAP)、PEG6000およびPEO(POLYOX WSR N−60K 平均分子量:200万)を乳鉢中で混合し、オイルプレスを用いて、打錠圧1ton/杵で打錠し、直径11mm、一錠重量600mg(AAP 100mg含有)の錠剤を得た。
【0087】
比較例5
AAP 100(mg)
PEO(POLYOX WSR N−60K) 300
AAPおよびPEO(POLYOX WSR N−60K)を乳鉢中で混合し、オイルプレスを用いて、打錠圧1ton/杵で打錠し、直径9mm、一錠重量400mg(AAP 100mg含有)の錠剤を得た。
【0088】
(1)溶出試験1
試験液として日局崩壊試験法第2液を用い、日局溶出試験法第2法(パドル法)によりパドル回転速度200rpmで試験を行った。各時間毎にサンプリングを行い、溶液中のAAPはUV法にて測定した。
(2)ゲル形成試験
試験液として日局崩壊試験法第2液を用い、日局溶出試験法第2法(パドル法)によりパドル回転速度25rpmで試験を行った。2時間後に錠剤を取り出し、ゲル化していない部分の直径(D obs)を測定した。D obs より、ゲル化率 (G)を算出した。
(3)イヌ投与試験1
約20時間絶食した雄ビーグル犬(n=6)に比較例5(AAP 100mg)および実施例21(AAP 100mg)を水30mlとともに経口投与した。経時的に採血し、血漿中薬物濃度はHPLC/UV法で測定した。
【0089】
試験結果
in vitro溶出試験では比較例5と実施例21は、ほぼ同様の溶出挙動を示したが、親水性基剤を添加した実施例21は比較例5よりも大きなゲル化率を示した。これらの製剤をイヌに経口投与した結果、比較例5投与時と比較して実施例21投与時の血漿中薬物濃度推移は明らかに持続的であった。実施例21投与時の最高血漿中薬物濃度(C max)は比較例5投与時とほぼ同等であったが、AUC、MRTは増大した。また、実施例21投与時の血中濃度は投与12時間後まで高い血中濃度を示した。
【0090】
【発明の効果】
本発明製剤によれば、製剤が消化管上部に滞留中に水分を吸収し、ほぼ完全にゲル化し、製剤表面が浸蝕を受けながら消化管下部へ移行し、更に浸蝕により薬物を放出し続ける。従って水分の少ない結腸においても良好且つ、持続的な薬物の放出が行われ6〜18時間程度(消化管上部の放出時間を加えるとして12〜24時間程度)の長い時間、持続した薬物の放出が可能となり、安定した薬物の血中濃度を達成できる。
従来の徐放性製剤は、消化管上部においてのみ薬物を放出するものであるため放出時間はせいぜい6時間程度であり、その後は薬物自体の生物学的半減期の長さにより血中濃度を延長させていたものである。本発明製剤においては薬物放出時間そのものを延長させるものであるから従来困難とされていた生物学的半減期の短い薬物においても12時間を超える持続的な血中薬物濃度の達成を可能とするものである。
従って本発明製剤は、薬物の効力を持続させて投与回数を少なくできるとともに、血中の薬物濃度の急激な立ち上がりを抑制して副作用を軽減でき、一定の血中薬物濃度を保つ等の利点を有するものである。
本発明は前記実施例に記載されているように例えば中性薬物であるアセトアミノフェン、塩基性薬物である塩酸ニカルジピンおよび酸性薬物であるジクロフェナックNa等のいずれの薬物にいても吸収持続時間を延長できることが確認された。従って、薬物の物性に依らず汎用性の高い製剤技術である。
【図面の簡単な説明】
【図1】図1は、PEG6000含有ハイドロゲル徐放性製剤のゲル形成試験結果を示す。
【図2】図2は、PEG6000含有量を変化させた場合のゲル形成試験結果を示す。
【図3】図3は、各種親水性基剤の2時間後のゲル化率の結果を示す。
【図4】図4は、POLYOX303の配合量と溶出挙動との関係(薬物:アセトアミノフェン)を示す。
【図5】図5は、POLYOX303の配合量と溶出挙動との関係(薬物:塩酸ニカルジピン)を示す。
【図6】図6は、PEO分子量と溶出挙動との関係(薬物:アセトアミノフェンを使用)を示す。
【図7】図7は、PEO分子量と溶出挙動との関係(薬物:塩酸ニカルジピンを使用)を示す。
【図8】図8は、実施例1及び比較処方1のパドル法による溶出試験結果を示す。
【図9】図9は、実施例1及び比較処方1のゲル形成試験結果を示す。
【図10】図10は、実施例1及び比較処方1のイヌ血漿中薬物濃度推移の結果を示す。
【図11】図11は、比較処方1の溶出試験結果とDeconvolutlon法による吸収挙動の比較を示す。
【図12】図12は、実施例1の溶出試験結果とDeconvolution法による吸収挙動の比較を示す。
【図13】図13は、実施例2及び比較処方2のイヌ血漿中薬物濃度推移を示す。
【図14】図14は、実施例3(SR)及び比較処方3(SR)のパドル法による溶出試験結果を示す。
【図15】図15は、実施例3及び比較処方3のイヌ血漿中薬物濃度推移を示す。
【図16】図16は、実施例4及び5のパドル法による溶出試験結果を示す。
【図17】図17は、実施例6、7及び10のパドル法による溶出試験結果を示す。
【図18】図18は、実施例12及び比較処方4のパドル法による溶出試験結果を示す。
【図19】図19は、実施例12及び比較処方4のイヌ血漿中薬物濃度推移を示す。

Claims (5)

  1. (1)一種または二種以上の薬物、(2)一種または二種以上の、1gが溶解するのに必要な水の量が5ml以下の溶解性を示す製剤内部に水を浸入させるための添加剤を製剤全体に対し5乃至80重量%、および(3)一種または二種以上の、平均分子量が200万以上または1%水溶液25℃の粘度が1000cps以上のハイドロゲルを形成する高分子物質1錠あたり70mg以上で、製剤全体に対し10乃至95重量%を配合し、圧縮成形、カプセル圧縮充填、押出成形または射出成形することを特徴とするゲル化率70%以上100%未満のハイドロゲル徐放性錠剤の製造法。
  2. 製剤内部に水を浸入させるための添加剤が、ポリエチレングリコール、ポリビニルピロリドン、D−ソルビトール、キシリトール、白糖、無水マルトース、D−フルクトース、デキストラン、ブドウ糖、ポリオキシエチレンポリオキシプロピレングリコール、塩化ナトリウム、塩化マグネシウム、クエン酸、酒石酸、グリシン、竈−アラニン、塩酸リジン、メグルミンからなる群より選択される一種または二種以上である請求項1記載のゲル化率70%以上100%未満のハイドロゲル徐放性錠剤の製造法。
  3. ハイドロゲルを形成する高分子物質が、ポリエチレンオキサイド、ハイドロキシプロピルメチルセルロース、カルボキシメチルセルロースナトリウム、ハイドロキシエチルセルロース、カルボキシビニルポリマーからなる群より選択される一種または二種以上の高分子物質である請求項1または2に記載のゲル化率70%以上100%未満のハイドロゲル徐放性錠剤の製造法。
  4. 有核錠剤である請求項1乃至3のいずれか一項に記載のゲル化率70%以上100%未満のハイドロゲル徐放性錠剤の製造法
  5. 更に、その他の添加剤を配合することを特徴とする請求項1乃至4のいずれか一項に記載のゲル化率70%以上100%未満のハイドロゲル徐放性錠剤の製造法。
JP2000217325A 1992-09-18 2000-07-18 ハイドロゲル徐放性製剤 Expired - Lifetime JP3598049B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000217325A JP3598049B2 (ja) 1992-09-18 2000-07-18 ハイドロゲル徐放性製剤

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP27497992 1992-09-18
JP5-165263 1993-06-08
JP4-274979 1993-06-08
JP16526393 1993-06-08
JP2000217325A JP3598049B2 (ja) 1992-09-18 2000-07-18 ハイドロゲル徐放性製剤

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP06507964A Division JP3140465B2 (ja) 1992-09-18 1993-09-10 ハイドロゲル徐放性製剤

Publications (2)

Publication Number Publication Date
JP2001010951A JP2001010951A (ja) 2001-01-16
JP3598049B2 true JP3598049B2 (ja) 2004-12-08

Family

ID=33544978

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000217325A Expired - Lifetime JP3598049B2 (ja) 1992-09-18 2000-07-18 ハイドロゲル徐放性製剤

Country Status (1)

Country Link
JP (1) JP3598049B2 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2341922T3 (es) 2001-11-01 2010-06-29 Spectrum Pharmaceuticals, Inc. Composiciones medicas para el tratamiento intravesical de cancer de vejiga.
US8563592B2 (en) 2001-11-01 2013-10-22 Spectrum Pharmaceuticals, Inc. Bladder cancer treatment and methods
JP2005104914A (ja) * 2003-09-30 2005-04-21 Kyowa Yakuhin Kogyo Kk 塩基性薬剤含有製剤
AU2005325930B2 (en) * 2005-01-27 2012-01-19 Alembic Limited Extended release formulation of Levetiracetam
CN101277699B (zh) * 2005-08-23 2011-01-12 日产化学工业株式会社 缓释制剂
CN101304764B (zh) 2005-11-11 2012-12-05 旭化成化学株式会社 控释固体制剂
JP6832195B2 (ja) * 2016-03-03 2021-02-24 ライオン株式会社 経口液剤及び経口固形剤

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5649314A (en) * 1979-07-05 1981-05-02 Yamanouchi Pharmaceut Co Ltd Lasting pharmaceutical composition having prolonged action and its preparation
SE8601624D0 (sv) * 1986-04-11 1986-04-11 Haessle Ab New pharmaceutical preparations
DE3776269D1 (de) * 1986-11-03 1992-03-05 Schering Corp Labetalol tablette mit verzoegerter wirkstoffabgabe.
JPH0283316A (ja) * 1988-09-20 1990-03-23 Shin Etsu Chem Co Ltd 徐放性錠剤
NO900427L (no) * 1989-01-31 1990-08-01 Int Pharma Agentur Erosjonsregulert frigjoeringssystem for aktive stoffer og en fremgangsmaate for deres fremstilling.
SE9003904D0 (sv) * 1990-12-07 1990-12-07 Astra Ab Method for the manufacture of a pharmaceutical dosage form
JPH05262767A (ja) * 1992-03-19 1993-10-12 Takeda Chem Ind Ltd 持続性製剤
DE4226753A1 (de) * 1992-08-13 1994-02-17 Basf Ag Wirkstoffe enthaltende Zubereitungen in Form fester Teilchen

Also Published As

Publication number Publication date
JP2001010951A (ja) 2001-01-16

Similar Documents

Publication Publication Date Title
JP3140465B2 (ja) ハイドロゲル徐放性製剤
US6419954B1 (en) Tablets and methods for modified release of hydrophilic and other active agents
US6893661B1 (en) Controlled release formulations using intelligent polymers
EP1205190B1 (en) Stable medicinal compositions for oral use using ferric oxides
US20140314847A1 (en) Controlled release pharmaceutical compositions with improved bioavailabililty
US20060088594A1 (en) Highly compressible controlled delivery compositions of metformin
JP4894958B2 (ja) 水溶性薬物徐放化技術
WO2010057036A2 (en) Solid composition for controlled release of ionizable active agents with poor aqueous solubility at low ph and methods of use thereof
US7364755B2 (en) Modified calcium phosphate excipient
JP3598049B2 (ja) ハイドロゲル徐放性製剤
US20050042289A1 (en) Tablets and methods for modified release of hydrophylic and other active agents
TW393320B (en) An oral hydrogel control release pharmaceutical tablet
MX2011005128A (es) Composicion solida para liberacion controlada de agentes activos ionizables con solubilidad acuosa deficiente a ph bajo y sus metodos de uso.

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040309

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040315

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040326

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040616

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040714

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040907

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040910

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080917

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080917

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090917

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090917

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100917

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100917

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110917

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120917

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120917

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120917

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120917

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130917

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130917

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130917

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term