JP3597952B2 - Wiring board and method of manufacturing the same - Google Patents

Wiring board and method of manufacturing the same Download PDF

Info

Publication number
JP3597952B2
JP3597952B2 JP20156496A JP20156496A JP3597952B2 JP 3597952 B2 JP3597952 B2 JP 3597952B2 JP 20156496 A JP20156496 A JP 20156496A JP 20156496 A JP20156496 A JP 20156496A JP 3597952 B2 JP3597952 B2 JP 3597952B2
Authority
JP
Japan
Prior art keywords
layer
wiring
insulating layer
organic resin
conductor composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP20156496A
Other languages
Japanese (ja)
Other versions
JPH1051089A (en
Inventor
桂 林
祐二 飯野
周一 立野
理一 笹森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP20156496A priority Critical patent/JP3597952B2/en
Publication of JPH1051089A publication Critical patent/JPH1051089A/en
Application granted granted Critical
Publication of JP3597952B2 publication Critical patent/JP3597952B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Manufacturing Of Printed Wiring (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、有機樹脂を含む絶縁層の表面に銅などの低抵抗金属粒子を主体とする配線層を形成してなる配線基板とその製造方法に関するものである。
【0002】
【従来技術】
従来より、配線基板、例えば、半導体素子を収納するパッケージに使用される多層配線基板として、アルミナなどの絶縁層とW,Moなどの高融点金属からなる配線層とを具備した多層セラミック配線基板が多用されているが、このようなセラミック多層配線基板は、硬くて脆い性質を有することから、製造工程または搬送工程において、セラミックスの欠けや割れ等が発生しやすく、また、焼結前のグリーンシートにメタライズインクを印刷して、印刷後のシートを積層して焼結する場合、焼成により得られる基板に反り等の変形や寸法のばらつき等が発生しやすいという問題があり、回路基板の超高密度化やフリップチップ等のような基板の平坦度の厳しい要求に対して、十分に対応できないという問題があった。
【0003】
そこで、最近では、有機樹脂を含む絶縁層表面に銅箔を接着した後、これをエッチングして微細な回路を形成した基板や、銅などの金属粉末を含むインクを絶縁シートに印刷して配線層を形成した後、これを積層し、あるいは積層後に、所望位置にマイクロドリルやパンチング等によりビア用の孔明けを行い、そのビア内壁にメッキ法により金属を付着させて配線層を接続して多層化することが行われている。また、絶縁層としては、その強度を高めるために、有機樹脂に対して、球状あるいは繊維状の無機質フィラーを分散させた基板も提案されており、これらの複合材料からなる絶縁層上に多数の半導体素子を搭載したマルチチップモジュール(MCM)等への適用も検討されている。
【0004】
【発明が解決しようとする課題】
しかしながら、プリント基板の配線層の形成技術において、銅粉末等より作成されたインクで配線パターンを印刷した場合、インク中には配線パターンの印刷性や接着剤として有機成分を含むために銅箔や銅メッキによって配線層を形成した場合に比較して配線層の電気抵抗が高いという問題がある。電気抵抗を下げるには、配線層中の樹脂量を低減して金属含有量を多くすることが考えられるが、樹脂分が少なくなると、配線層と絶縁層との密着強度が大きく低下し、その配線層に電子部品を半田実装した場合に信頼性試験において半田部が剥がれる等の問題がある。
【0005】
【課題を解決するための手段】
本発明者らは、上記の課題について検討を重ねた結果、絶縁層と低抵抗金属粒子を含有する配線層との接着構造において、例えば絶縁層中に含まれる有機樹脂を低抵抗金属粒子を含む配線層側に侵入させて、配線層の絶縁層側に有機樹脂と導体組成物からなる混合層を所定の厚みで形成することにより配線層の低抵抗化と絶縁層との密着強度の向上を同時に満たすことができる事を見出し本発明に至った。
【0006】
即ち、本発明の配線基板は、少なくとも有機樹脂を含む絶縁層表面に、低抵抗金属粒子を主体とする導体組成物を含む配線層を形成して成る配線基板において、前記配線層が前記絶縁層側から前記導体組成物と前記絶縁層中の有機樹脂とからなる第1層と、前記導体組成物からなる第2層とを具備し、前記第1層の厚みが前記低抵抗金属粒子の平均粒径の0.3倍以上であり、且つ前記第2層よりも薄いことを特徴とするものである。
【0007】
また、かかる配線基板の製造方法として、少なくとも有機樹脂を含み、先端が半球状で直径300μmの針を100gfで押し込んだ時の侵入深さが10〜100μmの絶縁層に、低抵抗金属粒子を主体とする導体組成物を印刷して配線層を形成した後、圧力を印加して前記絶縁層中の有機樹脂を前記配線層に侵入させ、前記絶縁層側から前記導体組成物と前記絶縁層中の有機樹脂とからなる第1層と、前記導体組成物からなる第2層とを具備し、前記第1層の厚みが前記低抵抗金属粒子の平均粒径の0.3倍以上であり且つ前記第2層よりも薄い配線層を形成することを特徴とするものである。
【0008】
【発明の実施の形態】
本発明の配線基板おいて、絶縁層は、少なくとも有機樹脂を含む絶縁材料からなるもので、有機樹脂としては例えば、PPE(ポリフェニレンエーテル)、BTレジン(ビスマレイミドトリアジン)、エポキシ樹脂、ポリイミド樹脂、フッ素樹脂、フェノール樹脂等の熱硬化性樹脂や熱可塑性樹脂が使用できるが、とりわけ原料として室温で液体の熱硬化性樹脂であることが望ましい。
【0009】
また、上記の絶縁層中には、絶縁層あるいは配線基板全体の強度を高めるために、有機樹脂に対して無機質フィラーを複合化させるのが望ましい。有機樹脂と複合化される無機質フィラーとしては、SiO、Al、ZrO、TiO、AlN、SiC、BaTiO、SrTiO、ゼオライト、CaTiO、ほう酸アルミニウム等の公知の材料が使用できる。フィラーの形状は平均粒径が20μm以下、特に10μm以下、最適には7μm以下の略球形状の粉末の他、平均アスペクト比が2以上、特に5以上の繊維状のものや平板状のもの、さらには、織布物も使用できる。なお、有機樹脂と無機質フィラーとの複合材料においては、有機樹脂:無機質フィラーとは、体積比率で15:85〜50:50の比率で複合化されるのが適当である。また、配線層は、低抵抗金属粒子、具体的には銅、アルミニウム、金、銀の群から選ばれる少なくとも1種、または2種以上の合金を主体とする導体組成物からなり、低抵抗金属としては、特に、銅または銅を含む合金が最も望ましい。また、場合によっては、導体組成物として回路の抵抗調整のためにNi−Cr合金などの高抵抗の金属を混合、または合金化してもよい。さらには、配線層の低抵抗化のために、前記低抵抗金属よりも低融点の金属、例えば、半田、錫などの低融点金属を導体組成物中の金属成分中にて5〜20重量%の割合で含むことが望ましい。
【0010】
配線層を構成する導体組成物中の低抵抗金属は平均粒径5μm以下の粉末が好適に用いられ、最適には3μm以下がよい。また、金属粒子として銀をコーティングした銅粉末や銅と銀との合金が使用できる。この様な銀を含む粒子を用いると金属粒子の酸化が抑制され取扱が容易になる。また、金属成分として低抵抗金属粒子の他に、半田、錫など低融点の金属を混合することにより、配線層の抵抗をさらに下げることができる。
【0011】
本発明によれば、図1に示すように、絶縁層1の表面に形成された配線層が2、導体組成物3と絶縁層1中の有機樹脂4とからなる第1層5と、導体組成物3からなる第2層6とを具備するものである。ここで、第1層5は、幾分かの導電路を形成すると同時に第2層6と絶縁層1との密着性を向上させる役目を担うものであり、第2層は、低抵抗の導体組成物による導体路として、電気信号の伝達等の役目を担うものである。
【0012】
上記第1層は、その厚みが、導体組成物中の低抵抗金属粒子の平均粒径の0.3倍以上であることが重要である。この厚みが、0.3倍未満では、配線層全体としての絶縁層への密着強度が弱く、配線層に実装された電子部品の実装の信頼性が低下する。望ましくは、0.5倍以上、2倍以下である。
【0013】
また、この第1層の厚みは、第2層の厚みよりも小さいことが重要であり、第1層の厚みが第2層よりも厚いと、配線層全体としての電気抵抗が高くなり、配線層として望ましくない。
【0014】
さらに、上記第2層中の金属成分量は、導体路を形成するために60体積%以上であることが望ましく、一方、第1層中の金属成分量は、絶縁層中の有機樹脂成分の侵入によって第2層よりも少なくなる結果、45〜60体積%となる。
【0015】
上記のような配線層の層構成は、特に配線基板の表層に形成される配線層に対して施すことが望ましい。これは、多層配線基板において絶縁層内部に形成された配線層は、絶縁層内に挟持されているために、絶縁層との密着不良を生じることが少ないが、表層に形成された配線層では、特に密着不良が発生しやすく、密着不良によって電子部品の実装の信頼性を大きく損ねてしまうためである。
【0016】
具体的に、上記配線基板における配線層の全体厚みは、10〜20μmであることが望ましく、特に前記第1層は1〜5μm、第2層は、5〜10μmで且つ前記条件を満足することが望ましい。
【0017】
上記のように、配線層として、絶縁層側に絶縁層中に含まれる有機樹脂と導体組成物からなる第1層を形成することにより、第1層中の有機樹脂分がいわゆるアンカー的作用をなすことにより配線層と絶縁層との密着性を高めることができる。その結果、第1層の表面に形成される第2層として導体組成物の含有量を高めることができる結果、配線層としての低抵抗化も実現できる。
【0018】
次に、本発明の配線基板の製造方法について具体的に説明する。少なくとも有機樹脂を含む絶縁層の表面に配線層が形成された配線基板は、絶縁層の表面に、低抵抗金属粒子を主体とする導体組成物を含むインクをスクリーン印刷、グラビア印刷などの印刷法によって配線パターン状に印刷することによって形成される。このインクには、導体組成物と、印刷性を高めるために、セルロース、ポリエチレンオキサイド、ポリエチレングリコールなどの有機樹脂0.2〜5重量%、溶剤30重量%以下が配合される。
【0019】
本発明によれば、前述したように、配線層を前記第1層と第2層によって構成するには、まず、絶縁層の表面に、導体組成物と絶縁層中の有機樹脂成分とを含むインクを第1層として印刷し、次に、導体組成物を含むインクを第1層の表面に印刷することにより形成できる。ただし、かかる方法では、第1層の印刷と第2層の印刷位置を高精度に整合させることが必要がある。
【0020】
そこで、好適な方法としては、インクを印刷する前の絶縁層として、針侵入硬度が1〜10mmの軟質な絶縁層を用いる。このような針侵入硬度を有する絶縁層としては、基板中に含まれる有機樹脂がBステージ状態、即ち、樹脂が半硬化した状態、および/または0.5〜5重量%の割合で有機溶剤量を調整することによって針侵入硬度を上記の範囲に調整されたものであり、ドクターブレード法、カレンダーロール法、圧延法などの周知のシート成形法によりシート状に成形したものである。
【0021】
なお、上記針侵入硬度とは、先端が半球状で直径300μmの針を荷重100gfで押し込んだ時の侵入深さである。
【0022】
そして、上記のような針侵入硬度が10μmの絶縁層に前記導体組成物を含むインクを印刷した後、所定の圧力を印加することにより絶縁層中の有機樹脂分を配線層に侵入させることができる。
【0023】
この時、絶縁層の針侵入硬度が10μmより小さいと、絶縁層中の有機樹脂が配線層に侵入できず、前述したような有機樹脂と導体組成物との複合体からなる第1層の配線層が形成されず、配線層の絶縁層との密着強度が向上しない。また針侵入硬度が100μmを越えると、絶縁層中の有機樹脂の配線層への侵入が大きくなり、配線層における第1層の厚みが第2層の厚みよりも大きくなってしまい、配線層の電気抵抗が増大してしまうという問題がある。
【0024】
印加する圧力は一般に高いほど導体層が緻密になり電気抵抗が低下するが余り高いと樹脂が導体層の中心部まで侵入し電気抵抗が増大する傾向がある。最適な圧力は絶縁層の針侵入硬度によって変化するが、20〜300kgf/cmの範囲で印加して樹脂の基板への侵入量を上述のように制御すればよい。
【0025】
また、インク中の導体組成物中に、融点が250℃以下の半田等の低融点金属を含む場合には、上記加圧処理後、または加圧処理時に低融点金属が軟化または溶融する温度で加熱処理を行うことにより、低抵抗金属粒子間の導電性接着剤として作用し配線層の抵抗を下げることができる。
【0026】
また、インク中に配合する有機樹脂として低温での分解可能なセルロースなどの樹脂を配合すれば、加圧処理時、または加圧処理後に樹脂が分解する温度で加熱処理することによって配線層のうち第2層中の樹脂分の含有量を低減させ、第2層の低抵抗化をさらに図ることができる。この加熱温度は、200〜300℃が最適である。
【0027】
このようにして、絶縁層中の有機樹脂分の配線層への侵入処理を行った後、この基板を絶縁層中の有機樹脂が硬化する温度に加熱処理して完全に硬化することより、高硬度の絶縁層の表面に配線層が強固な接着強度で形成された配線基板を作製することができる。また、この時の加熱時間等を調整して上記のインク中の樹脂分の分解や低融点金属の融解による低抵抗化を図ることもできる。
【0028】
また、上記の配線基板による多層化を行う場合には、上記と同様にして針侵入硬度が1〜10mmの絶縁層の表面に配線層を形成した後、所望によっては、スルーホールやビアホールなどを形成しホール内に導体組成物を充填した後、それらを複数層積層し、場合によっては層間に接着材を介して密着させた後に樹脂の硬化温度に加熱処理して完全硬化処理を行うことにより多層配線基板を作製することができる。
【0029】
この多層配線基板においては、基板の最表面に形成された配線層のみを図1に示したような第1層や第2層を具備する配線層により構成すればよく、その場合には、最表層の絶縁層と配線層間において前述したような処理を施して、他の絶縁層と積層処理してもよい。
【0030】
【実施例】
配線層を形成する導体組成物として、平均粒径が1〜6μmの銅粉やAgを表面に被覆した銅粉を用い、さらには低融点金属として鉛を含まないSn−Ag系半田や、さらにはセルロース及び溶剤を用いて、表1に示す導体組成物を調合した。
【0031】
【表1】

Figure 0003597952
【0032】
一方、絶縁層として、有機樹脂としてBTレジン樹脂を用い、さらに無機フィラーとして球状シリカを用い、これらを有機樹脂:無機フィラーが体積比で30〜70となる組成の絶縁層を作製した。なお、この絶縁層には、針侵入硬度調整のために、溶剤としてメチルエチルケトンを0.5〜5重量%の割合で添加し、のちの加圧処理時の針侵入硬度が表2の基板を作製した。
【0033】
そして、絶縁層および配線層形成用の組成物として表1のA〜Dの組成物を用いてスクリーン印刷法によって印刷を行った。その後、表2の条件で圧力を印加して絶縁層中の有機樹脂分を配線層中に侵入させた。
【0034】
得られた基板の断面を観察して樹脂分が侵入した第1層の厚みおよび第2層の厚みを測定し、第1層については配線層中の低抵抗金属粒子の平均粒径に対する比率を算出し表2に示した。そして、配線層については比抵抗を4端子法により測定した。さらに、配線層に対して金属金具を半田付けし、金具を垂直に引張り配線層が剥がれた時の応力を表2に示した。
【0035】
【表2】
Figure 0003597952
【0036】
表1および表2の結果から明らかなように、試料No.1、14の配線基板では、絶縁層の針侵入硬度が10μmよりも小さく、第1層の厚みが低抵抗金属粒子の平均粒径に対して0.3倍未満となり配線層の密着性が低いものであった。、また、また針侵入硬度が100μmよりも大きいと第1層の厚みが第2層よりも厚くなり(試料No.4、5、9、10、18、21)、配線層の比抵抗が大きくなった。
【0037】
これらの比較例に対して、本発明の配線基板は、第1層の厚みを低抵抗金属粒子の平均粒径の0.3倍以上で、第2層よりも薄くすることにより比抵抗1×10−5Ω−cm以上、密着強度1.0kgf/mm以上の高い導電性と高い密着性が達成された。
【0038】
【発明の効果】
以上詳述した通り、本発明の配線基板によれば、配線層と絶縁層との間に所定の厚みで導体組成物と絶縁層中の有機樹脂とからなる中間層を形成することにより、配線層の絶縁層への密着強度を向上させ、配線層への電子部品実装時の接続信頼性を向上させるとともに、配線層としての電気抵抗を低下させることを可能にし、チップ部品の実装に適した高精度な配線基板を提供することができる。
【図面の簡単な説明】
【図1】本発明の配線基板における配線層の構造を説明するための概略図である。
【符号の説明】
1 絶縁層
2 配線層
3 導体組成物
4 有機樹脂
5 第1層
6 第2層[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a wiring board in which a wiring layer mainly composed of low-resistance metal particles such as copper is formed on a surface of an insulating layer containing an organic resin, and a method for manufacturing the same.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, as a multilayer wiring board used for a wiring board, for example, a package for housing a semiconductor element, a multilayer ceramic wiring board including an insulating layer such as alumina and a wiring layer made of a high melting point metal such as W or Mo has been known. Although often used, such ceramic multilayer wiring boards are hard and brittle, so that chipping or cracking of the ceramics is liable to occur in a manufacturing process or a transporting process, and a green sheet before sintering. When metallized ink is printed on the substrate and the printed sheets are laminated and sintered, there is a problem that the substrate obtained by the firing tends to be deformed such as warpage or dimensional variation, and the circuit board is extremely high in height. There is a problem that it is not possible to sufficiently cope with strict requirements for flatness of a substrate such as density increase and flip chip.
[0003]
Therefore, recently, a copper foil is bonded to the surface of an insulating layer containing an organic resin, and then etched to form a fine circuit, or an ink containing a metal powder such as copper is printed on an insulating sheet to form a wiring. After forming a layer, this is laminated, or after lamination, a hole is drilled for a via at a desired position by microdrilling or punching, and a metal is attached to the inner wall of the via by a plating method to connect a wiring layer. Multilayering has been performed. Further, as an insulating layer, a substrate in which a spherical or fibrous inorganic filler is dispersed with respect to an organic resin in order to enhance the strength has been proposed, and a large number of insulating substrates made of these composite materials are provided on the insulating layer. Application to a multi-chip module (MCM) on which a semiconductor element is mounted is also being studied.
[0004]
[Problems to be solved by the invention]
However, in the technique of forming a wiring layer on a printed circuit board, when a wiring pattern is printed with an ink made of copper powder or the like, copper foil or the like is included in the ink because the ink contains an organic component as a printability of the wiring pattern and an adhesive. There is a problem in that the electrical resistance of the wiring layer is higher than when the wiring layer is formed by copper plating. In order to lower the electric resistance, it is conceivable to increase the metal content by reducing the amount of resin in the wiring layer.However, when the resin content is reduced, the adhesion strength between the wiring layer and the insulating layer is greatly reduced, and the When an electronic component is solder-mounted on a wiring layer, there is a problem that a solder portion is peeled off in a reliability test.
[0005]
[Means for Solving the Problems]
The present inventors have repeatedly studied the above problems, and found that, in the bonding structure between the insulating layer and the wiring layer containing the low-resistance metal particles , for example, the organic resin contained in the insulating layer contains the low-resistance metal particles . By penetrating into the wiring layer side and forming a mixed layer of an organic resin and a conductor composition with a predetermined thickness on the insulating layer side of the wiring layer, the resistance of the wiring layer is reduced and the adhesion strength with the insulating layer is improved. The inventors have found that they can be satisfied at the same time, and have reached the present invention.
[0006]
That is, the wiring board according to the present invention is a wiring board formed by forming a wiring layer containing a conductor composition mainly composed of low-resistance metal particles on at least the surface of an insulating layer containing an organic resin, wherein the wiring layer is formed of the insulating layer. A first layer composed of the conductor composition and the organic resin in the insulating layer, and a second layer composed of the conductor composition, wherein the first layer has an average thickness of the low-resistance metal particles . It is characterized by being 0.3 times or more the particle size and thinner than the second layer.
[0007]
In addition, as a method for manufacturing such a wiring board, low-resistance metal particles are mainly contained in an insulating layer containing at least an organic resin, having a hemispherical tip and a penetration of 10 to 100 μm when a needle having a diameter of 300 μm is pushed in at 100 gf. After forming a wiring layer by printing a conductor composition to be used, pressure is applied to cause the organic resin in the insulating layer to penetrate into the wiring layer, and the conductor composition and the insulating layer in the insulating layer from the insulating layer side. And a second layer made of the conductor composition, wherein the thickness of the first layer is at least 0.3 times the average particle size of the low-resistance metal particles, and A wiring layer thinner than the second layer is formed.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
In the wiring board of the present invention, the insulating layer is made of an insulating material containing at least an organic resin. Examples of the organic resin include PPE (polyphenylene ether), BT resin (bismaleimide triazine), epoxy resin, polyimide resin, A thermosetting resin such as a fluororesin or a phenol resin or a thermoplastic resin can be used, and a thermosetting resin that is liquid at room temperature is particularly desirable as a raw material.
[0009]
In addition, it is desirable that an inorganic filler is combined with an organic resin in the insulating layer in order to increase the strength of the insulating layer or the entire wiring substrate. Known materials such as SiO 2 , Al 2 O 3 , ZrO 2 , TiO 2 , AlN, SiC, BaTiO 3 , SrTiO 3 , zeolite, CaTiO 3 , and aluminum borate are used as the inorganic filler to be combined with the organic resin. it can. The filler has an average particle diameter of 20 μm or less, particularly 10 μm or less, and most preferably 7 μm or less, in addition to a generally spherical powder, an average aspect ratio of 2 or more, particularly 5 or more, fibrous or flat. Furthermore, a woven fabric can also be used. In the composite material of the organic resin and the inorganic filler, it is appropriate that the organic resin and the inorganic filler are compounded in a volume ratio of 15:85 to 50:50. The wiring layer is made of a low-resistance metal particle , specifically, a conductor composition mainly composed of at least one alloy selected from the group consisting of copper, aluminum, gold, and silver, or two or more alloys. Particularly, copper or an alloy containing copper is most desirable. In some cases, a high-resistance metal such as a Ni—Cr alloy may be mixed or alloyed as a conductor composition for adjusting the resistance of the circuit. Further, in order to lower the resistance of the wiring layer, a metal having a lower melting point than the low-resistance metal, for example, a low-melting metal such as solder or tin is used in an amount of 5 to 20% by weight in the metal component in the conductor composition. Is desirably included in the ratio of
[0010]
As the low-resistance metal in the conductor composition constituting the wiring layer, a powder having an average particle diameter of 5 μm or less is suitably used, and optimally 3 μm or less. Further, copper powder coated with silver or an alloy of copper and silver can be used as the metal particles. When such particles containing silver are used, the oxidation of the metal particles is suppressed and the handling becomes easy. Further, by mixing a low melting point metal such as solder or tin in addition to the low resistance metal particles as the metal component, the resistance of the wiring layer can be further reduced.
[0011]
According to the present invention, as shown in FIG. 1, the wiring layer formed on the surface of the insulating layer 1 is composed of the second layer 5 composed of the conductor composition 3 and the organic resin 4 in the insulating layer 1. And a second layer 6 made of the composition 3. Here, the first layer 5 has a role of improving the adhesion between the second layer 6 and the insulating layer 1 at the same time as forming some conductive paths, and the second layer is formed of a low-resistance conductor. The conductor of the composition plays a role of transmitting an electric signal and the like.
[0012]
It is important that the first layer has a thickness of at least 0.3 times the average particle size of the low-resistance metal particles in the conductor composition. If the thickness is less than 0.3 times, the adhesion strength of the entire wiring layer to the insulating layer is weak, and the reliability of mounting electronic components mounted on the wiring layer is reduced. Desirably, it is 0.5 times or more and 2 times or less.
[0013]
It is important that the thickness of the first layer is smaller than the thickness of the second layer. If the thickness of the first layer is larger than the second layer, the electric resistance of the entire wiring layer increases, and Not desirable as a layer.
[0014]
Further, the amount of the metal component in the second layer is desirably 60% by volume or more in order to form a conductor path, while the amount of the metal component in the first layer is the amount of the organic resin component in the insulating layer. The penetration results in a lower volume than the second layer, resulting in 45 to 60% by volume.
[0015]
It is desirable that the above-described layer configuration of the wiring layer is applied particularly to the wiring layer formed on the surface layer of the wiring board. This is because the wiring layer formed inside the insulating layer in the multilayer wiring board is less likely to cause poor adhesion with the insulating layer because it is sandwiched in the insulating layer, but the wiring layer formed on the surface layer does not. In particular, poor adhesion is likely to occur, and the poor adhesion greatly impairs the reliability of electronic component mounting.
[0016]
Specifically, the total thickness of the wiring layers in the wiring board is preferably 10 to 20 μm, and in particular, the first layer is 1 to 5 μm, the second layer is 5 to 10 μm, and the above conditions are satisfied. Is desirable.
[0017]
As described above, by forming the first layer of the organic resin and the conductor composition contained in the insulating layer on the insulating layer side as the wiring layer, the organic resin component in the first layer has a so-called anchor-like effect. By doing so, the adhesion between the wiring layer and the insulating layer can be increased. As a result, the content of the conductor composition can be increased as the second layer formed on the surface of the first layer, and as a result, the resistance of the wiring layer can be reduced.
[0018]
Next, the method for manufacturing a wiring board of the present invention will be specifically described. A wiring substrate in which a wiring layer is formed on the surface of an insulating layer containing at least an organic resin is formed on a surface of the insulating layer by a printing method such as screen printing or gravure printing of an ink containing a conductor composition mainly composed of low-resistance metal particles. By printing in a wiring pattern. The ink is mixed with a conductor composition and 0.2 to 5% by weight of an organic resin such as cellulose, polyethylene oxide or polyethylene glycol and 30% by weight or less of a solvent in order to enhance printability.
[0019]
According to the present invention, as described above, in order to configure the wiring layer by the first layer and the second layer, first, the surface of the insulating layer includes the conductor composition and the organic resin component in the insulating layer. It can be formed by printing the ink as the first layer and then printing the ink containing the conductor composition on the surface of the first layer. However, in such a method, it is necessary to match the printing position of the first layer and the printing position of the second layer with high accuracy.
[0020]
Therefore, as a preferable method, a soft insulating layer having a needle penetration hardness of 1 to 10 mm is used as the insulating layer before printing the ink. As the insulating layer having such a needle penetration hardness, the organic resin contained in the substrate is in the B-stage state, that is, the resin is in a semi-cured state, and / or the amount of the organic solvent is 0.5 to 5% by weight. The needle penetration hardness is adjusted to the above range by adjusting the thickness of the needle, and is formed into a sheet by a known sheet forming method such as a doctor blade method, a calender roll method, and a rolling method.
[0021]
The needle penetration hardness is a penetration depth when a needle having a hemispherical tip and a diameter of 300 μm is pushed in with a load of 100 gf.
[0022]
After printing the ink containing the conductor composition on the insulating layer having a needle penetration hardness of 10 μm as described above, applying a predetermined pressure may cause the organic resin component in the insulating layer to enter the wiring layer. it can.
[0023]
At this time, if the needle penetration hardness of the insulating layer is smaller than 10 μm, the organic resin in the insulating layer cannot penetrate into the wiring layer, and the first layer wiring made of the composite of the organic resin and the conductor composition as described above. No layer is formed, and the adhesion strength between the wiring layer and the insulating layer is not improved. If the needle penetration hardness exceeds 100 μm, the penetration of the organic resin in the insulating layer into the wiring layer becomes large, and the thickness of the first layer in the wiring layer becomes larger than the thickness of the second layer. There is a problem that electric resistance increases.
[0024]
In general, the higher the applied pressure, the denser the conductor layer and the lower the electric resistance. However, if the applied pressure is too high, the resin tends to penetrate to the center of the conductor layer and the electric resistance tends to increase. The optimum pressure varies depending on the needle penetration hardness of the insulating layer, but may be applied in the range of 20 to 300 kgf / cm 2 to control the amount of resin entering the substrate as described above.
[0025]
When the conductor composition in the ink contains a low melting point metal such as a solder having a melting point of 250 ° C. or less, the temperature is such that the low melting point metal is softened or melted after the above-mentioned pressure treatment or during the pressure treatment. By performing the heat treatment, it acts as a conductive adhesive between the low-resistance metal particles and can reduce the resistance of the wiring layer.
[0026]
In addition, if a resin such as cellulose that can be decomposed at a low temperature is compounded as an organic resin to be mixed in the ink, the heat treatment is performed at a temperature at which the resin is decomposed at the time of pressure treatment or after the pressure treatment. The content of the resin component in the second layer can be reduced, and the resistance of the second layer can be further reduced. The optimal heating temperature is 200 to 300 ° C.
[0027]
In this way, after the process of infiltrating the organic resin in the insulating layer into the wiring layer is performed, the substrate is heated to a temperature at which the organic resin in the insulating layer is hardened, whereby the substrate is completely hardened. A wiring board in which a wiring layer is formed with a strong adhesive strength on a surface of a hard insulating layer can be manufactured. In addition, by adjusting the heating time and the like at this time, it is also possible to reduce the resistance by decomposing the resin component in the ink and melting the low melting point metal.
[0028]
Further, in the case of performing multi-layering using the above-described wiring board, after forming a wiring layer on the surface of an insulating layer having a needle penetration hardness of 1 to 10 mm in the same manner as described above, if necessary, a through hole or a via hole is formed. After filling and filling the conductive composition in the hole, by laminating a plurality of layers, in some cases, by heating the resin to the curing temperature and then completely cured by closely adhering between the layers via an adhesive material, A multilayer wiring board can be manufactured.
[0029]
In this multilayer wiring substrate, only the wiring layer formed on the outermost surface of the substrate may be constituted by the wiring layer having the first layer and the second layer as shown in FIG. The above-described processing may be performed between the surface insulating layer and the wiring layer, and may be stacked with another insulating layer.
[0030]
【Example】
As the conductor composition for forming the wiring layer, copper powder having an average particle diameter of 1 to 6 μm or copper powder coated on the surface with Ag is used, and further, Sn-Ag solder containing no lead as a low melting point metal, Prepared a conductor composition shown in Table 1 using cellulose and a solvent.
[0031]
[Table 1]
Figure 0003597952
[0032]
On the other hand, as the insulating layer, a BT resin resin was used as the organic resin, and spherical silica was used as the inorganic filler, and an insulating layer having a composition in which the volume ratio of the organic resin and the inorganic filler was 30 to 70 was prepared. In addition, in order to adjust the needle penetration hardness, methyl ethyl ketone was added as a solvent at a ratio of 0.5 to 5% by weight to this insulating layer, and the needle penetration hardness at the time of the subsequent pressure treatment was used to prepare a substrate shown in Table 2. did.
[0033]
Then, printing was performed by a screen printing method using the compositions A to D in Table 1 as compositions for forming the insulating layer and the wiring layer. Thereafter, pressure was applied under the conditions shown in Table 2 to cause the organic resin component in the insulating layer to penetrate into the wiring layer.
[0034]
By observing the cross section of the obtained substrate, the thickness of the first layer and the thickness of the second layer into which the resin component has penetrated were measured, and the ratio of the first layer to the average particle diameter of the low-resistance metal particles in the wiring layer was determined. The calculated values are shown in Table 2. The specific resistance of the wiring layer was measured by a four-terminal method. Further, Table 2 shows the stress when the metal fitting was soldered to the wiring layer, the fitting was pulled vertically, and the wiring layer was peeled off.
[0035]
[Table 2]
Figure 0003597952
[0036]
As is clear from the results of Tables 1 and 2, Sample No. In the wiring substrates 1 and 14, the needle penetration hardness of the insulating layer is smaller than 10 μm, and the thickness of the first layer is less than 0.3 times the average particle diameter of the low-resistance metal particles, and the adhesion of the wiring layer is low. Was something. Further, when the needle penetration hardness is larger than 100 μm, the thickness of the first layer is larger than that of the second layer (Sample Nos. 4, 5, 9, 10, 18, 21), and the specific resistance of the wiring layer is large. became.
[0037]
In contrast to these comparative examples, the wiring board of the present invention has a specific resistance of 1 × by making the thickness of the first layer 0.3 times or more the average particle diameter of the low-resistance metal particles and making it thinner than the second layer. High conductivity and high adhesion of 10 −5 Ω-cm or more and adhesion strength of 1.0 kgf / mm 2 or more were achieved.
[0038]
【The invention's effect】
As described in detail above, according to the wiring board of the present invention, by forming an intermediate layer made of a conductor composition and an organic resin in the insulating layer with a predetermined thickness between the wiring layer and the insulating layer, Suitable for mounting chip components by improving the adhesion strength of the layer to the insulating layer, improving the connection reliability when mounting electronic components on the wiring layer, and lowering the electrical resistance as the wiring layer A highly accurate wiring board can be provided.
[Brief description of the drawings]
FIG. 1 is a schematic diagram for explaining a structure of a wiring layer in a wiring board of the present invention.
[Explanation of symbols]
REFERENCE SIGNS LIST 1 insulating layer 2 wiring layer 3 conductor composition 4 organic resin 5 first layer 6 second layer

Claims (2)

少なくとも有機樹脂を含む絶縁層表面に、低抵抗金属粒子を主体とする導体組成物を含む配線層を形成して成る配線基板において、前記配線層が前記絶縁層側から前記導体組成物と前記絶縁層中の有機樹脂とからなる第1層と、前記導体組成物からなる第2層とを具備し,前記第1層の厚みが前記低抵抗金属粒子の平均粒径の0.3倍以上であり、前記第2層よりも薄いことを特徴とする配線基板。In a wiring board formed by forming a wiring layer containing a conductor composition mainly composed of low-resistance metal particles on at least the surface of an insulation layer containing an organic resin, the wiring layer is insulated from the conductor composition from the insulation layer side. A first layer made of an organic resin in the layer, and a second layer made of the conductor composition, wherein the thickness of the first layer is 0.3 times or more the average particle size of the low-resistance metal particles. And a wiring board characterized by being thinner than the second layer. 少なくとも有機樹脂を含み、先端が半球状で直径300μmの針を100gfで押し込んだ時の侵入深さが10〜100μmの絶縁層に、低抵抗金属粒子を主体とする導体組成物を印刷して配線層を形成した後、圧力を印加して前記絶縁層中の有機樹脂を前記配線層に侵入させ、前記絶縁層側から前記導体組成物と前記絶縁層中の有機樹脂とからなる第1層と、前記導体組成物からなる第2層とを具備し、前記第1層の厚みが前記低抵抗金属粒子の平均粒径の0.3倍以上であり且つ前記第2層よりも薄い配線層を形成したことを特徴とする配線基板の製造方法。A conductor composition mainly composed of low-resistance metal particles is printed on an insulating layer containing at least an organic resin and having a hemispherical tip and a penetration depth of 10 to 100 μm when a needle having a diameter of 300 μm is pushed in with 100 gf and wiring is performed. After forming the layer, a pressure is applied to cause the organic resin in the insulating layer to penetrate into the wiring layer, and a first layer composed of the conductor composition and the organic resin in the insulating layer from the insulating layer side. A second layer made of the conductor composition, wherein the thickness of the first layer is at least 0.3 times the average particle size of the low-resistance metal particles, and the wiring layer is thinner than the second layer. A method for manufacturing a wiring board, wherein the wiring board is formed.
JP20156496A 1996-07-31 1996-07-31 Wiring board and method of manufacturing the same Expired - Fee Related JP3597952B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20156496A JP3597952B2 (en) 1996-07-31 1996-07-31 Wiring board and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20156496A JP3597952B2 (en) 1996-07-31 1996-07-31 Wiring board and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH1051089A JPH1051089A (en) 1998-02-20
JP3597952B2 true JP3597952B2 (en) 2004-12-08

Family

ID=16443153

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20156496A Expired - Fee Related JP3597952B2 (en) 1996-07-31 1996-07-31 Wiring board and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3597952B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI265762B (en) 2003-01-14 2006-11-01 Sharp Kk Wiring material, wiring substrate and manufacturing method thereof, display panel, fine particle thin film material, substrate including thin film layer and manufacturing method thereof
JP4259154B2 (en) * 2003-03-24 2009-04-30 パナソニック株式会社 Circuit wiring board and manufacturing method thereof
JP4484578B2 (en) * 2004-05-11 2010-06-16 株式会社リコー Pattern shape body and method for manufacturing the same

Also Published As

Publication number Publication date
JPH1051089A (en) 1998-02-20

Similar Documents

Publication Publication Date Title
US6753483B2 (en) Printed circuit board and method of manufacturing the same
JPH1145955A (en) Device built-in multilayered printed circuit board and its manufacture
JP3634984B2 (en) Wiring board
JPH10242326A (en) Multilayered wiring board
JP2000312063A (en) Wiring substrate and manufacture thereof
JPH1095686A (en) Copper-metalizing composition and glass ceramic wiring substrate using the same
JP3574738B2 (en) Wiring board
JP3597952B2 (en) Wiring board and method of manufacturing the same
JP3595152B2 (en) Wiring board and method of manufacturing the same
JP3554171B2 (en) Circuit board manufacturing method
JPH09293968A (en) Method of manufacturing multilayer wiring substrate
EP2520139B1 (en) Mixed-metal system conductors for use in low-temperature co-fired ceramic circuits and devices
JPH03108203A (en) Conductive paste and wiring board
JPH09293952A (en) Manufacture of wiring board
JP3112258B2 (en) Circuit board and its manufacturing method
JPH11103165A (en) Multilayered wiring board and its manufacture
JP4863543B2 (en) Conductive paste and method for manufacturing wiring board using the same
JPH10178247A (en) Wiring board and method for manufacturing the same
JPH10178249A (en) Wiring board and its manufacture
JP4540273B2 (en) Conductive paste and method of manufacturing wiring board using the same
JP2000077804A (en) Wiring board and manufacture thereof
JPH1154864A (en) Printed circuit board and its manufacture
JP3064237B2 (en) Wiring board and method of manufacturing the same
JP4731057B2 (en) Conductive paste and method of manufacturing wiring board using the same
JP2001102754A (en) Multilayer wiring board

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040506

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040705

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040907

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040910

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070917

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080917

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080917

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090917

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees