JP3595334B2 - Method and apparatus for cleaning source gas introduction pipe used in CVD film forming apparatus - Google Patents

Method and apparatus for cleaning source gas introduction pipe used in CVD film forming apparatus Download PDF

Info

Publication number
JP3595334B2
JP3595334B2 JP2004511578A JP2004511578A JP3595334B2 JP 3595334 B2 JP3595334 B2 JP 3595334B2 JP 2004511578 A JP2004511578 A JP 2004511578A JP 2004511578 A JP2004511578 A JP 2004511578A JP 3595334 B2 JP3595334 B2 JP 3595334B2
Authority
JP
Japan
Prior art keywords
gas introduction
introduction pipe
film forming
raw material
plastic container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004511578A
Other languages
Japanese (ja)
Other versions
JPWO2003104523A1 (en
Inventor
浜  研一
鹿毛  剛
小林  巧
丈晴 川邉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kirin Brewery Co Ltd
Youtec Co Ltd
Mitsubishi Corp Plastics Ltd
Original Assignee
Kirin Brewery Co Ltd
Youtec Co Ltd
Mitsubishi Corp Plastics Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kirin Brewery Co Ltd, Youtec Co Ltd, Mitsubishi Corp Plastics Ltd filed Critical Kirin Brewery Co Ltd
Application granted granted Critical
Publication of JP3595334B2 publication Critical patent/JP3595334B2/en
Publication of JPWO2003104523A1 publication Critical patent/JPWO2003104523A1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B9/00Cleaning hollow articles by methods or apparatus specially adapted thereto 
    • B08B9/02Cleaning pipes or tubes or systems of pipes or tubes
    • B08B9/023Cleaning the external surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B5/00Cleaning by methods involving the use of air flow or gas flow
    • B08B5/02Cleaning by the force of jets, e.g. blowing-out cavities
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B9/00Cleaning hollow articles by methods or apparatus specially adapted thereto 
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/04Coating on selected surface areas, e.g. using masks
    • C23C16/045Coating cavities or hollow spaces, e.g. interior of tubes; Infiltration of porous substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4401Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber
    • C23C16/4407Cleaning of reactor or reactor parts by using wet or mechanical methods

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)

Description

技術分野
本発明は、CVD(Chemical Vapor Deposition、化学気相成長)法により、プラスチック容器の内表面にCVD膜、特にDLC(ダイヤモンドライクカーボン)膜やポリマーライクアモルファスカーボン膜等の炭素膜あるいはSi−C−H−Oを含有するシリカ膜などを形成するためのCVD成膜装置に使用する原料ガス導入管の清掃方法およびその装置に関する。
背景技術
ガスバリア性等の向上の目的でプラスチック容器の内表面にDLC膜を蒸着するために、CVD法、特にプラズマCVD法を用いた蒸着装置が、例えば特開平8−53117号公報に開示されている。また、特開平10−258825号公報には、DLC膜コーティングプラスチック容器の量産用製造装置及びその製造方法が開示されている。さらに、特開平10−226884号公報には、外面から外方に突出する突出物を有する容器に、まだらなくDLC膜をコーティングすることができるDLC膜コーティングプラスチック容器の製造装置及びその製造方法が開示されている。
特開平8−53117号公報では、DLC膜コーティングプラスチック容器の製造装置の内部電極は導通材料で形成され、原料ガス導入のための配管を兼ねている。この内部電極は原料ガス供給口を末端に有するパイプ形状を採る。
発明の開示
ところで、特開平8−53117号公報の製造装置をはじめ、従来の製造装置では、プラスチック容器の内表面にDLC膜を成膜すると、その製造装置を構成する部材の一つである原料ガス導入管(内部電極)の外表面及び内表面に炭素粉を主成分とする汚れ(以下単に「汚れ」という)が付着してしまう。このため、プラスチック容器、例えばPETボトル(ポリエチレンテレフタレート樹脂製容器)の内表面にDLC膜の成膜を次々と繰り返してDLC膜コーティングボトルを多量に製造していくと、原料ガス導入管に汚れが堆積し徐々に厚くなる。そしてその汚れがある厚さ(例えば5μm程度の厚さ)になると原料ガス導入管から剥がれ落ちてしまう。この剥がれ落ちた汚れはPETボトルの内部に落ち、その結果、PETボトルの内部に落ちた汚れによってそのPETボトルの中に成膜されない部分が生じ、ガスバリア性を低下させ、不良品となってしまう。
一方、汚れがPETボトルの内部に剥がれ落ちることを防止するには次の方法が考えられる。つまり、汚れが剥がれ落ちる前に製造装置を分解して原料ガス導入管を取り外し、汚れが付着している原料ガス導入管の外表面及び内表面を作業者がヤスリで削る等して掃除する方法である。このように原料ガス導入管の外表面及び内表面を掃除すれば、PETボトル内部に汚れが剥がれ落ちることを防止することができるはずである。
このような方法を用いれば、PETボトル内部に汚れが剥がれ落ちることは防止できる。しかし汚れは、おおよそコーティング200〜400回行なう毎に除去しなければDLC膜コーティングプラスチック容器の品質が低下する為、頻繁に原料ガス導入管を分解して清掃しなければならない。するとDLC膜成膜装置の稼働率は著しく低下してしまう。
また、原料ガス導入管(内部電極)に汚れが付着すると、プラズマ放電の不安定及び放電停止を招く。
したがって、装置の稼働率を低下させずに原料ガス導入管を清掃する清掃方法及びその装置が求められていた。
本発明の課題は、汚れが原料ガス導入管の内外表面に付着形成された場合に、圧縮エアーの噴射又は超音波エアーのブローによって原料ガス導入管に対して非接触の状態で汚れを除去すると共に該汚れがプラスチック容器や成膜チャンバーに移行しないように回収出来るようにすることである。非接触で汚れを除去するのは、例えば原料ガス導入管の変形等の装置故障を防止し、汚れ付着による未成膜部分の生成を防止するためである。また圧縮エアーの噴射方向、超音波エアーのブロー方向、吸引排出部の位置、及びエアー量と吸引排出量との大小関係を最適とすることで、成膜チャンバーや成膜後のプラスチック容器への汚れの移行を最小限とすることを目的とする。
同時に、汚れを除去する最適のタイミング、すなわち汚れの回収作業を原料ガス導入管の引き出し作業中に完了させることで、CVD成膜装置の成膜に要する時間の短時間化をはかることを目的とする。ここで、成膜するごとに原料ガス導入管を毎回清掃することで汚れの強固な付着を防止することを目的とする。汚れの堆積により付着が強固となるからである。
これにより、DLC膜成膜装置の分解・点検の間隔を延ばして、連続運転を可能としてCVD成膜装置の製造稼動効率を低下させないことを目的とする。
また本発明は、成膜チャンバーをサークル状に複数配設したターンテーブルを一回転させる間に製造サイクルを行なう量産機である、ロータリー型プラズマCVD成膜装置に使用する原料ガス導入管に対しても、同様に原料ガス導入管の外表面への汚れの強固な固着を防止して、該汚れを短時間にしかも容易に除去して、分解・点検の間隔を延ばし、製造稼動効率を向上させることを目的とする。
本発明は、内部電極を兼ねた原料ガス導入管に使用する基体素材として表面を研磨したSUS304とし、またはその表面処理である硬質金合金メッキの材質を99.7Au−0.3Co、99.8Au−0.2Ni等の酸性硬質金メッキと限定することで、汚れと原料ガス導入管表面との間で反応を起こさせず、汚れをさらに容易に払拭除去可能とすることを目的とする。
本発明の清掃方法及びその装置は、通常のCVD成膜装置或いはロータリー型CVD成膜装置にかかわらず、成膜チャンバーから原料ガス導入管を抜き出しする動作を行ない、この動作を利用して汚れを払拭する汚れ防止工程を提案することを目的とする。
本発明に係るCVD成膜装置に使用する原料ガス導入管の清掃方法は、密封可能で外部電極の機能を備えた成膜チャンバーにプラスチック容器を収容し、該プラスチック容器内に挿入した昇降自在で内部電極を兼ねた原料ガス導入管から原料ガスを導入し、該原料ガスをプラズマ化させてプラスチック容器内表面にCVD(化学気相成長)膜を形成するときに、前記原料ガス導入管の外表面に付着形成される炭素粉を主成分とする汚れを清掃する原料ガス導入管の清掃方法において、前記プラスチック容器の内表面にCVD膜を形成したのち前記原料ガス導入管を前記プラスチック容器内から抜き出す過程で、前記汚れに向けて圧縮エアーを噴射するとともに該圧縮エアーの噴射によって除去された前記汚れが前記成膜チャンバー及びCVD膜を形成したプラスチック容器側に移行しないように吸引排出手段により前記汚れを前記成膜チャンバーの系外に排出させることを特徴とする。
本発明に係るCVD成膜装置に使用する原料ガス導入管の清掃方法では、前記成膜チャンバーの上部又は上方位置に設けた圧縮エアーの噴射部から前記原料ガス導入管の求心方向に向け圧縮エアーを噴射することが好ましい。ここで、圧縮エアーの噴射は原料ガス導入管の外側周囲に(原料ガス導入管の軸心を中心として放射状に)所定間隔をおいて配置し、成膜チャンバー上部又は上方位置に設けた圧縮エアー噴射部から原料ガス導入管の求心方向に向け圧縮エアーをそれぞれ噴射しても良い。
さらに本発明に係るCVD成膜装置に使用する原料ガス導入管の清掃方法では、前記噴射部の上方位置に設けた吸引排出部から前記吸引排出手段によって前記圧縮エアーと前記汚れを吸引除去することが好ましい。
また、本発明に係るCVD成膜装置に使用する原料ガス導入管の清掃方法では、前記成膜チャンバーの上部又は上方位置に圧縮エアーの噴射部を設け、該噴射部の上方位置に吸引排出部を設け、該吸引排出部の上方位置に圧縮エアーの第2噴射部を設け、前記噴射部は下から上に向けて圧縮エアーを噴射し且つ前記第2噴射部は上から下に向けて圧縮エアーを噴射すると共に、前記吸引排出部は前記圧縮エアーと前記汚れを吸引除去することが好ましい。すなわち、圧縮エアーの噴射は原料ガス導入管の外側周囲の上下関係で対向するように配置し、成膜チャンバー上部又は上方位置に設けた圧縮エアー噴射部の一方は上から下に向け、他方は下から上に向け圧縮エアーを噴射する。
ここで本発明に係るCVD成膜装置に使用する原料ガス導入管の清掃方法では、前記吸引排出手段による吸引排気量は、前記圧縮エアーの空気供給量よりも多いことがより好ましい。したがってこの吸引排出手段は強力な吸引排出を行なう。
さらに本発明に係るCVD成膜装置に使用する原料ガス導入管の清掃方法では、前記CVD膜の成膜はターンテーブル上にサークル状に設置した複数の前記成膜チャンバーでそれぞれ行ない、前記ターンテーブルが1回転する間に、前記原料ガス導入管を前記プラスチック容器内から抜き出す過程で前記原料ガス導入管の外表面に付着形成された炭素粉を主成分とする汚れを圧縮エアーの噴射により除去し、その除去した汚れを前記成膜チャンバーの系外に吸引排出する工程を完了することが好ましい。
本発明に係るCVD成膜装置に使用する原料ガス導入管の清掃方法は、密封可能で外部電極の機能を備えた成膜チャンバーにプラスチック容器を収容し、該プラスチック容器内に挿入した昇降自在で内部電極を兼ねた原料ガス導入管から原料ガスを導入し、該原料ガスをプラズマ化させてプラスチック容器内表面にCVD膜を形成するときに、前記原料ガス導入管の外表面に付着形成される炭素粉を主成分とする汚れを清掃する原料ガス導入管の清掃方法において、前記プラスチック容器の内表面にCVD膜を形成したのち前記原料ガス導入管を前記プラスチック容器内から抜き出す過程で、前記汚れに向けて超音波エアーをブローするとともに該超音波エアーのブローによって除去された前記汚れが前記成膜チャンバー及びCVD膜を形成したプラスチック容器側に移行しないように吸引排出手段により前記汚れを前記成膜チャンバーの系外に排出させることを特徴とする。
本発明に係るCVD成膜装置に使用する原料ガス導入管の清掃方法では、前記成膜チャンバーの上部又は上方位置に設けた超音波エアーのブロー部から前記原料ガス導入管の求心方向に向け超音波エアーをブローすることが好ましい。ここで、超音波エアーのブローは、原料ガス導入管の外側周囲に(原料ガス導入管の軸心を中心として放射状に)所定間隔をおいて配置し、成膜チャンバー上部又は上方位置に設けた超音波エアーのブロー部から原料ガス導入管の求心方向に向け超音波エアーをそれぞれブローしても良い。
また本発明に係るCVD成膜装置に使用する原料ガス導入管の清掃方法では、前記ブロー部の上方位置に設けた吸引排出部から前記吸引排出手段によって前記超音波エアーと前記汚れを吸引除去することが好ましい。
さらに本発明に係るCVD成膜装置に使用する原料ガス導入管の清掃方法では、前記成膜チャンバーの上部又は上方位置に超音波エアーのブロー部を設け、該ブロー部の上方位置に吸引排出部を設け、該吸引排出部の上方位置に超音波エアーの第2ブロー部を設け、前記ブローは下から上に向けて超音波エアーをブローし且つ前記第2ブロー部は上から下に向けて超音波エアーをブローすると共に、前記吸引排出部は前記超音波エアーと前記汚れを吸引除去することが好ましい。すなわち、超音波エアーのブローは、原料ガス導入管の外側周囲の上下関係で対向するように配置し、成膜チャンバー上部又は上方位置に設けた超音波エアーのブロー部の一方は上から下に向け、他方は下から上に向け超音波エアーをブローする。
本発明に係るCVD成膜装置に使用する原料ガス導入管の清掃方法では、前記吸引排出手段による吸引排気量は、前記超音波エアーの空気供給量よりも多いことがより好ましい。したがってこの吸引排出手段は強力な吸引排出を行なう。
さらに本発明に係るCVD成膜装置に使用する原料ガス導入管の清掃方法では、前記CVD膜の成膜はターンテーブル上にサークル状に設置した複数の前記成膜チャンバーでそれぞれ行ない、前記ターンテーブルが1回転する間に、前記原料ガス導入管を前記プラスチック容器内から抜き出す過程で前記原料ガス導入管の外表面に付着形成された炭素粉を主成分とする汚れを超音波エアーのブローにより除去し、その除去した汚れを前記成膜チャンバーの系外に吸引排出する工程を完了することが好ましい。
本発明に係るCVD成膜装置に使用する原料ガス導入管の清掃装置は、密封可能で外部電極の機能を備えた成膜チャンバーにプラスチック容器を収容し、該プラスチック容器内に挿入した昇降自在で内部電極を兼ねた原料ガス導入管から原料ガスを導入し、該原料ガスをプラズマ化させてプラスチック容器内表面にCVD膜を形成するときに、前記原料ガス導入管の外表面に付着形成される炭素粉を主成分とする汚れを清掃する原料ガス導入管の清掃装置において、前記プラスチック容器の内表面にCVD膜を形成した後のタイミングに合わせて前記原料ガス導入管を前記プラスチック容器内から抜き出す原料ガス導入管抜き出し手段と、前記汚れに向けて圧縮エアーを噴射する圧縮エアー噴射手段と、前記圧縮エアーの噴射によって除去された前記汚れが前記成膜チャンバー及びCVD膜を形成したプラスチック容器側に移行しないように前記成膜チャンバーの系外に排出させる吸引排出手段とを備えたことを特徴とする。
本発明に係るCVD成膜装置に使用する原料ガス導入管の清掃装置では、前記圧縮エアー噴射手段により噴射される圧縮エアーの噴射部を前記成膜チャンバーの上部又は上方位置で前記原料ガス導入管の外側周囲に配置することが好ましい。すなわち、圧縮エアーの噴射手段は、原料ガス導入管の外側周囲に(原料ガス導入管の軸心を中心として放射状に)所定間隔をおいて配置した先細の圧縮エアー噴射部で形成されていても良い。
また本発明に係るCVD成膜装置に使用する原料ガス導入管の清掃装置では、前記圧縮エアーと前記汚れを吸引除去するための吸引排出部を前記噴射部の上方位置で前記原料ガス導入管の外側周囲に配置することが好ましい。
さらに本発明に係るCVD成膜装置に使用する原料ガス導入管の清掃装置では、前記圧縮エアー噴射手段により噴射される圧縮エアーの噴射部を前記成膜チャンバーの上部又は上方位置で前記原料ガス導入管の外側周囲に配置し、前記圧縮エアーと前記汚れを吸引除去するための吸引排出部を前記噴射部の上方位置で前記原料ガス導入管の外側周囲に配置し、前記圧縮エアー噴射手段により噴射される圧縮エアーの第2噴射部を前記吸引排出部の上方位置で前記原料ガス導入管の外側周囲に配置し、前記噴射部の圧縮エアー噴射方向を上方に向け且つ前記第2噴射部の圧縮エアーの噴射方向を下方に向けることが好ましい。すなわち圧縮エアーの噴射は、原料ガス導入管の外側周囲の上下関係が交互に変わりながら対向するように配置した先細の圧縮エアー噴射部の一方は上から下に向け、他方は下から上に向けて形成される。
本発明に係るCVD成膜装置に使用する原料ガス導入管の清掃装置は、密封可能で外部電極の機能を備えた成膜チャンバーにプラスチック容器を収容し、該プラスチック容器内に挿入した昇降自在で内部電極を兼ねた原料ガス導入管から原料ガスを導入し、該原料ガスをプラズマ化させてプラスチック容器内表面にCVD膜を形成するときに、前記原料ガス導入管の外表面に付着形成される炭素粉を主成分とする汚れを清掃する原料ガス導入管の清掃装置において、前記プラスチック容器の内表面にCVD膜を形成した後のタイミングに合わせて前記原料ガス導入管を前記プラスチック容器内から抜き出す原料ガス導入管抜き出し手段と、前記汚れに向けて超音波エアーをブローする超音波エアーブロー手段と、前記超音波エアーのブローによって除去された前記汚れが前記成膜チャンバー及びCVD膜を形成したプラスチック容器側に移行しないように前記成膜チャンバーの系外に排出させる吸引排出手段とを備えたことを特徴とする。
本発明に係るCVD成膜装置に使用する原料ガス導入管の清掃装置では、前記超音波エアーブロー手段によりブローされる超音波エアーのブロー部を前記成膜チャンバーの上部又は上方位置に配置することが好ましい。ここで超音波エアーブロー手段は、原料ガス導入管の外側周囲に(原料ガス導入管の軸心を中心として放射状に)所定間隔をおいて配置し、成膜チャンバー上部又は上方位置に設けた超音波発振器で形成されていても良い。
本発明に係るCVD成膜装置に使用する原料ガス導入管の清掃装置では、前記超音波エアーと前記汚れを吸引除去するための吸引排出物を前記ブロー部の上方位置に配置することが好ましい。
また本発明に係るCVD成膜装置に使用する原料ガス導入管の清掃装置では、前記超音波エアーブロー手段によりブローされる超音波エアーのブロー部を前記成膜チャンバーの上部又は上方位置に配置し、前記超音波エアーと前記汚れを吸引除去するための吸引排出部を前記ブロー部の上方位置に配置し、前記超音波エアーブロー手段によりブローされる超音波エアーの第2ブロー部を前記吸引排出部の上方位置に配置し、前記ブロー部の超音波エアーブロー方向を上方に向け且つ前記第2ブロー部の超音波エアーのブロー方向を下方に向けることが好ましい。すなわち、超音波エアーブロー手段は、原料ガス導入管の外側周囲の上下関係が交互に変わりながら対向するように配置し、成膜チャンバー上部又は上方位置に設けた超音波発振器からの超音波エアーブロー部の一方は上から下に向け、他方は下から上に向けて形成する。
次に述べるように原料ガス導入管が内部電極を兼ねない場合は、成膜チャンバー内でのプラズマ発生手段はマイクロ波発生装置で行なう。すなわち、本発明に係るCVD成膜装置に使用する原料ガス導入管の清掃方法は、密封可能な成膜チャンバーにプラスチック容器を収容し、該プラスチック容器内に挿入した昇降自在の原料ガス導入管から原料ガスを導入し、該原料ガスをマイクロ波によりプラズマ化させてプラスチック容器内表面にCVD膜を形成するときに、前記原料ガス導入管の外表面に付着形成される炭素粉を主成分とする汚れを清掃する原料ガス導入管の清掃方法において、前記プラスチック容器の内表面にCVD膜を形成したのち前記原料ガス導入管を前記プラスチック容器内から抜き出す過程で、前記汚れに向けて圧縮エアーを噴射又は超音波エアーをブローするとともに該圧縮エアーの噴射又は該超音波エアーのブローによって除去された前記汚れが前記成膜チャンバー及びCVD膜を形成したプラスチック容器側に移行しないように吸引排出手段により前記汚れを前記成膜チャンバーの系外に排出させることを特徴とする。
本発明に係るCVD成膜装置に使用する原料ガス導入管の清掃装置は、密封可能な成膜チャンバーにプラスチック容器を収容し、該プラスチック容器内に挿入した昇降自在の原料ガス導入管から原料ガスを導入し、該原料ガスをマイクロ波によりプラズマ化させてプラスチック容器内表面にCVD膜を形成するときに、前記原料ガス導入管の外表面に付着形成される炭素粉を主成分とする汚れを清掃する原料ガス導入管の清掃装置において、前記プラスチック容器の内表面にCVD膜を形成した後のタイミングに合わせて前記原料ガス導入管を前記プラスチック容器内から抜き出す原料ガス導入管抜き出し手段と、前記汚れに向けて圧縮エアーを噴射する圧縮エアー噴射手段と、前記圧縮エアーの噴射によって除去された前記汚れが前記成膜チャンバー及びCVD膜を形成したプラスチック容器側に移行しないように前記成膜チャンバーの系外に排出させる吸引排出手段とを備えたことを特徴とする。
本発明に係るCVD成膜装置に使用する原料ガス導入管の清掃装置は、密封可能な成膜チャンバーにプラスチック容器を収容し、該プラスチック容器内に挿入した昇降自在の原料ガス導入管から原料ガスを導入し、該原料ガスをマイクロ波によりプラズマ化させてプラスチック容器内表面にCVD膜を形成するときに、前記原料ガス導入管の外表面に付着形成される炭素粉を主成分とする汚れを清掃する原料ガス導入管の清掃装置において、前記プラスチック容器の内表面にCVD膜を形成した後のタイミングに合わせて前記原料ガス導入管を前記プラスチック容器内から抜き出す原料ガス導入管抜き出し手段と、前記汚れに向けて超音波エアーをブローする超音波エアーブロー手段と、前記超音波エアーのブローによって除去された前記汚れが前記成膜チャンバー及びCVD膜を形成したプラスチック容器側に移行しないように前記成膜チャンバーの系外に排出させる吸引排出手段とを備えたことを特徴とする。
本発明に係るCVD成膜装置に使用する原料ガス導入管の清掃装置では、前記原料ガス導入管に使用する基体素材は、表面を研磨したSUS304若しくはSUS316とするか、あるいはその表面処理である硬質金合金メッキの材質を99.7Au−0.3Co、99.8Au−0.2Ni等の酸性硬質金メッキとしたものであることが好ましい。
本発明では、原料ガス導入管の外表面に付着形成された炭素粉を主成分とする汚れに対して非接触状態で圧縮エアーを噴射させるか或いは超音波エアーをブローさせることにより前記汚れが迅速、かつ容易に除去できる。非接触で汚れを除去するため原料ガス導入管を変形させる心配もない。その上、圧縮エアーの圧力で管壁に適度な振動が加わり、前記汚れが効果的に除去できる。そして、この除去した汚れは吸引排出手段により外部に排出することとしているので、成膜チャンバー及びプラスチック容器側に前記原料ガス導入管表面から剥離した汚れが移行することがない。特に圧縮エアーを下方から上方に噴射し、その上方位置で空気と共に汚れを吸引排出するので成膜チャンバー及びプラスチック容器側に移行する汚れを最小限とすることが出来る。上方から下方に圧縮エアーを噴射すると、下部に位置する成膜チャンバーやプラスチック容器側に汚れが移行し易い。
同時に、汚れの回収作業を原料ガス導入管の引き出し作業中に完了させることで、CVD成膜装置の成膜に要する時間の短時間化をはかることができる。その上、成膜するごとに原料ガス導入管を毎回清掃することで汚れの強固な付着を防止することができる。
これにより、DLC膜成膜装置の分解・点検の間隔を延ばして、連続運転を可能としてCVD成膜装置の製造稼動効率を低下させない。
また本発明は、ロータリー型プラズマCVD成膜装置に使用する原料ガス導入管に対しても同様に、ターンテーブルが一回転する間に前記汚れを簡単に除去することが出来、成膜作業の連続稼動が可能である。さらに汚れを短時間にしかも容易に除去して、分解・点検の間隔を延ばし、製造稼動効率を向上させることができる。
本発明は、内部電極を兼ねた原料ガス導入管に使用する基体素材として表面を研磨したSUS304とし、またはその表面処理である硬質金合金メッキの材質を99.7Au−0.3Co、99.8Au−0.2Ni等の酸性硬質金メッキと限定することで、汚れと原料ガス導入管表面との間で反応を起こさせず、汚れをさらに容易に払拭除去可能とすることができる。
【図面の簡単な説明】
図1は、本発明に係るCVD成膜装置の成膜チャンバーと原料ガス導入管の清掃装置の一形態を示す模式図である。
図2は、本発明に係るCVD成膜装置に使用する原料ガス導入管の清掃装置の一形態を示す模式図で、(a)は供給系と排出系の関係を示す縦断面図、(b)は圧縮エアー供給側の横断面図、(c)は炭素粉等の排出側の横断面図である。
図3は、本発明の一実施例を示すチャンバー内圧縮エアーブロー方式による500バッチ終了後の内部電極写真を示す。
図4は、500バッチ終了後の内部電極底部拡大写真(50倍)A部を示す。
図5は、500バッチ終了後の内部電極胴部拡大写真(50倍)B部を示す。
図6は、500バッチ終了後の内部電極ボトル口元部拡大写真(50倍)C部を示す。
図7は、500バッチ終了後の内部電極排気マニホールド部拡大写真(50倍)D部を示す。
図8は、2000バッチ終了後の内部電極写真を示す。
図9は、2000バッチ終了後の内部電極底部拡大写真(50倍)A部を示す。
図10は、2000バッチ終了後の内部電極胴部拡大写真(50倍)B部を示す。
図11は、2000バッチ終了後の内部電極ボトル口元部拡大写真(50倍)C部を示す。
図12は、2000バッチ終了後の内部電極排気マニホールド部拡大写真(50倍)D部を示す。
図13は、4500バッチ終了後の内部電極写真を示す。
図14は、4500バッチ終了後の内部電極底部拡大写真(50倍)A部を示す。
図15は、4500バッチ終了後の内部電極胴部拡大写真(50倍)B部を示す。
図16は、4500バッチ終了後の内部電極ボトル口元部拡大写真(50倍)C部を示す。
図17は、7000バッチ終了後の内部電極写真を示す。
図18は、7000バッチ終了後の内部電極底部拡大写真(50倍)A部を示す。
図19は、7000バッチ終了後の内部電極胴部拡大写真(50倍)B部を示す。
図20は、7000バッチ終了後の内部電極のボトル口元部拡大写真(50倍)C部を示す。
図21は、7000バッチ終了後の内部電極の排気マニホールド部拡大写真(50倍)D部を示す。
図22は、本発明に係るCVD成膜装置に使用する原料ガス導入管の清掃装置の他形態であるチャンバー外超音波エアーブロー方式を示す模式図を示し、(a)〜(e)に動作状態を示す。
図23は、本発明の他の実施例を示すチャンバー外超音波エアーブロー方式による500バッチ終了後の内部電極写真を示す。
図24は、2000バッチ終了後の内部電極写真を示す。
図25は、2000バッチ終了後の内部電極底部拡大写真(50倍)A部を示す。
図26は、2000バッチ終了後の内部電極胴部拡大写真(50倍)B部を示す。
図27は、2000バッチ終了後の内部電極ボトル口元部拡大写真(50倍)C部を示す。
図28は、2000バッチ終了後の内部電極排気マニホールド部拡大写真(50倍)D部を示す。
図29は、4500バッチ終了後の内部電極写真を示す。
図30は、4500バッチ終了後の内部電極底部拡大写真(50倍)A部を示す。
図31は、4500バッチ終了後の内部電極胴部拡大写真(50倍)B部を示す。
図32は、4500バッチ終了後の内部電極ボトル口元部拡大写真(50倍)C部を示す。
図33は、4500バッチ終了後の内部電極排気マニホールド部拡大写真(50倍)D部を示す。
図34は、7000バッチ終了後の内部電極写真を示す。
図35は、7000バッチ終了後の内部電極底部拡大写真(50倍)A部を示す。
図36は、7000バッチ終了後の内部電極胴部拡大写真(50倍)B部を示す。
図37は、7000バッチ終了後の内部電極のボトル口元部拡大写真(50倍)C部を示す。
図38は、7000バッチ終了後の内部電極の排気マニホールド部拡大写真(50倍)D部を示す。
図39は、測定ポイントA,B,C,Dの位置関係を示す図である。
図40は、比較例を示す500バッチ終了後の内部電極写真を示す。
図41は、比較例を示す500バッチ終了後の内部電極底部拡大写真(50倍)A部を示す。
図42は、比較例を示す500バッチ終了後の内部電極胴部拡大写真(50倍)B部を示す。
図43は、比較例を示す500バッチ終了後の内部電極ボトル口元部拡大写真(50倍)C部を示す。
図44は、比較例を示す500バッチ終了後の内部電極排気マニホールド部拡大写真(50倍)D部を示す。
図45は、比較例を示す600バッチ終了後の内部電極写真を示す。
図46は、比較例を示す600バッチ終了後の内部電極底部拡大写真(50倍)A部を示す。
図47は、比較例を示す600バッチ終了後の内部電極胴部拡大写真(50倍)B部を示す。
図48は、比較例を示す600バッチ終了後の内部電極ボトル口元部拡大写真(50倍)C部を示す。
図49は、比較例を示す600バッチ終了後の内部電極排気マニホールド部拡大写真(50倍)D部を示す。
図50は、本発明に係るCVD成膜装置の成膜チャンバーと原料ガス導入管の清掃装置の第2形態を示す模式図である。
図51は、圧縮エアー噴射手段の替わりに超音波エアーブロー手段を設けた時の成膜チャンバー上部の部分概念図である。
図中の符号は次の通りである。1は成膜チャンバー、2は原料ガス導入管(内部電極)、3は圧縮エアー噴射手段、4は吸引排出手段、5は原料ガス発生源、6は外部電極、7は超音波エアーブロー手段、8はプラスチック容器、9は蓋、9aは下部蓋、9bは上部蓋、10は絶縁体、11は圧縮エアーの噴射部、11aは第1噴射部、11bは第2噴射部、12は吸引排出部、13はOリング、14は超音波エアーブロー手段用の空気供給手段、である。
発明を実施するための最良の形態
以下、実施例について図面に基づいて説明するが、本発明はこれらの実施例に限定されるものではない。また、各図面において部材が共通する場合には、同一の符号を附した。本実施例では、内部電極を兼ねた原料ガス導入管を例に採り説明しているが、内部電極を兼ねない原料ガス導入管についても本発明が適用されることは勿論である。また内部電極と原料ガス導入管とを兼用しない場合における内部電極について、原料ガス導入管の場合と同様に本清掃方法を適用できる。
先ず、本発明が適用されるCVD成膜装置について概説する。図1は、本発明に係るCVD成膜装置の成膜チャンバーと原料ガス導入管の清掃装置の一形態を示す模式図である。本発明に係るCVD成膜装置は、成膜チャンバー1と、成膜チャンバー1に収容するプラスチック容器8の内部にプラズマ化させる原料ガスを導入する内部電極を兼ねた原料ガス導入管2と、成膜チャンバー1の外部電極6に高周波を供給する高周波供給手段(図示せず)と、内部電極(原料ガス導入管)2の外表面に付着した炭素粉を主成分とする汚れを除去する圧縮エアー噴射手段3と、原料ガス導入管2の表面から除去された汚れが成膜チャンバー1及びCVD膜を形成したプラスチック容器8側に移行しないように汚れを吸引除去するための強力な吸引排出手段4を備えたプラズマCVD成膜装置である。このCVD成膜装置は外部電極6に高周波を供給してプラスチック容器8内で原料ガスをプラズマ化させて、プラスチック容器8の内表面にCVD膜を成膜する装置である。このCVD成膜装置は、1個の成膜チャンバー或いは複数の成膜チャンバーを配置しても良い。複数の成膜チャンバーを配置する場合、全ての成膜チャンバーにて同時に成膜を行なうバッチ方式型CVD成膜装置としても良いし、ターンテーブル上に複数の成膜チャンバーを設置してなるロータリー式の連続方式型CVD成膜装置としても良い。
成膜チャンバー1は、プラスチック容器8を収容する外部電極6と、プラスチック容器8の内部に昇降自在に配置される接地した内部電極を兼ねた原料ガス導入管2並びに開閉自在な蓋9とから構成され、密封可能な真空室を形成する。
蓋9は導電部材で形成されている。ここで蓋9は成膜チャンバー1の上部に配置される下部蓋9aと下部蓋9aの上部に配置される上部蓋9bとからなる。上部蓋9bは、内部電極を兼ねた原料ガス導入管2を支持すると共に昇降可能としている。これにより上部蓋9bの昇降によって原料ガス導入管2が一体となって昇降する。蓋9の下面に絶縁体10を設け、内部電極を兼ねた原料ガス導入管2がプラスチック容器8内に挿入された時に内部電極2と外部電極6とは絶縁体10で絶縁されている。
原料ガス導入管抜き出し手段(不図示)は、プラスチック容器8の内表面にCVD膜を形成した後のタイミングに合わせて原料ガス導入管2をプラスチック容器内から抜き出すものであり、例えば上部蓋9bと接続され、上部蓋9bを昇降させる機構である。
下部蓋9aと上部蓋9bとは、その間に配置されたOリング13によって外部から密閉されている。
蓋9には、外部電極6内の収容空間につながる開口部が設けられている。この開口部に原料ガス導入管2が挿入される。また、蓋9の開口部の内面には圧縮エアー噴射手段3から供給されたエアーを原料ガス導入管2に向けて噴射するための圧縮エアーの噴射部11が設けられている。噴射部11を先細形状として強力な圧縮エアーを生成させることが好ましい。また、噴射された圧縮エアーと除去された汚れを一緒に吸引除去するための吸引排出部12が蓋9の開口部の内面に設けられている。吸引排出部12は吸引排出手段4につながっている。吸引排出手段4の作動により吸引排出部12を吸入口として空気を吸気する。ここで、図1のように噴射部11から上方に向けて圧縮エアーを噴射し、噴射部11の上方に設けた吸引排出部12から空気を吸気することが好ましい。圧縮エアーの風向きを上向きとすることで成膜チャンバーやプラスチック容器への汚れの移行を防止できる。
ここで図2に本発明に係るCVD成膜装置に使用する原料ガス導入管の清掃装置の一形態を示す模式図を示した。まず、(a)図を参照する。原料ガス導入管(内部電極)が上昇する際に、圧縮エアーが蓋9内を通過して原料ガス導入管に向けて噴射される。圧縮エアーの噴射は(b)図に示したごとく、原料ガス導入管の軸心を中心として求心方向に行なわれる。これにより原料ガス導入管の外表面に付着した汚れはムラなく除去することが出来る。除去された汚れと圧縮エアーによる空気は、(a)図に示すように噴射部よりも上方で吸引排出される。これは汚れが口部に落下して容器内部に混入することを防止するためである。排出は(c)図に示すように原料ガス導入管の軸心を中心として360°方向で行なわれる。
蓋に設けた噴射部と吸引排出部について次に示す第2形態としても良い。図50に本発明に係るCVD成膜装置の成膜チャンバーと原料ガス導入管の清掃装置の第2形態を示す模式図を示した。第2形態の装置では、圧縮エアー噴射手段3により噴射される圧縮エアーの噴射部11aを成膜チャンバー1の上部又は上方位置で原料ガス導入管2の外側周囲に配置している。さらに圧縮エアーと汚れを吸引除去するための吸引排出部12を噴射部11aの上方位置で原料ガス導入管2の外側周囲に配置している。さらに圧縮エアー噴射手段3により噴射される圧縮エアーの第2噴射部11bを吸引排出部12の上方位置で原料ガス導入管2の外側周囲に配置している。ここで、噴射部11aの圧縮エアー噴射方向を上方に向け且つ第2噴射部11bの圧縮エアーの噴射方向を下方に向け、その間に配置した吸引排出部12から空気を吸引除去することで、圧縮エアー及び汚れを飛散させずに除去することが出来る。
また、第1形態及び第2形態において、吸引排出手段4による吸引排気量は、圧縮エアーの空気供給量よりも多くすることによって、さらに圧縮エアー及び汚れを飛散させずに除去することが出来る。ここで吸引排気量は、圧縮エアーの空気供給量よりも1.5倍以上であることが好ましい。
外部電極6の内部には空間が形成されており、この空間はコーティング対象のプラスチック容器8、例えばポリエチレンテレフタレート樹脂製の容器であるPETボトルを収容するための収容空間である。外部電極6内の収容空間は、そこに収容されるプラスチック容器8を収容できるように形成される。すなわち収容空間は、プラスチック容器8の外形よりも僅かに大きくなるように形成されることが好ましい。すなわち、容器の収容空間の内壁面はプラスチック容器8の外側近傍を囲む形状、特に相似形状とすることが好ましい。ただし、プラスチック容器8の内表面にバイアス電圧がかかる場合には、外部電極の収容空間の内壁面をプラスチック容器8の外側近傍を囲む形状とする必要はなく、隙間があっても良い。
外部電極6内の収容空間は、絶縁体10と蓋9との間に配置されたOリング(図示せず)によって外部から密閉されている。
内部電極を兼ねた原料ガス導入管2は、外部電極6内に配置され、且つプラスチック容器8の内部に配置される。内部電極を兼ねた原料ガス導入管2は、上部蓋9bに支持されて上部蓋9bと共に昇降自在に可動する。内部電極を兼ねた原料ガス導入管2の先端は、外部電極6内の空間であって外部電極6内に収容されたプラスチック容器8の内部に配置される。原料ガス導入管2の先端にはガス吹き出し口が設けられている。さらに内部電極を兼ねた原料ガス導入管2は接地される。
内部電極を兼ねた原料ガス導入管2は、硬質金合金メッキを施した導電性管状基体で形成することが好ましい。このとき導電性管状基体は、表面を研磨したSUS304で形成することが好ましい。SUS304とするのは、耐食性及び高強度の理由による。研磨は機械加工による研磨とし、バフ#600の鏡面に仕上ることが好ましい。またSUS316で形成するようにしても良い。
硬質金合金メッキとするのは、汚れとの反応を抑えるためである。メッキ厚みは2〜10μmとすることが好ましく、さらに硬質金合金メッキ種類は99.7Au−0.3Co、99.8Au−0.2Ni等の酸性硬質金メッキであることが好ましい。純金メッキは耐食性が最良であるが、耐摩耗性、硬さなどの機械的強度が弱い。酸性硬質金メッキ(99.7Au−0.3Co、99.8Au−0.2Ni)は、耐食性、耐摩耗性、硬さなどの機械的強度も改良されているため内部金属のメッキ材としてはよい。その他の金合金(25Ag、20Cu)の硬さは酸性硬質金メッキより硬いが、耐摩耗性及び耐食性で劣る。金メッキ方法はSUS304の機械加工による研磨(バフ#600の鏡面に仕上げ)したものに、ニッケルの無電解メッキをしてその上に金メッキを行なう方法とする。
内部電極を兼ねた原料ガス導入管2の内口径は、内部電極の管内部でのプラズマ発生を防止するため1.5mm以下、より好ましくは1.0mm以下とすることが好ましい。内口径を1.5mm以下とすることにより、内部電極の管内部における汚れの発生を抑制できる。また、内部電極の肉厚は、機械的強度確保のため1mm以上とすることが好ましい。
内部電極を兼ねた原料ガス導入管2を上述のように形成することで汚れの固着を防止し、プラズマ放電を安定化させることができる。
プラスチック容器は、蓋若しくは栓若しくはシールして使用する容器、またはそれらを使用せず開口状態で使用する容器を含む。開口部の大きさは内容物に応じて決める。プラスチック容器は、剛性を適度に有する所定の肉厚を有するプラスチック容器と剛性を有さないシート材により形成されたプラスチック容器を含む。本発明に係るプラスチック容器の充填物は、炭酸飲料若しくは果汁飲料若しくは清涼飲料等の飲料、並びに医薬品、農薬品、又は吸湿を嫌う乾燥食品等を挙げることができる。
プラスチック容器を成形する際に使用する樹脂は、ポリエチレンテレフタレート樹脂(PET)、ポリエチレンテレフタレート系コポリエステル樹脂(ポリエステルのアルコール成分にエチレングリコールの代わりに、シクロヘキサンディメタノールを使用したコポリマーをPETGと呼んでいる、イーストマン製)、ポリブチレンテレフタレート樹脂、ポリエチレンナフタレート樹脂、ポリエチレン樹脂、ポリプロピレン樹脂(PP)、シクロオレフィンコポリマー樹脂(COC、環状オレフィン共重合)、アイオノマ樹脂、ポリ−4−メチルペンテン−1樹脂、ポリメタクリル酸メチル樹脂、ポリスチレン樹脂、エチレン−ビニルアルコール共重合樹脂、アクリロニトリル樹脂、ポリ塩化ビニル樹脂、ポリ塩化ビニリデン樹脂、ポリアミド樹脂、ポリアミドイミド樹脂、ポリアセタール樹脂、ポリカーボネート樹脂、ポリスルホン樹脂、又は、4弗化エチレン樹脂、アクリロニトリル−スチレン樹脂、アクリロニトリル−ブタジエン−スチレン樹脂、を例示することができる。この中で、PETが特に好ましい。
原料ガス導入管2は、プラスチック容器の内部に原料ガス発生源5から供給される原料ガスを導入する。この原料ガス発生源はアセチレンなどの炭化水素ガス等を発生させるものである。
原料ガス導入管2は、成膜チャンバー1に原料ガスを供給する。成膜チャンバーを複数設ける場合、成膜チャンバーごとに原料ガス発生源5を設置しても良いが、一つの原料ガス発生源から分岐させて全ての成膜チャンバーに原料ガスを導入しても良い。この場合、原料ガス発生源5とマスフローコントローラー(不図示)との間に、成膜チャンバーの数に応じた分岐配管を設ける。ここで、マスフローコントローラーは成膜チャンバーの数と同数設置する。いずれにしても、各成膜チャンバーに所定量の原料ガスを供給することができればよい。
原料ガスとしては、例えば、DLC膜を成膜する場合、常温で基体又は液体の脂肪族炭化水素類、芳香族炭化水素類、含酸素炭化水素類、含窒素炭化水素類などが使用される。特に炭素数が6以上のベンゼン、トルエン、o−キシレン、m−キシレン、p−キシレン、シクロヘキサン等が望ましい。食品等の容器に使用する場合には、衛生上の観点から脂肪族炭化水素類、特にエチレン、プロピレン又はブチレン等のエチレン系炭化水素、又は、アセチレン、アリレン又は1−ブチン等のアセチレン系炭化水素が好ましい。これらの原料は、単独で用いても良いが、2種以上の混合ガスとして使用するようにしても良い。さらにこれらのガスをアルゴンやヘリウムの様な希ガスで希釈して用いる様にしても良い。また、ケイ素含有DLC膜を成膜する場合には、Si含有炭化水素系ガスを使用する。
プラスチック容器の内表面に形成されるDLC膜とは、iカーボン膜又は水素化アモルファスカーボン膜(a−C:H)と呼ばれる膜のことであり、硬質炭素膜も含まれる。またDLC膜はアモルファス状の炭素膜であり、SP3結合も有する。このDLC膜を成膜する原料ガスとしては炭化水素系ガス、例えばアセチレンガスを用い、Si含有DLC膜を成膜する原料ガスとしてはSi含有炭化水素系ガスを用いる。このようなDLC膜をプラスチック容器の内表面に形成することにより、炭酸飲料や発泡飲料等の容器としてワンウェイ、リターナブルに使用可能な容器を得る。
成膜チャンバー1内の収容空間は配管(不図示)及び真空バルブを介して真空ポンプ(不図示)に接続されている。この真空ポンプは排気ダクト(不図示)に接続されている。複数の成膜チャンバーがある場合は、一つの真空ポンプに排気系統を集約して排気を行なっても良く、或いは複数の真空ポンプで分担して排気を行なっても良い。
高周波供給手段は、外部電極に具設した固定整合器(不図示)と、固定整合器に接続した高周波電源(不図示)とからなる。高周波電源は、プラスチック容器内で原料ガスをプラズマ化するためのエネルギーである高周波を発生させるものである。マッチングを素早く行ない、プラズマ着火に要する時間を短縮させるために、トランジスタ型高周波電源であり、且つ周波数可動式か或いは電子式でマッチングを行なう高周波電源であることが好ましい。高周波電源の周波数は、1000kHz〜1000MHzであるが、例えば、工業用周波数である13.56MHzのものを使用する。
また外部電極6に高周波電力を供給する替わりに、容器内部に向けてマイクロ波を供給して原料ガスをプラズマ化しても良い。この場合は、原料ガス導入管は内部電極と兼用としないが、同様に汚れが付着形成されるので、本実施形態に係る清掃方法と装置により同様に汚れを除去することが出来る。
上記の実施形態においては、主として圧縮エアーを噴射して汚れを除去する実施形態を示したが、図51に示すように、圧縮エアーの替わりに超音波エアーを原料導入管に付着した汚れに向けてブローしても良い。図51は、圧縮エアー噴射手段の替わりに超音波エアーブロー手段を設けた時の成膜チャンバー上部の部分概念図である。超音波エアーブロー手段用の空気供給手段14から超音波エアーブロー手段7に空気が供給され、超音波エアーブロー手段7に具備した超音波信号器により空気に超音波による振動が与えられて、ブロー部(不図示)から超音波エアーが汚れに向けてブローされる。これにより、圧縮エアーを噴射した場合と同様に汚れを除去することが出来る。汚れは超音波エアーブロー手段7に備え付けた吸引排出部(不図示)につながる吸引排出手段4により吸引除去される。吸引排出部は超音波エアーのブロー部よりも上方に設けることが好ましく、より好ましくは超音波エアーのブロー部よりも上方で原料ガス導入管の外側周囲に設ける。圧縮エアーの噴射の場合と同様に、原料ガス導入管の下から上への軸方向について、ブロー部、吸引排出部、第2ブロー部の順に配置することがより好ましい。より好ましくは、ブロー部、吸引排出部、第2ブロー部はそれぞれ原料ガス導入管の外側周囲に設ける。また、図51では、超音波エアーのブローは一方向からのブローの形態を示したが、原料ガス導入管の軸について求心方向からブローすることがより好ましい。
◎内部電極を兼ねた原料ガス導入管のクリーニング評価実験その1
[チャンバー内エアーブロー方式]
次に、プラスチック容器の内表面にCVD膜を形成後、原料ガス導入管をプラスチック容器内から抜き出す過程で、原料ガス導入管の外表面に付着形成された炭素粉を主成分とする汚れに向けて圧縮エアーを噴射するとともに該圧縮エアーの噴射によって原料ガス導入管外表面から除去された汚れが成膜チャンバー及びCVD膜を形成したプラスチック容器側に移行しないように強力な吸引排出手段により前記汚れを成膜チャンバー系外に排出させる機構について具体的に述べる。図1に示した装置を用いて、下記の条件にてクリーニング評価を行なった。
▲1▼ 成膜プロセス条件
a)真空系
到達圧力は6.65 Pa、成膜圧力は26.6 Paとした。ここで圧力は排気マニホールドの真空度である。
b)ガス供給系
ガス種はC22(アセチレン)とし、ガス流量は50sccmとした。成膜圧力到達後、成膜開始までのガス安定化時間を1.0秒とした。
c)RF(高周波)供給系
RF出力は400W、周波数は13.56MHz、放電時間は3.0秒とした。
▲2▼ クリーニング条件
a)圧縮エアー噴射系(エアー供給系)
エアー供給圧力は0.3MPa、エアー供給流量は170l/分とした。
b)吸引排出系(ダスト排出系)
排気流量を180l/分とした。
c)内部電極を兼ねた原料ガス導入管の昇降条件
シリンダ昇降スピードを上昇時約1.1秒、降下時約0.5秒とした。昇降のストローク長は295mmとした。
▲3▼ ワーク(内部電極仕様)
a)BA管サイズは直径6.35mmとした。
b)内部電極の表面処理はAu合金メッキとした。
▲4▼ 測定項目
a)内部電極の光学顕微鏡観察(内部電極拡大写真(50倍))を行った。観察箇所は4ヶ所(底部、胴部、ボトル口元部、排気マニホールド部)とした。観察回数は5回(初期状態−1日目(501回)−2日目(2000回)−3日目(4500回)−4日目(7000回))とした。
b)内部電極の表面抵抗値を測定した。測定箇所は4ヶ所(底部、胴部、ボトル口元部、排気マニホールド部)とした。測定回数は5回(初期状態−1日目(501回)−2日目(2000回)−3日目(4500回)−4日目(7000回))とした。ここで、測定ポイント円周上にて膜の有無が有る為、参考寸法とする。
a),b)における測定ポイントA、B、C、Dは次の通りとする。A部は底部(内部電極先端から10mm上部)。ここで内部電極先端は、底電極から25mm上部とした。B部は胴部(Aから60mm上部)とした。C部は口元部(Bから100mm上部)とした。D部は排気マニホールド部(Cから60mm上部)とした。図39に測定ポイントの位置関係を示した。
c)反射波の測定
高周波出力は400W、成膜時間は3.0秒で行ない、測定バッチは1,100,…………………,7000バッチとした。
d)ボトルサンプリング
バリア性測定用サンプリングは、1,500,…………………,7000バッチとした。膜厚目視用サンプリングは1,100,…………………,7000バッチとした。
▲5▼ 実験結果
a)内部電極の光学顕微鏡観察
500バッチ終了後については次の通りである。図3は500バッチ終了後の内部電極写真、図4は500バッチ終了後の内部電極底部拡大写真(50倍)A部、図5は500バッチ終了後の内部電極胴部拡大写真(50倍)B部、図6は500バッチ終了後の内部電極ボトル口元部拡大写真(50倍)C部、図7は500バッチ終了後の内部電極排気マニホールド部拡大写真(50倍)D部をそれぞれ示す。
2000バッチ終了後については次の通りである。図8は内部電極写真、図9は2000バッチ終了後の内部電極底部拡大写真(50倍)A部、図10は2000バッチ終了後の内部電極胴部拡大写真(50倍)B部、図11は2000バッチ終了後の内部電極ボトル口元部拡大写真(50倍)C部、図12は2000バッチ終了後の内部電極排気マニホールド部拡大写真(50倍)D部をそれぞれ示す。
4500バッチ終了後については次の通りである。図13は4500バッチ終了後の内部電極写真、図14は4500バッチ終了後の内部電極底部拡大写真(50倍)A部、図15は内部電極胴部拡大写真(50倍)B部、図16は4500バッチ終了後の内部電極ボトル口元部拡大写真(50倍)C部をそれぞれ示す。ここで、内部電極排気マニホールド部拡大写真(50倍)D部は画像データ破損の為、図面の添付はない。
7000バッチ終了後については次の通りである。図17は7000バッチ終了後の内部電極写真、図18は7000バッチ終了後の内部電極底部拡大写真(50倍)A部、図19は7000バッチ終了後の内部電極胴部拡大写真(50倍)B部、図20は7000バッチ終了後内部電極のボトル口元部拡大写真(50倍)C部、図21は7000バッチ終了後内部電極の排気マニホールド部拡大写真(50倍)D部をそれぞれ示す。
b)内部電極表面抵抗値測定
表1に表面抵抗値を示した。
c)反射波の測定
表2に反射波の測定値を示す。反射波が小さいほどプラズマが安定的に発生していることを示す。

Figure 0003595334
Figure 0003595334
d)ボトルサンプリング
膜厚目視用サンプリング(1,100,…………………,7000バッチ)について、目視観察したところ、膜厚のバラツキは感じられなかった。バリア性測定用サンプリング(1バッチと7000バッチ)についてバリア性を測定したところ、差異はなかった。
▲6▼ まとめ
a)内部電極表面状態(拡大写真参照)
500バッチ目以降、膜の付着状態は7000バッチ終了まで大きな変化は見られなかつた。排気マニホールド部、口元部に膜(汚れ)が集中して付着していた。底部、胴部では膜(汚れ)の密度は薄い。排気マニホールド部の膜(汚れ)の密着度は弱く、はがれやすい。
b)内部電極表面抵抗値
排気マニホールド部、口元部では放電回数が少ないうちから表面が絶縁化されている。底部、胴部では初期状態から7000バッチ終了まで大きな変化は見られなかった。
c)反射波、マッチングポイント
反射波は初期から7000バッチ終了まで4〜7Wに安定していた。マッチングポイントにおいても初期から7000バッチまで安定していた。放電状態も全体を通して安定していた(覗き窓から目視で確認による)。
a)、b)、c)の結果から、7000バッチ目までは常に安定放電及び安定成膜が出来た。
次に、本発明の他の実施例である内部電極クリーニング評価実験について説明する。
◎内部電極を兼ねた原料ガス導入管のクリーニング評価実験その2
[チャンバー外超音波エアーブロー方式]
図51及び図22に示した装置を用いて実験を行なった。図22(a)〜(e)に示すように成膜終了時(a参照)からクリーニングの開始が行なわれる(b参照)。超音波ユニット(超音波エアーブロー手段)が前進して、内部電極に付着形成された汚れに対して超音波エアーをブローする。内部電極が上昇し超音波エアーブローにより内部電極の先端(最下部位置)まで清掃する(c参照)。この清掃は内部電極が上昇する間に行なわれる。内部電極が最上段位置から降下時に超音波ユニットは内部電極から後退する(d参照)。最後に内部電極が降下してプラスチック容器内に収容され、成膜チャンバーは密封状態となる(e参照)。
▲1▼ 成膜プロセス条件
a)真空系
チャンバー内エアーブロー方式と同様とした。
b)ガス供給系
チャンバー内エアーブロー方式と同様とした。
c)RF(高周波)供給系
チャンバー内エアーブロー方式と同様とした。
▲2▼ クリーニング条件
a)超音波エアーブロー系(エアー供給系)
エアー供給圧力は0.3MPa、エアー供給流量は160l/分とした。
b)吸引排出系(ダスト排出系)
排気流量を180l/分とした。
c)超音波の周波数:
周波数:20kHz〜4MHz。本例では100kHzで行なった。
d)内部電極を兼ねた原料ガス導入管の昇降条件
シリンダ昇降スピードを上昇時約0.7秒、降下時約0.9秒とした。昇降のストローク長は295mmとした。
▲3▼ ワーク(内部電極仕様)
チャンバー内エアーブロー方式と同様とした。
▲4▼ 測定項目
a)内部電極の光学顕微鏡観察は、チャンバー内エアーブロー方式と同様とした。
b)内部電極の表面抵抗値を測定した。ここでチャンバー内エアーブロー方式と同様とした。
c)反射波の測定
高周波出力は400W、成膜時間は3.0秒で行ない、測定バッチは1,100,…………………,7000バッチとした。
d)ボトルサンプリング
チャンバー内エアーブロー方式と同様とした。
▲5▼実験結果
a)内部電極の光学顕微鏡観察
500バッチ終了後については次の通りである。図23は500バッチ終了後の内部電極写真を示す。なお、A、B、C及びD各部の拡大写真は添付せず。
2000バッチ終了後については次の通りである。図24は2000バッチ終了後の内部電極写真、図25は2000バッチ終了後の内部電極底部拡大写真(50倍)A部、図26は2000バッチ終了後の内部電極胴部拡大写真(50倍)B部、図27は内部電極ボトル口元部拡大写真(50倍)C部、図28は2000バッチ終了後の内部電極排気マニホールド部拡大写真(50倍)D部をそれぞれ示す。
4500バッチ終了後については次の通りである。図29は4500バッチ終了後の内部電極写真、図30は4500バッチ終了後の内部電極底部拡大写真(50倍)A部、図31は4500バッチ終了後の内部電極胴部拡大写真(50倍)B部、図32は4500バッチ終了後の内部電極ボトル口元部拡大写真(50倍)C部、図33は4500バッチ終了後の内部電極排気マニホールド部拡大写真(50倍)D部をそれぞれ示す。
7000バッチ終了後については次の通りである。図34は7000バッチ終了後の内部電極写真、図35は7000バッチ終了後の内部電極底部拡大写真(50倍)A部、図36は7000バッチ終了後の内部電極胴部拡大写真(50倍)B部、図37は7000バッチ終了後の内部電極ボトル口元部拡大写真(50倍)C部、図38は7000バッチ終了後の内部電極排気マニホールド部拡大写真(50倍)D部をそれぞれ示す。
b)内部電極表面抵抗値測定
表3に表面抵抗値を示した。
c)反射波
表4に反射波の測定値を示す。
d)ボトルサンプリング
膜厚目視用サンプリング(1,100,…………………,7000バッチ)について、目視観察したところ、膜厚のバラツキは感じられなかった。バリア性測定用サンプリング(1バッチと7000バッチ)についてバリア性を測定したところ、差異はなかった。
Figure 0003595334
Figure 0003595334
▲6▼まとめ
a)内部電極表面状態
電極の底部、口元部、排気マニホールド部では超音波エアーが届いていないため膜(汚れ)の付着が明らかに多い。超音波エアーが近距離(5mm)で当たっている部分では、吹き付け面と吹き付け裏面での膜(汚れ)の付着量に大きな差は見られなかった。
b)内部電極表面抵抗値測定
底部、胴部では抵抗値に大きな変化は見られなかった。口元部、排気マニホールド部では放電を重ねる度に絶縁化が進んでいる。超音波エアーが全く当たっていない為、顕著に悪化が早い。
c)反射波・マッチングポイント
反射波は初期から7000バッチ終了まで4〜6Wで安定していた。約4000バッチ以降、放電が不安定になることが確認された(プラズマの目視観察によると放電光が若干ちらつく程度)。その際、反射波も9→25→6→5のように大きくふらつく。マッチングポイントは初期から7000バッチ終了まで安定していた。
◎比較例
内部電極をクリーニングしない場合の放電状況・電極の状態を確認し、電極クリーニングの効果を検証した。実験は図1に示したものと同様の装置を用いて行なったが、クリーニング装置を作動させない条件とした。
▲1▼成膜プロセス条件
表5に条件をまとめた。
Figure 0003595334
▲2▼ワーク(内部電極仕様)
チャンバー内エアーブロー方式と同様とした。
▲3▼ 測定項目
a)内部電極の光学顕微鏡観察(内部電極拡大写真(50倍))を行った。観察箇所は4ヶ所(底部、胴部、ボトル口元部、排気マニホールド部)とした。ただし観察回数は2回とした。すなわち、500バッチと600バッチである。600バッチは放電不可能状態となっており、これを上限成膜回数とした。
b)内部電極の表面抵抗値を測定した。測定箇所は4ヶ所(底部、胴部、ボトル口元部、排気マニホールド部)とした。ただし観察回数は2回とした。すなわち、500バッチと600バッチである。600バッチは放電不可能状態となっており、これを上限成膜回数とした。
a),b)における測定ポイントA、B、C、Dはチャンバー内エアーブロー方式と同様とした。
c)反射波の測定
高周波出力は400W、成膜時間は3.0秒で行ない、測定バッチは1,50,100,…………………,600バッチとした。
d)ボトルサンプリング
バリア性測定用サンプリングは、1,500バッチとした。膜厚目視用サンプリングは1,100,…………………,500バッチとした。
▲4▼実験結果
a)内部電極の光学顕微鏡観察
500バッチ終了後については次の通りである。図40は比較例を示すノンクリーニング500バッチ終了後の内部電極写真、図41は比較例を示すノンクリーニング500バッチ終了後の内部電極底部拡大写真(50倍)A部、図42は比較例を示すノンクリーニング500バッチ終了後の内部電極胴部拡大写真(50倍)B部、図43は比較例を示すノンクリーニング500バッチ終了後の内部電極ボトル口元部拡大写真(50倍)C部、図44は比較例を示すノンクリーニング500バッチ終了後の内部電極排気マニホールド部拡大写真(50倍)D部をそれぞれ示す。
600バッチ終了後については次の通りである。図45は比較例を示すノンクリーニング600バッチ終了後の内部電極写真、図46は比較例を示すノンクリーニング600バッチ終了後の内部電極底部拡大写真(50倍)A部、図47は比較例を示すノンクリーニング600バッチ終了後の内部電極胴部拡大写真(50倍)B部、図48は比較例を示すノンクリーニング600バッチ終了後の内部電極ボトル口元部拡大写真(50倍)C部、図49は比較例を示すノンクリーニング600バッチ終了後の内部電極排気マニホールド部拡大写真(50倍)D部をそれぞれ示す。
b)内部電極表面抵抗値測定
表6に表面抵抗値を示した。
c)反射波
表7に反射波の測定値を示す。
d)ボトルサンプリング
バリア性測定用サンプリング(1バッチと500バッチ)についてバリア性を測定したところ、差異はなかった。膜厚目視用サンプリング(1,100,…・…・…・…・…,500バッチ)について、目視観察したところ、膜厚のバラツキは感じられなかった。
▲5▼まとめ
a)内部電極表面状態
500バッチ終了時点で多くの膜(汚れ)が付着していた。排気マニホールド部、口元部に膜(汚れ)が集中して付着していた。
b)内部電極表面抵抗値測定
500バッチ終了時点でC部(口元部)、D部(マニホールド部)の電気抵抗が大きい値を示していた。放電不可の600バッチの電極ではA〜Dのすべての個所で絶縁化されていた。
c)反射波・マッチングポイント
50バッチ程度までは安定した反射波を示していた(4〜6W)。100バッチ以降、反射波の乱れが確認されるようになった。300バッチ以降、反射波が乱れる割合が大きくなった(約8割程度)。約600バッチ成膜した時点で放電不可となる。電極を新品に交換し放電すると安定した放電が起きるので電極に付着した膜(汚れ)が放電を妨げる原因であると推測できる。
チャンバー内エアーブロー方式(実施例その1)及びチャンバー外超音波エアーブロー方式(実施例その2)とノンクリーニング(比較例)とを比較すると、本実施形態にかかる内部電極クリーニングの優位性が確認できた。
Figure 0003595334
Figure 0003595334
Technical field
The present invention uses a CVD (Chemical Vapor Deposition) method to deposit a CVD film, particularly a carbon film such as a DLC (diamond-like carbon) film or a polymer-like amorphous carbon film, or a Si—C— film on the inner surface of a plastic container. The present invention relates to a method of cleaning a raw material gas introduction pipe used in a CVD film forming apparatus for forming a silica film or the like containing H—O and a device therefor.
Background art
For example, JP-A-8-53117 discloses a deposition apparatus using a CVD method, particularly a plasma CVD method, for depositing a DLC film on the inner surface of a plastic container for the purpose of improving gas barrier properties and the like. Further, Japanese Patent Application Laid-Open No. 10-258825 discloses an apparatus for mass-producing DLC film-coated plastic containers and a method for producing the same. Further, Japanese Patent Application Laid-Open No. Hei 10-226888 discloses a manufacturing apparatus and a manufacturing method of a DLC film-coated plastic container capable of coating a DLC film on a container having a protrusion protruding outward from an outer surface without danger. Have been.
In JP-A-8-53117, an internal electrode of a manufacturing apparatus for a DLC film-coated plastic container is formed of a conductive material, and also serves as a pipe for introducing a raw material gas. This internal electrode has a pipe shape having a source gas supply port at the end.
Disclosure of the invention
By the way, in a conventional manufacturing apparatus such as a manufacturing apparatus disclosed in Japanese Patent Application Laid-Open No. 8-53117, when a DLC film is formed on an inner surface of a plastic container, a raw material gas introduction pipe, which is one of members constituting the manufacturing apparatus, is formed. Dirt containing carbon powder as a main component (hereinafter simply referred to as “dirt”) adheres to the outer surface and the inner surface of the (internal electrode). For this reason, when a large number of DLC film-coated bottles are manufactured by repeatedly forming a DLC film on the inner surface of a plastic container, for example, a PET bottle (a container made of polyethylene terephthalate resin), contamination of the raw material gas introduction pipe may occur. Accumulates and gradually thickens. When the dirt reaches a certain thickness (for example, a thickness of about 5 μm), the dirt is peeled off from the source gas introduction pipe. The peeled-off dirt falls into the PET bottle, and as a result, the dirt falling inside the PET bottle causes a portion where the film is not formed in the PET bottle, lowers the gas barrier property, and becomes a defective product. .
On the other hand, the following method can be considered to prevent the dirt from peeling off inside the PET bottle. In other words, a method in which the manufacturing apparatus is disassembled before the dirt is peeled off, the raw material gas introduction pipe is removed, and the outer surface and the inner surface of the raw material gas introduction pipe to which the dirt is attached are cleaned by a file, etc. It is. By cleaning the outer surface and the inner surface of the raw material gas introduction pipe in this way, it should be possible to prevent dirt from being peeled off inside the PET bottle.
By using such a method, it is possible to prevent dirt from peeling off inside the PET bottle. However, if the dirt is not removed approximately every 200 to 400 coatings, the quality of the plastic container coated with the DLC film deteriorates. Therefore, the raw material gas introducing pipe must be frequently disassembled and cleaned. Then, the operation rate of the DLC film forming apparatus is significantly reduced.
Further, if dirt adheres to the source gas introduction pipe (internal electrode), the plasma discharge becomes unstable and the discharge is stopped.
Therefore, there has been a demand for a cleaning method and an apparatus for cleaning a source gas inlet pipe without lowering the operation rate of the apparatus.
An object of the present invention is to remove contaminants in a non-contact state with respect to a source gas introduction pipe by jetting compressed air or blowing ultrasonic air when dirt is formed on the inner and outer surfaces of the source gas introduction pipe. At the same time, the dirt can be collected so as not to be transferred to a plastic container or a film forming chamber. The reason for removing the dirt in a non-contact manner is to prevent a device failure such as a deformation of the raw material gas introduction pipe and to prevent the formation of an unfilmed portion due to the adhesion of dirt. By optimizing the direction of compressed air injection, the direction of ultrasonic air blow, the position of the suction / discharge unit, and the size relationship between the amount of air and the amount of suction / discharge, the film formation chamber and the plastic container after film formation can be used. The purpose is to minimize the transfer of dirt.
At the same time, the object of the present invention is to shorten the time required for film formation by the CVD film forming apparatus by optimizing the timing for removing the soil, that is, completing the work of collecting the soil during the operation of pulling out the source gas introduction pipe. I do. Here, it is an object to prevent a strong adhesion of dirt by cleaning the source gas introduction pipe every time a film is formed. This is because adhesion becomes strong due to accumulation of dirt.
Accordingly, an object of the present invention is to extend the interval of disassembly and inspection of the DLC film forming apparatus, to enable continuous operation, and not to reduce the production operation efficiency of the CVD film forming apparatus.
The present invention also relates to a source gas introduction pipe used in a rotary plasma CVD film forming apparatus, which is a mass production machine that performs a manufacturing cycle while rotating a turntable having a plurality of film forming chambers arranged in a circle. In the same manner, it is also possible to prevent the solid fixation of the dirt on the outer surface of the raw material gas introduction pipe, remove the dirt in a short time and easily, extend the interval of disassembly and inspection, and improve the production operation efficiency. The purpose is to.
According to the present invention, SUS304 having a polished surface is used as a base material used for a raw material gas introduction pipe also serving as an internal electrode, or a material of hard gold alloy plating which is a surface treatment thereof is made of 99.7Au-0.3Co, 99.8Au. It is an object of the present invention to limit the acid hard gold plating of -0.2Ni or the like to prevent a reaction from occurring between the dirt and the surface of the raw material gas introducing pipe and to make it easier to wipe off and remove the dirt.
The cleaning method and apparatus according to the present invention perform an operation of extracting a source gas introduction pipe from a film formation chamber regardless of a normal CVD film formation apparatus or a rotary type CVD film formation apparatus, and use this operation to remove dirt. An object of the present invention is to propose a dirt prevention process for wiping.
A method for cleaning a source gas introduction pipe used in a CVD film forming apparatus according to the present invention is as follows. A plastic container is housed in a film forming chamber capable of being sealed and provided with an external electrode function, and is vertically movable inserted into the plastic container. When a source gas is introduced from a source gas introduction tube also serving as an internal electrode, and the source gas is turned into plasma to form a CVD (chemical vapor deposition) film on the inner surface of the plastic container, the source gas is introduced outside the source gas introduction tube. In the method for cleaning a raw material gas introduction pipe for cleaning dirt mainly composed of carbon powder adhered to a surface, a CVD film is formed on an inner surface of the plastic container, and then the raw material gas introduction pipe is removed from the inside of the plastic container. In the process of extracting, the compressed air is injected toward the dirt, and the dirt removed by the injection of the compressed air is removed by the film forming chamber and the CVD. It characterized in that for discharging the dirt to the outside of the film forming chamber by the suction discharging means so as not to shift to the formed plastic container side.
In the method for cleaning a raw material gas introduction pipe used in a CVD film forming apparatus according to the present invention, the compressed air is supplied from a compressed air injection part provided at an upper portion or an upper position of the film formation chamber in a centrifugal direction of the raw material gas introduction pipe. Is preferably injected. Here, the compressed air is injected at a predetermined interval around the outer periphery of the source gas introduction pipe (radially about the axis of the source gas introduction pipe) and is provided above or above the film forming chamber. Compressed air may be injected from the injection section toward the centripetal direction of the source gas introduction pipe.
Further, in the method for cleaning a raw material gas introduction pipe used in the CVD film forming apparatus according to the present invention, the compressed air and the dirt are suctioned and removed by the suction and discharge means from a suction and discharge part provided above the injection part. Is preferred.
In the method for cleaning a source gas introduction pipe used in a CVD film forming apparatus according to the present invention, a compressed air injection unit is provided above or above the film formation chamber, and a suction discharge unit is provided above the injection unit. Is provided above the suction / discharge unit, and a second injection unit for compressed air is provided. The injection unit injects compressed air from bottom to top, and the second injection unit compresses from top to bottom. It is preferable that the suction / discharge unit sucks and removes the compressed air and the dirt while injecting air. That is, the compressed air jets are arranged so as to face each other in a vertical relationship around the outer periphery of the raw material gas introduction pipe, and one of the compressed air jet units provided at the upper portion or the upper position of the film forming chamber is directed from top to bottom, and the other is Inject compressed air from bottom to top.
Here, in the method of cleaning a raw material gas introduction pipe used in the CVD film forming apparatus according to the present invention, it is more preferable that the amount of suction and exhaust by the suction and discharge means is larger than the amount of compressed air supplied. Therefore, the suction / discharge means performs strong suction / discharge.
Further, in the method of cleaning a raw material gas introduction pipe used in a CVD film forming apparatus according to the present invention, the CVD film is formed in a plurality of the film forming chambers arranged in a circle on a turn table, respectively. During one rotation, the process of extracting the raw material gas introduction pipe from the plastic container removes the dirt mainly composed of carbon powder attached to the outer surface of the raw material gas introduction pipe by spraying compressed air. Preferably, the step of sucking and discharging the removed dirt out of the system of the film forming chamber is preferably completed.
A method for cleaning a source gas introduction pipe used in a CVD film forming apparatus according to the present invention is as follows. A plastic container is housed in a film forming chamber capable of being sealed and provided with an external electrode function, and is vertically movable inserted into the plastic container. When a source gas is introduced from a source gas inlet tube also serving as an internal electrode and the source gas is turned into plasma to form a CVD film on the inner surface of the plastic container, the source gas is adhered to the outer surface of the source gas inlet tube. In the method for cleaning a raw material gas introduction pipe for cleaning dirt containing carbon powder as a main component, a step of forming a CVD film on an inner surface of the plastic container and then removing the raw material gas introduction pipe from the inside of the plastic container may include the step of removing the dirt. The ultrasonic air is blown toward and the dirt removed by the ultrasonic air blow forms the film forming chamber and the CVD film. The suction and discharge means so as not to shift to a plastic container side, characterized in that for discharging the dirt to the outside of the deposition chamber.
In the method for cleaning a source gas introduction pipe used in a CVD film forming apparatus according to the present invention, the source gas introduction pipe may be moved from an ultrasonic air blow section provided at an upper portion or an upper position of the film formation chamber in a centripetal direction of the source gas introduction pipe. Preferably, sonic air is blown. Here, the blowing of the ultrasonic air was arranged at predetermined intervals around the outer periphery of the source gas introduction pipe (radially about the axis of the source gas introduction pipe), and was provided above or above the film forming chamber. Ultrasonic air may be blown from the ultrasonic air blow section toward the centripetal direction of the source gas introduction pipe.
In the method for cleaning a raw material gas introduction pipe used in a CVD film forming apparatus according to the present invention, the ultrasonic air and the dirt are suctioned and removed by the suction / discharge means from a suction / discharge unit provided above the blow unit. Is preferred.
Further, in the method for cleaning a raw material gas introduction pipe used in a CVD film forming apparatus according to the present invention, a blow unit for ultrasonic air is provided above or above the film forming chamber, and a suction / discharge unit is provided above the blow unit. Is provided at a position above the suction / discharge unit, and a second blow unit of ultrasonic air is provided. The blow blows ultrasonic air from bottom to top and the second blow unit is from top to bottom. It is preferable that the suction / discharge unit sucks and removes the ultrasonic air and the dirt while blowing the ultrasonic air. That is, the blow of the ultrasonic air is arranged so as to face each other in a vertical relationship around the outer periphery of the source gas introduction pipe, and one of the blow parts of the ultrasonic air provided at the upper part or the upper position of the film forming chamber is arranged from top to bottom. Blow the ultrasonic air from the bottom to the top.
In the method for cleaning a raw material gas introduction pipe used in a CVD film forming apparatus according to the present invention, it is more preferable that the amount of suction and exhaust by the suction and discharge means is larger than the amount of air supplied by the ultrasonic air. Therefore, the suction / discharge means performs strong suction / discharge.
Further, in the method of cleaning a raw material gas introduction pipe used in a CVD film forming apparatus according to the present invention, the CVD film is formed in a plurality of the film forming chambers arranged in a circle on a turn table, respectively. During one rotation, the process of extracting the raw material gas introduction pipe from the plastic container removes the dirt mainly composed of carbon powder attached to the outer surface of the raw material gas introduction pipe by blowing ultrasonic air. Then, it is preferable to complete the step of sucking and discharging the removed dirt out of the system of the film forming chamber.
The apparatus for cleaning a raw material gas introduction pipe used in the CVD film forming apparatus according to the present invention accommodates a plastic container in a film forming chamber capable of being sealed and provided with the function of an external electrode, and is vertically movable inserted into the plastic container. When a source gas is introduced from a source gas inlet tube also serving as an internal electrode and the source gas is turned into plasma to form a CVD film on the inner surface of the plastic container, the source gas is adhered to the outer surface of the source gas inlet tube. In the apparatus for cleaning a raw material gas introduction pipe for cleaning dirt containing carbon powder as a main component, the raw material gas introduction pipe is extracted from the inside of the plastic container at a timing after a CVD film is formed on the inner surface of the plastic container. Source gas introduction pipe withdrawal means, compressed air injection means for injecting compressed air toward the dirt, and removed by injection of the compressed air. The dirt is characterized in that a suction and discharge means for discharging to the outside of the film-forming chamber so as not to shift to the film forming chamber and the plastic container side forming a CVD film.
In the apparatus for cleaning a source gas introduction pipe used in the CVD film forming apparatus according to the present invention, the injection part of the compressed air injected by the compressed air injection means may be provided at an upper or upper position of the film formation chamber. Is preferably arranged around the outside. In other words, the compressed air injection means may be formed by a tapered compressed air injection section arranged at a predetermined interval (radially about the axis of the source gas introduction pipe) around the outside of the source gas introduction pipe. good.
Further, in the apparatus for cleaning a source gas introduction pipe used in the CVD film forming apparatus according to the present invention, a suction / discharge unit for sucking and removing the compressed air and the dirt is provided at a position above the injection unit. Preferably, it is arranged around the outside.
Further, in the apparatus for cleaning a raw material gas introduction pipe used in the CVD film forming apparatus according to the present invention, the compressed air injection part injected by the compressed air injection means is provided with the raw material gas introduction part above or above the film forming chamber. A suction / discharge unit for suctioning and removing the compressed air and the dirt is disposed around the outside of the raw material gas introduction pipe at a position above the injection unit, and is injected by the compressed air injection unit. A second injection section of compressed air to be discharged is disposed around the outside of the source gas introduction pipe at a position above the suction / discharge section, and the compressed air injection direction of the injection section is directed upward and the second injection section is compressed. It is preferable to direct the air jet direction downward. In other words, the compressed air is injected in such a manner that one of the tapered compressed air injection portions arranged so as to face each other while the upper and lower relations of the outer periphery of the raw material gas introduction pipe are alternately changed is from top to bottom and the other is from bottom to top Formed.
The apparatus for cleaning a raw material gas introduction pipe used in the CVD film forming apparatus according to the present invention accommodates a plastic container in a film forming chamber capable of being sealed and provided with the function of an external electrode, and is vertically movable inserted into the plastic container. When a source gas is introduced from a source gas inlet tube also serving as an internal electrode and the source gas is turned into plasma to form a CVD film on the inner surface of the plastic container, the source gas is adhered to the outer surface of the source gas inlet tube. In the apparatus for cleaning a raw material gas introduction pipe for cleaning dirt containing carbon powder as a main component, the raw material gas introduction pipe is extracted from the inside of the plastic container at a timing after a CVD film is formed on the inner surface of the plastic container. Source gas introduction pipe withdrawing means, ultrasonic air blowing means for blowing ultrasonic air toward the dirt, and blowing of the ultrasonic air The dirt removed I is characterized in that a suction and discharge means for discharging to the outside of the film-forming chamber so as not to shift to the film forming chamber and the plastic container side forming a CVD film.
In the apparatus for cleaning a raw material gas introduction pipe used in a CVD film forming apparatus according to the present invention, a blow section of ultrasonic air blown by the ultrasonic air blowing means is disposed above or above the film forming chamber. Is preferred. Here, the ultrasonic air blowing means is disposed at a predetermined interval (radially about the axis of the source gas introduction pipe) around the outside of the source gas introduction pipe, and is provided at an upper portion or an upper position of the film forming chamber. It may be formed by a sound wave oscillator.
In the apparatus for cleaning a raw material gas introduction pipe used in the CVD film forming apparatus according to the present invention, it is preferable that the ultrasonic air and the suction / discharge for suctioning and removing the dirt are arranged at a position above the blow section.
In the apparatus for cleaning a raw material gas introduction pipe used in a CVD film forming apparatus according to the present invention, a blow unit of ultrasonic air blown by the ultrasonic air blowing means is disposed at an upper or upper position of the film forming chamber. A suction and discharge unit for sucking and removing the ultrasonic air and the dirt is disposed at a position above the blow unit, and a second blow unit of the ultrasonic air blown by the ultrasonic air blow unit is suctioned and discharged. It is preferable that the air blow direction of the blow unit is directed upward and the blow direction of the ultrasonic air of the second blow unit is directed downward. That is, the ultrasonic air blow means is disposed so that the vertical relationship around the outer periphery of the raw material gas introduction pipe is alternately changed and opposed to each other, and the ultrasonic air blow from the ultrasonic oscillator provided above or above the film forming chamber. One of the parts is formed from top to bottom and the other is formed from bottom to top.
As described below, when the source gas introduction pipe does not double as the internal electrode, the plasma generating means in the film forming chamber is performed by a microwave generator. That is, the method for cleaning the source gas introduction pipe used in the CVD film forming apparatus according to the present invention is such that a plastic container is housed in a sealable film formation chamber, and a vertically movable source gas introduction pipe inserted into the plastic container is used. When a raw material gas is introduced and the raw material gas is turned into plasma by microwaves to form a CVD film on the inner surface of the plastic container, the main component is carbon powder adhered to the outer surface of the raw material gas introduction pipe. In the method of cleaning a source gas introduction pipe for cleaning dirt, in a process of forming a CVD film on an inner surface of the plastic container and then extracting the source gas introduction pipe from the inside of the plastic container, compressed air is injected toward the dirt. Or, the dirt removed by blowing the compressed air or blowing the ultrasonic air while blowing the ultrasonic air is And wherein the discharging chamber and the dirt by suction exhaust means so as not to shift to a plastic container side forming a CVD film to the outside of the deposition chamber.
The apparatus for cleaning a raw material gas introduction pipe used in a CVD film forming apparatus according to the present invention is configured such that a plastic container is housed in a sealable film forming chamber, and a raw material gas is introduced from a vertically movable source gas introduction pipe inserted into the plastic container. Is introduced, and when the raw material gas is turned into plasma by microwaves to form a CVD film on the inner surface of the plastic container, dirt mainly composed of carbon powder adhered and formed on the outer surface of the raw material gas introduction pipe is removed. In a cleaning device for a source gas introduction pipe to be cleaned, a source gas introduction pipe extracting means for extracting the source gas introduction pipe from the inside of the plastic container at a timing after forming a CVD film on an inner surface of the plastic container; Compressed air injection means for injecting compressed air toward the dirt; and the dirt removed by the injection of the compressed air forms the film. Characterized by comprising a suction exhaust means for discharging to the outside of the film-forming chamber so as not to shift to a plastic container side forming the Yanba and CVD films.
The apparatus for cleaning a raw material gas introduction pipe used in a CVD film forming apparatus according to the present invention is configured such that a plastic container is housed in a sealable film forming chamber, and a raw material gas is introduced from a vertically movable source gas introduction pipe inserted into the plastic container. Is introduced, and when the raw material gas is turned into plasma by microwaves to form a CVD film on the inner surface of the plastic container, dirt mainly composed of carbon powder adhered and formed on the outer surface of the raw material gas introduction pipe is removed. In a cleaning device for a source gas introduction pipe to be cleaned, a source gas introduction pipe extracting means for extracting the source gas introduction pipe from the inside of the plastic container at a timing after forming a CVD film on an inner surface of the plastic container; Ultrasonic air blowing means for blowing ultrasonic air toward dirt, and the dirt removed by blowing the ultrasonic air. There is characterized in that a suction and discharge means for discharging to the outside of the film-forming chamber so as not to shift to a plastic container side formed with the film forming chamber and CVD films.
In the apparatus for cleaning a raw material gas introduction pipe used in the CVD film forming apparatus according to the present invention, the base material used for the raw material gas introduction pipe is SUS304 or SUS316 whose surface is polished, or a hard material whose surface is treated. It is preferable that the material of the gold alloy plating is an acidic hard gold plating such as 99.7Au-0.3Co and 99.8Au-0.2Ni.
In the present invention, the contaminants are formed quickly by injecting compressed air or blowing ultrasonic air in a non-contact state with respect to the contaminants mainly composed of carbon powder adhered and formed on the outer surface of the raw material gas introduction pipe. , And can be easily removed. There is no need to worry about deforming the raw material gas introduction pipe to remove dirt without contact. In addition, an appropriate vibration is applied to the pipe wall by the pressure of the compressed air, and the dirt can be effectively removed. Since the removed dirt is discharged to the outside by the suction / discharge means, the dirt peeled off from the surface of the source gas introduction pipe does not move to the film forming chamber and the plastic container. In particular, compressed air is injected upward from below, and the dirt is sucked and discharged together with the air at a position above the compressed air, so that dirt migrating to the film forming chamber and the plastic container can be minimized. When the compressed air is jetted downward from above, dirt easily migrates to the film forming chamber and the plastic container located below.
At the same time, the time required for film formation by the CVD film forming apparatus can be shortened by completing the work of collecting dirt during the operation of pulling out the source gas introduction pipe. In addition, the source gas introduction pipe is cleaned each time a film is formed, so that strong adhesion of dirt can be prevented.
Thus, the interval between disassembly and inspection of the DLC film forming apparatus is extended, and continuous operation is enabled, so that the manufacturing operation efficiency of the CVD film forming apparatus is not reduced.
In addition, the present invention can also easily remove the dirt while the turntable makes one rotation for the source gas introduction pipe used in the rotary type plasma CVD film forming apparatus, and can continuously perform the film forming operation. Operation is possible. Further, dirt can be easily removed in a short time, the interval between disassembly and inspection can be extended, and the production operation efficiency can be improved.
According to the present invention, SUS304 having a polished surface is used as a base material used for a raw material gas introduction pipe also serving as an internal electrode, or a material of hard gold alloy plating which is a surface treatment thereof is made of 99.7Au-0.3Co, 99.8Au. By limiting the plating to an acidic hard gold plating such as -0.2Ni or the like, no reaction occurs between the dirt and the surface of the raw material gas introduction pipe, and the dirt can be more easily wiped and removed.
[Brief description of the drawings]
FIG. 1 is a schematic view showing one embodiment of a device for cleaning a film forming chamber and a source gas introduction pipe of a CVD film forming apparatus according to the present invention.
2A and 2B are schematic views showing one embodiment of a cleaning device for a raw material gas introduction pipe used in a CVD film forming apparatus according to the present invention, wherein FIG. 2A is a longitudinal sectional view showing a relationship between a supply system and a discharge system, and FIG. () Is a cross-sectional view on the compressed air supply side, and (c) is a cross-sectional view on the discharge side of carbon powder and the like.
FIG. 3 shows a photograph of internal electrodes after 500 batches by the in-chamber compressed air blow method showing one embodiment of the present invention.
FIG. 4 is an enlarged photograph (50 ×) of the bottom portion of the internal electrode after 500 batches has been completed.
FIG. 5 shows an enlarged photograph (50 times) of part B of the internal electrode body after the completion of 500 batches.
FIG. 6 shows an enlarged photograph (50 ×) of the mouth portion of the internal electrode bottle after 500 batches are completed.
FIG. 7 shows an enlarged photograph (× 50) of an internal electrode exhaust manifold portion D after 500 batches.
FIG. 8 shows a photograph of the internal electrodes after 2,000 batches have been completed.
FIG. 9 shows an enlarged photograph (50 ×) of the bottom portion of the internal electrode after 2000 batches.
FIG. 10 is an enlarged photograph (50 ×) of the internal electrode body after the completion of 2000 batches.
FIG. 11 is a magnified photograph (50 times) of the mouth portion of the internal electrode bottle after 2,000 batches are completed.
FIG. 12 shows an enlarged photograph (× 50) of the internal electrode exhaust manifold section after the end of 2000 batches.
FIG. 13 shows an internal electrode photograph after the completion of 4500 batches.
FIG. 14 shows an enlarged photograph (50 ×) of the bottom portion of the internal electrode after completion of 4500 batches.
FIG. 15 shows a B portion (50x) of an enlarged photograph of the inner electrode body after completion of 4500 batches.
FIG. 16 shows an enlarged photograph (50 ×) of the mouth portion of the internal electrode bottle after completion of 4500 batches.
FIG. 17 shows an internal electrode photograph after the completion of 7000 batches.
FIG. 18 is an enlarged photograph (50 times) of the bottom portion of the internal electrode after the completion of 7000 batches.
FIG. 19 shows a B portion (50x) of an enlarged photograph of the internal electrode body after 7000 batches have been completed.
FIG. 20 shows an enlarged photograph (50 ×) of a portion C of a bottle mouth portion of the internal electrode after the completion of 7000 batches.
FIG. 21 is a magnified photograph (50 ×) of the exhaust manifold portion of the internal electrode after the completion of 7000 batches.
FIG. 22 is a schematic diagram showing an out-of-chamber ultrasonic air blow system which is another embodiment of the cleaning device for the raw material gas introduction pipe used in the CVD film forming apparatus according to the present invention. Indicates the status.
FIG. 23 shows a photograph of an internal electrode after 500 batches by an out-of-chamber ultrasonic air blow method showing another embodiment of the present invention.
FIG. 24 shows an internal electrode photograph after the completion of 2000 batches.
FIG. 25 shows an enlarged photograph (50 times) of the bottom portion of the internal electrode after 2000 batches.
FIG. 26 is an enlarged photograph (50 ×) of the internal electrode body after the completion of 2000 batches.
FIG. 27 shows an enlarged photograph (at a magnification of 50) of the mouth of the internal electrode bottle after 2000 batches.
FIG. 28 shows an enlarged photograph (× 50) of the internal electrode exhaust manifold section after the end of 2000 batches.
FIG. 29 shows an internal electrode photograph after the completion of 4500 batches.
FIG. 30 is an enlarged photograph (50 ×) of the bottom portion of the internal electrode after completion of 4500 batches.
FIG. 31 shows a B portion (50x) of an enlarged photograph of the inner electrode body after completion of 4500 batches.
FIG. 32 shows an enlarged photograph (50 ×) part C of the inner electrode bottle mouth after completion of 4500 batches.
FIG. 33 shows an enlarged photograph (50 ×) of the internal electrode exhaust manifold portion D after the completion of 4500 batches.
FIG. 34 shows an internal electrode photograph after the completion of 7000 batches.
FIG. 35 shows a part A of the enlarged bottom of the internal electrode (50 times) after the completion of 7000 batches.
FIG. 36 shows a B portion (50x) of an enlarged photograph of the internal electrode body after 7000 batches have been completed.
FIG. 37 is a magnified photograph (50 ×) of the internal electrode at the mouth of the bottle after 7000 batches have been completed.
FIG. 38 shows a D portion (50 ×) of an enlarged image of the exhaust manifold portion of the internal electrode after 7000 batches have been completed.
FIG. 39 is a diagram showing the positional relationship among the measurement points A, B, C, and D.
FIG. 40 shows an internal electrode photograph after 500 batches showing the comparative example.
FIG. 41 is an enlarged photograph (× 50) of an internal electrode bottom after 500 batches showing a comparative example.
FIG. 42 is a magnified photograph (50 ×) of the internal electrode body after 500 batches showing a comparative example.
FIG. 43 is an enlarged photograph (50 ×) of the internal electrode bottle mouth after completion of 500 batches showing a comparative example.
FIG. 44 is a magnified photograph (50 ×) of the internal electrode exhaust manifold part after completion of 500 batches showing a comparative example.
FIG. 45 shows a photograph of internal electrodes after 600 batches showing a comparative example.
FIG. 46 is an enlarged photograph (50 ×) of the bottom part of the internal electrode after 600 batches showing a comparative example.
FIG. 47 is a magnified photograph (50 ×) of the internal electrode body after the completion of 600 batches showing a comparative example.
FIG. 48 is a magnified photograph (50 ×) of an internal electrode bottle mouth after completion of 600 batches showing a comparative example.
FIG. 49 is a magnified photograph (50 ×) of an internal electrode exhaust manifold portion after 600 batches showing a comparative example, showing a D portion.
FIG. 50 is a schematic view showing a second embodiment of a film forming chamber and a raw material gas introduction pipe cleaning apparatus of the CVD film forming apparatus according to the present invention.
FIG. 51 is a partial conceptual view of the upper part of the film forming chamber when an ultrasonic air blowing means is provided instead of the compressed air injection means.
The reference numerals in the figure are as follows. 1 is a film forming chamber, 2 is a source gas introduction pipe (internal electrode), 3 is a compressed air injection means, 4 is a suction / discharge means, 5 is a source gas generation source, 6 is an external electrode, 7 is an ultrasonic air blow means, 8 is a plastic container, 9 is a lid, 9a is a lower lid, 9b is an upper lid, 10 is an insulator, 11 is a compressed air injection unit, 11a is a first injection unit, 11b is a second injection unit, and 12 is suction discharge. Reference numeral 13 denotes an O-ring, and 14 denotes air supply means for ultrasonic air blow means.
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments will be described with reference to the drawings, but the present invention is not limited to these embodiments. In addition, when members are common in the drawings, the same reference numerals are given. In the present embodiment, a description is given by taking as an example a source gas introduction pipe also serving as an internal electrode. However, the present invention is naturally applied to a source gas introduction pipe also serving as an internal electrode. In addition, the present cleaning method can be applied to the internal electrode in the case where the internal electrode and the raw material gas introduction tube are not used, similarly to the case of the raw material gas introduction tube.
First, a CVD film forming apparatus to which the present invention is applied will be outlined. FIG. 1 is a schematic view showing one embodiment of a device for cleaning a film forming chamber and a source gas introduction pipe of a CVD film forming apparatus according to the present invention. The CVD film forming apparatus according to the present invention includes: a film forming chamber 1; a raw material gas introducing pipe 2 also serving as an internal electrode for introducing a raw material gas to be plasmatized into a plastic container 8 accommodated in the film forming chamber 1; High-frequency supply means (not shown) for supplying high-frequency waves to the external electrode 6 of the membrane chamber 1, and compressed air for removing dirt mainly composed of carbon powder attached to the outer surface of the internal electrode (raw gas introduction pipe) 2 Injecting means 3 and powerful suction / discharge means 4 for sucking and removing dirt removed from the surface of source gas introduction pipe 2 so that dirt removed from the surface of film forming chamber 1 and plastic container 8 on which the CVD film is formed is not transferred. This is a plasma CVD film forming apparatus provided with: This CVD film forming apparatus is a device for supplying a high frequency to the external electrode 6 to turn the raw material gas into plasma in the plastic container 8 and form a CVD film on the inner surface of the plastic container 8. This CVD film forming apparatus may include one film forming chamber or a plurality of film forming chambers. When a plurality of film forming chambers are arranged, a batch type CVD film forming apparatus that simultaneously forms films in all the film forming chambers may be used, or a rotary type film forming apparatus in which a plurality of film forming chambers are installed on a turntable. May be used as a continuous type CVD film forming apparatus.
The film forming chamber 1 is composed of an external electrode 6 for accommodating a plastic container 8, a raw material gas introduction tube 2, which is arranged inside the plastic container 8 so as to be movable up and down and also serves as a grounded internal electrode, and a lid 9 which can be opened and closed. To form a sealable vacuum chamber.
The lid 9 is formed of a conductive member. Here, the lid 9 includes a lower lid 9a disposed above the film forming chamber 1 and an upper lid 9b disposed above the lower lid 9a. The upper lid 9b supports the raw material gas introduction pipe 2 also serving as an internal electrode and can be moved up and down. As a result, the raw gas introduction pipe 2 is integrally moved up and down by elevating the upper lid 9b. An insulator 10 is provided on the lower surface of the lid 9, and the internal electrode 2 and the external electrode 6 are insulated by the insulator 10 when the raw material gas introduction pipe 2 serving also as an internal electrode is inserted into the plastic container 8.
The raw material gas introduction pipe extracting means (not shown) is for extracting the raw material gas introduction pipe 2 from the inside of the plastic container 8 at a timing after forming the CVD film on the inner surface of the plastic container 8. This is a mechanism that is connected and raises and lowers the upper lid 9b.
The lower lid 9a and the upper lid 9b are sealed from the outside by an O-ring 13 disposed therebetween.
The lid 9 is provided with an opening that leads to a housing space in the external electrode 6. The source gas introduction pipe 2 is inserted into this opening. On the inner surface of the opening of the lid 9, there is provided a compressed air injection unit 11 for injecting the air supplied from the compressed air injection unit 3 toward the raw material gas introduction pipe 2. It is preferable that the injection unit 11 be tapered to generate strong compressed air. Further, a suction / discharge unit 12 for suctioning and removing the injected compressed air and the removed dirt together is provided on the inner surface of the opening of the lid 9. The suction / discharge unit 12 is connected to the suction / discharge unit 4. By the operation of the suction / discharge means 4, air is sucked using the suction / discharge unit 12 as a suction port. Here, it is preferable to inject compressed air upward from the injection unit 11 as shown in FIG. 1 and to draw in air from the suction / discharge unit 12 provided above the injection unit 11. By moving the compressed air upward, it is possible to prevent the transfer of dirt to the film forming chamber or the plastic container.
Here, FIG. 2 is a schematic view showing one embodiment of a device for cleaning a raw material gas introduction pipe used in the CVD film forming apparatus according to the present invention. First, reference is made to FIG. When the source gas introduction pipe (internal electrode) rises, compressed air passes through the inside of the lid 9 and is injected toward the source gas introduction pipe. The compressed air is injected in a centripetal direction about the axis of the raw material gas introduction pipe as shown in FIG. As a result, dirt adhering to the outer surface of the source gas introduction pipe can be uniformly removed. The removed dirt and compressed air are sucked and discharged above the jetting part as shown in FIG. This is to prevent the dirt from falling into the mouth and entering the inside of the container. The discharge is performed in a 360 ° direction about the axis of the raw material gas introduction pipe as shown in FIG.
The jetting unit and the suction / discharge unit provided on the lid may be in the following second mode. FIG. 50 is a schematic view showing a second embodiment of the cleaning apparatus for the film forming chamber and the source gas introduction pipe of the CVD film forming apparatus according to the present invention. In the apparatus according to the second embodiment, the injection section 11a of the compressed air injected by the compressed air injection means 3 is disposed above or above the film forming chamber 1 and around the outside of the source gas introduction pipe 2. Further, a suction / discharge unit 12 for suctioning and removing compressed air and dirt is disposed around the outside of the raw material gas introduction pipe 2 at a position above the injection unit 11a. Further, a second injection portion 11b of the compressed air injected by the compressed air injection means 3 is disposed around the outside of the raw material gas introduction pipe 2 at a position above the suction / discharge portion 12. Here, the compressed air injection direction of the injection unit 11a is directed upward and the compressed air injection direction of the second injection unit 11b is directed downward, and the air is suctioned and removed from the suction / discharge unit 12 disposed therebetween. Air and dirt can be removed without scattering.
In the first and second embodiments, the amount of suction and exhaust by the suction and discharge means 4 is set to be larger than the amount of compressed air supplied, so that compressed air and dirt can be further removed without scattering. Here, it is preferable that the suction and exhaust amount is 1.5 times or more the air supply amount of the compressed air.
A space is formed inside the external electrode 6, and this space is a housing space for housing a plastic container 8 to be coated, for example, a PET bottle which is a container made of polyethylene terephthalate resin. The accommodation space in the external electrode 6 is formed so as to accommodate the plastic container 8 accommodated therein. That is, the accommodation space is preferably formed to be slightly larger than the outer shape of the plastic container 8. That is, it is preferable that the inner wall surface of the housing space of the container has a shape that surrounds the vicinity of the outside of the plastic container 8, particularly a similar shape. However, when a bias voltage is applied to the inner surface of the plastic container 8, the inner wall surface of the housing space for the external electrodes does not need to have a shape surrounding the vicinity of the outside of the plastic container 8, and a gap may be provided.
The accommodation space in the external electrode 6 is sealed from the outside by an O-ring (not shown) arranged between the insulator 10 and the lid 9.
The source gas introduction tube 2 also serving as an internal electrode is disposed inside the external electrode 6 and inside the plastic container 8. The source gas introduction pipe 2 also serving as an internal electrode is supported by the upper lid 9b and is movable up and down together with the upper lid 9b. The distal end of the source gas introduction pipe 2 also serving as an internal electrode is disposed in a space inside the external electrode 6 and inside a plastic container 8 housed in the external electrode 6. A gas outlet is provided at the tip of the source gas introduction pipe 2. Further, the raw material gas introduction pipe 2 also serving as an internal electrode is grounded.
It is preferable that the raw material gas introduction pipe 2 also serving as an internal electrode is formed of a conductive tubular substrate plated with hard gold alloy. At this time, the conductive tubular substrate is preferably formed of SUS304 whose surface is polished. SUS304 is selected for reasons of corrosion resistance and high strength. Polishing is preferably performed by mechanical processing, and the mirror surface of the buff # 600 is preferably finished. In addition, it may be formed of SUS316.
Hard gold alloy plating is used to suppress the reaction with dirt. The plating thickness is preferably 2 to 10 μm, and the type of hard gold alloy plating is preferably acidic hard gold plating such as 99.7Au-0.3Co and 99.8Au-0.2Ni. Pure gold plating has the best corrosion resistance, but has poor mechanical strength such as abrasion resistance and hardness. Acid hard gold plating (99.7Au-0.3Co, 99.8Au-0.2Ni) is good as a plating material for internal metal because mechanical strength such as corrosion resistance, abrasion resistance and hardness is also improved. The hardness of other gold alloys (25 Ag, 20 Cu) is harder than the acid hard gold plating, but is inferior in wear resistance and corrosion resistance. The gold plating method is a method in which SUS304 machined by polishing (finished to a mirror surface of buff # 600) is electrolessly plated with nickel, and gold is plated thereon.
The inner diameter of the raw material gas introduction tube 2 also serving as an internal electrode is preferably 1.5 mm or less, more preferably 1.0 mm or less, in order to prevent plasma generation inside the tube of the internal electrode. By setting the inner diameter to 1.5 mm or less, it is possible to suppress the generation of dirt inside the tube of the internal electrode. The thickness of the internal electrode is preferably 1 mm or more to ensure mechanical strength.
By forming the raw material gas introduction tube 2 also serving as an internal electrode as described above, it is possible to prevent dirt from sticking and to stabilize plasma discharge.
The plastic container includes a container used with a lid, a stopper or a seal, or a container used in an open state without using them. The size of the opening is determined according to the contents. The plastic container includes a plastic container having an appropriate rigidity and a predetermined thickness, and a plastic container formed of a sheet material having no rigidity. The filling of the plastic container according to the present invention includes beverages such as carbonated beverages, fruit juice beverages, and soft drinks, as well as pharmaceuticals, agricultural chemicals, and dry foods that dislike moisture absorption.
The resin used for molding the plastic container is polyethylene terephthalate resin (PET) or polyethylene terephthalate copolyester resin (a copolymer using cyclohexane dimethanol instead of ethylene glycol as the alcohol component of the polyester is called PETG). , Eastman), polybutylene terephthalate resin, polyethylene naphthalate resin, polyethylene resin, polypropylene resin (PP), cycloolefin copolymer resin (COC, cyclic olefin copolymer), ionomer resin, poly-4-methylpentene-1 resin , Polymethyl methacrylate resin, polystyrene resin, ethylene-vinyl alcohol copolymer resin, acrylonitrile resin, polyvinyl chloride resin, polyvinylidene chloride resin, polyamide Resin, polyamideimide resin, polyacetal resin, polycarbonate resin, polysulfone resin, or ethylene tetrafluoride resin, acrylonitrile - styrene resins, acrylonitrile - butadiene - styrene resin, can be exemplified. Among them, PET is particularly preferred.
The source gas introduction pipe 2 introduces the source gas supplied from the source gas generation source 5 into the inside of the plastic container. This source gas generation source generates a hydrocarbon gas such as acetylene.
The source gas introduction pipe 2 supplies a source gas to the film forming chamber 1. When a plurality of film forming chambers are provided, the source gas generating source 5 may be provided for each film forming chamber, or the source gas may be introduced into all the film forming chambers by branching from one source gas generating source. . In this case, branch pipes corresponding to the number of film forming chambers are provided between the source gas generating source 5 and a mass flow controller (not shown). Here, the same number of mass flow controllers as the number of film forming chambers are provided. In any case, it suffices if a predetermined amount of source gas can be supplied to each film forming chamber.
As a source gas, for example, when a DLC film is formed, an aliphatic hydrocarbon, an aromatic hydrocarbon, an oxygen-containing hydrocarbon, a nitrogen-containing hydrocarbon, or the like which is a substrate or a liquid at room temperature is used. In particular, benzene, toluene, o-xylene, m-xylene, p-xylene, cyclohexane and the like having 6 or more carbon atoms are desirable. When used in containers such as food, from the viewpoint of hygiene, aliphatic hydrocarbons, particularly ethylene hydrocarbons such as ethylene, propylene or butylene, or acetylene hydrocarbons such as acetylene, allylene or 1-butyne. Is preferred. These raw materials may be used alone or may be used as a mixed gas of two or more kinds. Further, these gases may be used after being diluted with a rare gas such as argon or helium. When forming a silicon-containing DLC film, a Si-containing hydrocarbon-based gas is used.
The DLC film formed on the inner surface of the plastic container is a film called an i-carbon film or a hydrogenated amorphous carbon film (aC: H), and includes a hard carbon film. The DLC film is an amorphous carbon film, and SP Three It also has a bond. A hydrocarbon-based gas, for example, an acetylene gas is used as a source gas for forming the DLC film, and a Si-containing hydrocarbon-based gas is used as a source gas for forming the Si-containing DLC film. By forming such a DLC film on the inner surface of a plastic container, a container which can be used one-way and returnably as a container for carbonated beverages and sparkling beverages is obtained.
The accommodation space in the film forming chamber 1 is connected to a vacuum pump (not shown) via a pipe (not shown) and a vacuum valve. This vacuum pump is connected to an exhaust duct (not shown). When there are a plurality of film forming chambers, the evacuation system may be integrated into one vacuum pump to perform the evacuation, or the evacuation may be performed by a plurality of vacuum pumps.
The high-frequency supply means includes a fixed matching device (not shown) provided on the external electrode, and a high-frequency power supply (not shown) connected to the fixed matching device. The high-frequency power supply generates high-frequency power, which is energy for converting a raw material gas into plasma in a plastic container. In order to perform matching quickly and to reduce the time required for plasma ignition, it is preferable to use a transistor-type high-frequency power supply and a high-frequency power supply that performs matching with a variable frequency type or an electronic type. The frequency of the high-frequency power supply is 1000 kHz to 1000 MHz. For example, an industrial frequency of 13.56 MHz is used.
Instead of supplying high-frequency power to the external electrode 6, a microwave may be supplied toward the inside of the container to convert the source gas into plasma. In this case, the source gas introduction pipe is not used also as the internal electrode, but the dirt is similarly adhered and formed, so that the dirt can be similarly removed by the cleaning method and apparatus according to the present embodiment.
In the above embodiment, the embodiment in which the compressed air is mainly jetted to remove the dirt has been described. However, as shown in FIG. 51, instead of the compressed air, the ultrasonic air is directed toward the dirt attached to the raw material introduction pipe. You may blow it. FIG. 51 is a partial conceptual view of the upper part of the film forming chamber when an ultrasonic air blowing means is provided instead of the compressed air injection means. The air is supplied from the air supply means 14 for the ultrasonic air blow means to the ultrasonic air blow means 7, and the ultrasonic vibration is given to the air by the ultrasonic signal device provided in the ultrasonic air blow means 7, so that the air is blown. Ultrasonic air is blown toward the dirt from a portion (not shown). This makes it possible to remove dirt in the same manner as when compressed air is injected. The dirt is removed by suction and discharge means 4 connected to a suction and discharge section (not shown) provided in the ultrasonic air blow means 7. The suction and discharge section is preferably provided above the ultrasonic air blow section, and more preferably, is provided above the ultrasonic air blow section and around the outside of the raw material gas introduction pipe. As in the case of the compressed air injection, it is more preferable to arrange the blow section, the suction / discharge section, and the second blow section in the axial direction from the bottom to the top of the source gas introduction pipe. More preferably, the blow section, the suction / discharge section, and the second blow section are respectively provided around the outside of the raw material gas introduction pipe. In FIG. 51, the ultrasonic air is blown from one direction, but it is more preferable to blow from the centripetal direction about the axis of the source gas introduction pipe.
Experiment 1 for cleaning evaluation of raw material gas inlet tube also serving as internal electrode
[Air blow method in chamber]
Next, after forming a CVD film on the inner surface of the plastic container, in the process of extracting the raw material gas introduction tube from the inside of the plastic container, the process is performed to remove dirt mainly composed of carbon powder attached to the outer surface of the raw material gas introduction tube. And pressurized suction and discharge means to prevent the dirt removed from the outer surface of the raw material gas introduction pipe by the injection of the compressed air from transferring to the film forming chamber and the plastic container on which the CVD film is formed. A mechanism for discharging the gas out of the film forming chamber system will be specifically described. Cleaning evaluation was performed using the apparatus shown in FIG. 1 under the following conditions.
(1) Film formation process conditions
a) Vacuum system
The ultimate pressure was 6.65 Pa, and the film formation pressure was 26.6 Pa. Here, the pressure is the degree of vacuum of the exhaust manifold.
b) Gas supply system
Gas type is C Two H Two (Acetylene) and the gas flow rate was 50 sccm. The gas stabilization time from when the film formation pressure was reached to the start of film formation was set to 1.0 second.
c) RF (high frequency) supply system
The RF output was 400 W, the frequency was 13.56 MHz, and the discharge time was 3.0 seconds.
▲ 2 ▼ Cleaning conditions
a) Compressed air injection system (air supply system)
The air supply pressure was 0.3 MPa, and the air supply flow rate was 170 l / min.
b) Suction discharge system (dust discharge system)
The exhaust flow rate was 180 l / min.
c) Elevating condition of source gas inlet tube also serving as internal electrode
The cylinder elevating speed was set to approximately 1.1 seconds when ascending and approximately 0.5 seconds when descending. The vertical stroke length was 295 mm.
▲ 3 ▼ Work (internal electrode specification)
a) The BA tube size was 6.35 mm in diameter.
b) The surface treatment of the internal electrode was Au alloy plating.
▲ 4 ▼ Measurement item
a) The internal electrode was observed with an optical microscope (enlarged photo of the internal electrode (x50)). The observation points were four places (bottom part, body part, bottle mouth part, exhaust manifold part). The number of observations was set to 5 (initial state-day 1 (501 times)-day 2 (2000 times)-day 3 (4500 times)-day 4 (7000 times)).
b) The surface resistance of the internal electrode was measured. There were four measurement points (bottom, trunk, bottle mouth, exhaust manifold). The number of measurements was set to 5 (initial state-day 1 (501 times)-day 2 (2000 times)-day 3 (4500 times)-day 4 (7000 times)). Here, since there is the presence or absence of the film on the circumference of the measurement point, it is used as a reference dimension.
The measurement points A, B, C and D in a) and b) are as follows. Part A is at the bottom (10 mm above the tip of the internal electrode). Here, the tip of the internal electrode was 25 mm above the bottom electrode. The portion B was a trunk (upper portion 60 mm from A). Part C was the lip (100 mm above B). Section D was an exhaust manifold section (60 mm above C). FIG. 39 shows the positional relationship between the measurement points.
c) Measurement of reflected wave
The high frequency output was 400 W, the film formation time was 3.0 seconds, and the measurement batches were 1,100,..., 7000 batches.
d) Bottle sampling
The sampling for barrier property measurement was 1,500,..., 7000 batches. Sampling for visual inspection of the film thickness was 1,100,..., 7000 batches.
▲ 5 ▼ Experimental results
a) Optical microscope observation of internal electrodes
After the completion of 500 batches, it is as follows. 3 is a photograph of the internal electrode after 500 batches are completed, FIG. 4 is an enlarged photograph of the bottom of the internal electrode after 500 batches (50 ×), part A, and FIG. 5 is an enlarged photograph of the body of the internal electrode after 500 batches (50 ×). Part B, FIG. 6 shows an enlarged photo (50 ×) of the internal electrode bottle mouth after 500 batches, and FIG. 7 shows an enlarged photo (50 ×) of the internal electrode exhaust manifold after 500 batches.
After the end of 2000 batches, it is as follows. 8 is a photograph of the internal electrode, FIG. 9 is an enlarged photograph of the bottom of the internal electrode after 2,000 batches (50 ×), part A, FIG. 10 is an enlarged photograph of the body of the internal electrode after the 2,000 batches (50 ×), part B, FIG. Fig. 12 shows an enlarged photo (50x) C portion of an internal electrode bottle mouth portion after 2,000 batches, and Fig. 12 shows an enlarged photo (50x) D portion of an internal electrode exhaust manifold portion after 2,000 batches.
After the completion of 4500 batches is as follows. 13 is a photograph of the internal electrode after the completion of 4500 batches, FIG. 14 is an enlarged photograph of the bottom of the internal electrode (50 times) A after the completion of 4500 batches, FIG. 15 is an enlarged photograph of the body of the internal electrode (50 times) B part, and FIG. C shows a magnified photograph (50 times) of the inner electrode bottle mouth after completion of 4500 batches. Here, the enlarged image (50 times) of the internal electrode exhaust manifold portion D portion is not attached because the image data is damaged.
After the completion of 7000 batches, it is as follows. 17 is a photograph of the internal electrode after the completion of 7000 batches, FIG. 18 is an enlarged photograph of the bottom of the internal electrode after the completion of 7000 batches (50 ×), and FIG. 19 is an enlarged photograph of the body of the internal electrode after the completion of 7000 batches (50 ×). Part B, FIG. 20 is an enlarged photograph (50 ×) of the bottle mouth portion of the internal electrode after 7000 batches, and FIG. 21 is an enlarged photograph (50 ×) of the exhaust manifold portion of the internal electrode after 7000 batches, respectively.
b) Internal electrode surface resistance measurement
Table 1 shows the surface resistance values.
c) Measurement of reflected wave
Table 2 shows the measured values of the reflected waves. The smaller the reflected wave, the more stable the plasma is generated.
Figure 0003595334
Figure 0003595334
d) Bottle sampling
Visual observation of the film thickness visual sampling (1,100,...,..., 7000 batches) showed no variation in the film thickness. When the barrier property was measured for the barrier property measurement sampling (1 batch and 7000 batches), there was no difference.
▲ 6 ▼ Summary
a) Surface condition of internal electrode (see enlarged photo)
After the 500th batch, no significant change was observed in the state of film adhesion until the end of 7000 batches. The film (dirt) was concentrated on the exhaust manifold and the mouth. The density of the film (dirt) is low at the bottom and the trunk. The degree of adhesion of the film (dirt) on the exhaust manifold is weak and easily peeled.
b) Internal electrode surface resistance
The surfaces of the exhaust manifold and the mouth are insulated while the number of discharges is small. No significant change was observed in the bottom and trunk from the initial state to the end of 7000 batches.
c) Reflected wave, matching point
The reflected wave was stable at 4 to 7 W from the beginning to the end of 7000 batches. The matching point was stable from the beginning to 7000 batches. The discharge state was stable throughout as well (visual confirmation from the viewing window).
From the results of a), b) and c), stable discharge and stable film formation were always achieved up to the 7000th batch.
Next, an internal electrode cleaning evaluation experiment as another embodiment of the present invention will be described.
◎ Experiment on cleaning evaluation of source gas inlet tube also serving as internal electrode Part 2
[Ultrasonic air blow method outside the chamber]
An experiment was performed using the apparatus shown in FIGS. 51 and 22. As shown in FIGS. 22A to 22E, cleaning is started from the end of film formation (see a) (see b). The ultrasonic unit (ultrasonic air blowing means) moves forward to blow ultrasonic air against dirt attached to the internal electrodes. The internal electrode is lifted and cleaned to the tip (lowest position) of the internal electrode by ultrasonic air blowing (see c). This cleaning is performed while the internal electrodes are raised. When the internal electrode descends from the uppermost position, the ultrasonic unit retreats from the internal electrode (see d). Finally, the internal electrode descends and is housed in the plastic container, and the film forming chamber is sealed (see e).
(1) Film formation process conditions
a) Vacuum system
It was the same as the air blow method in the chamber.
b) Gas supply system
It was the same as the air blow method in the chamber.
c) RF (high frequency) supply system
It was the same as the air blow method in the chamber.
▲ 2 ▼ Cleaning conditions
a) Ultrasonic air blow system (air supply system)
The air supply pressure was 0.3 MPa, and the air supply flow rate was 160 l / min.
b) Suction discharge system (dust discharge system)
The exhaust flow rate was 180 l / min.
c) Ultrasonic frequency:
Frequency: 20 kHz to 4 MHz. In this example, the measurement was performed at 100 kHz.
d) Ascending and descending conditions of the raw material gas inlet tube also serving as the internal electrode
The ascending and descending speed of the cylinder was set to about 0.7 seconds when ascending and about 0.9 seconds when descending. The vertical stroke length was 295 mm.
▲ 3 ▼ Work (internal electrode specification)
It was the same as the air blow method in the chamber.
▲ 4 ▼ Measurement item
a) Observation of the internal electrode with an optical microscope was performed in the same manner as in the air blow method in the chamber.
b) The surface resistance of the internal electrode was measured. Here, it was the same as the air blow method in the chamber.
c) Measurement of reflected wave
The high frequency output was 400 W, the film formation time was 3.0 seconds, and the measurement batches were 1,100,..., 7000 batches.
d) Bottle sampling
It was the same as the air blow method in the chamber.
5) Experimental results
a) Optical microscope observation of internal electrodes
After the completion of 500 batches, it is as follows. FIG. 23 shows an internal electrode photograph after the completion of 500 batches. In addition, the enlarged photograph of each part of A, B, C, and D is not attached.
After the end of 2000 batches, it is as follows. 24 is a photograph of the internal electrode after 2,000 batches, FIG. 25 is an enlarged photograph of the bottom of the internal electrode after 2,000 batches (50 ×), part A, and FIG. 26 is an enlarged photograph of the internal electrode body after 2,000 batches (50 ×). Part B, FIG. 27 is an enlarged photograph (50 ×) of the internal electrode bottle mouth, and FIG. 28 is an enlarged photograph (50 ×) of the internal electrode exhaust manifold after 2,000 batches.
After the completion of 4500 batches is as follows. 29 is a photograph of the internal electrode after the completion of 4500 batches, FIG. 30 is an enlarged photograph of the bottom of the internal electrode after the completion of 4500 batches (50 ×), and FIG. 31 is an enlarged photograph of the body of the internal electrode after the completion of 4500 batches (50 ×). Part B, FIG. 32 shows an enlarged photograph (50 ×) of the internal electrode bottle mouth after completion of 4500 batches, and FIG. 33 shows an enlarged photograph (50 ×) of an internal electrode exhaust manifold part after completion of 4500 batches.
After the completion of 7000 batches, it is as follows. 34 is a photograph of the internal electrode after 7000 batches have been completed, FIG. 35 is an enlarged photograph of the bottom of the internal electrode after 7000 batches have been completed (50 ×), and FIG. 36 is an enlarged photograph of the internal electrode body after 7000 batches have been completed (50 ×). Part B, FIG. 37 shows an enlarged photo (50 ×) of the internal electrode bottle mouth after completion of 7000 batches, and FIG. 38 shows an enlarged photo (50 ×) of an internal electrode exhaust manifold after 7000 batches.
b) Internal electrode surface resistance measurement
Table 3 shows the surface resistance values.
c) reflected wave
Table 4 shows the measured values of the reflected waves.
d) Bottle sampling
Visual observation of the film thickness visual sampling (1,100,...,..., 7000 batches) showed no variation in the film thickness. When the barrier property was measured for the barrier property measurement sampling (1 batch and 7000 batches), there was no difference.
Figure 0003595334
Figure 0003595334
▲ 6 ▼ Summary
a) Surface condition of internal electrode
At the bottom of the electrode, at the mouth, and at the exhaust manifold, the ultrasonic air does not reach, and the film (dirt) is clearly attached. In the portion where the ultrasonic air was applied at a short distance (5 mm), there was no significant difference in the amount of film (dirt) adhered between the sprayed surface and the sprayed back surface.
b) Internal electrode surface resistance measurement
No significant change was observed in the resistance value at the bottom and the trunk. Insulation is progressing at the mouth and exhaust manifold every time discharge is repeated. The deterioration is remarkably fast because no ultrasonic air is hit.
c) Reflected wave / matching point
The reflected wave was stable at 4 to 6 W from the beginning to the end of 7000 batches. After about 4000 batches, it was confirmed that discharge became unstable (discharge light slightly flickered by visual observation of plasma). At that time, the reflected wave also fluctuates greatly like 9 → 25 → 6 → 5. Matching points were stable from the beginning until the end of 7000 batches.
◎ Comparative example
The discharge condition and electrode condition when the internal electrode was not cleaned were confirmed, and the effect of electrode cleaning was verified. The experiment was performed using the same device as that shown in FIG. 1, but under the condition that the cleaning device was not operated.
(1) Film formation process conditions
Table 5 summarizes the conditions.
Figure 0003595334
(2) Work (internal electrode specification)
It was the same as the air blow method in the chamber.
▲ 3 ▼ Measurement item
a) The internal electrode was observed with an optical microscope (enlarged photo of the internal electrode (x50)). The observation points were four places (bottom part, body part, bottle mouth part, exhaust manifold part). However, the number of observations was set to two. That is, 500 batches and 600 batches. The 600 batches were in a discharge-disabled state, and this was defined as the upper limit of the number of film formations.
b) The surface resistance of the internal electrode was measured. There were four measurement points (bottom, trunk, bottle mouth, exhaust manifold). However, the number of observations was set to two. That is, 500 batches and 600 batches. The 600 batches were in a discharge-disabled state, and this was defined as the upper limit of the number of film formations.
Measurement points A, B, C, and D in a) and b) were the same as in the air blow method in the chamber.
c) Measurement of reflected wave
The high frequency output was 400 W, the film formation time was 3.0 seconds, and the measurement batches were 1, 50, 100,..., 600 batches.
d) Bottle sampling
The sampling for barrier property measurement was 1,500 batches. The sampling for visual inspection of the film thickness was 1,100,...,..., 500 batches.
4) Experimental results
a) Optical microscope observation of internal electrodes
After the completion of 500 batches, it is as follows. FIG. 40 is a photograph of the internal electrode after completion of 500 batches of non-cleaning showing a comparative example, FIG. 41 is an enlarged photograph (50 ×) of the bottom of the internal electrode after 500 batches of non-cleaning showing a comparative example, and FIG. Part B of the inner electrode body after the 500 batches of non-cleaning shown (50x) B part, and FIG. 43 is a comparative example of enlarged view of the mouth part of the internal electrode bottle after the 500 batches of the non-cleaning (50x) C part. Reference numeral 44 denotes an enlarged photograph (× 50) of an internal electrode exhaust manifold portion after completion of 500 batches of non-cleaning showing a comparative example, and D portions, respectively.
After the completion of 600 batches, it is as follows. FIG. 45 is a photograph of the internal electrode after completion of 600 batches of non-cleaning showing a comparative example, FIG. 46 is an enlarged photograph (50 ×) of the bottom of the internal electrode after completion of 600 batches of non-cleaning showing a comparative example, and FIG. Part B of the internal electrode body after the non-cleaning 600 batch is shown (50 times) B part, and FIG. 48 is part C of the internal electrode bottle mouth part after the non-cleaning 600 batch is completed (50 times) showing the comparative example. Reference numeral 49 denotes an enlarged photograph (× 50) of the internal electrode exhaust manifold after completion of 600 batches of non-cleaning showing a comparative example.
b) Internal electrode surface resistance measurement
Table 6 shows the surface resistance values.
c) reflected wave
Table 7 shows the measured values of the reflected waves.
d) Bottle sampling
When the barrier property was measured for the barrier property measurement sampling (1 batch and 500 batches), there was no difference. Visual observation of the film thickness visual sampling (1,100,...,..., 500 batches) showed no variation in the film thickness.
▲ 5 ▼ Summary
a) Surface condition of internal electrode
At the end of 500 batches, many films (dirts) had adhered. The film (dirt) was concentrated on the exhaust manifold and the mouth.
b) Internal electrode surface resistance measurement
At the end of 500 batches, the electric resistance of the part C (mouth) and the part D (manifold) showed large values. In the electrode of 600 batches that cannot be discharged, insulation was provided at all points A to D.
c) Reflected wave / matching point
Up to about 50 batches showed stable reflected waves (4 to 6 W). After 100 batches, the disturbance of the reflected wave was confirmed. After 300 batches, the ratio of the disturbance of the reflected wave increased (about 80%). Discharge becomes impossible when about 600 batches of film are formed. When the electrode is replaced with a new one and discharged, a stable discharge occurs, so it can be assumed that a film (dirt) attached to the electrode is a cause of preventing the discharge.
Comparing the in-chamber air blow method (Example 1) and the out-of-chamber ultrasonic air blow method (Example 2) with non-cleaning (comparative example), the superiority of the internal electrode cleaning according to this embodiment was confirmed. did it.
Figure 0003595334
Figure 0003595334

Claims (24)

密封可能で外部電極の機能を備えた成膜チャンバーにプラスチック容器を収容し、該プラスチック容器内に挿入した昇降自在で内部電極を兼ねた原料ガス導入管から原料ガスを導入し、該原料ガスをプラズマ化させてプラスチック容器内表面にCVD(化学気相成長)膜を形成するときに、前記原料ガス導入管の外表面に付着形成される炭素粉を主成分とする汚れを清掃する原料ガス導入管の清掃方法において、前記プラスチック容器の内表面にCVD膜を形成したのち前記原料ガス導入管を前記プラスチック容器内から抜き出す過程で、前記汚れに向けて圧縮エアーを噴射するとともに該圧縮エアーの噴射によって除去された前記汚れが前記成膜チャンバー及びCVD膜を形成したプラスチック容器側に移行しないように吸引排出手段により前記汚れを前記成膜チャンバーの系外に排出させることを特徴とするCVD成膜装置に使用する原料ガス導入管の清掃方法。A plastic container is housed in a film forming chamber capable of being sealed and provided with an external electrode function, and a raw material gas is introduced from a raw material gas introduction pipe which is inserted into the plastic container and can be moved up and down and also serves as an internal electrode. When a plasma (chemical vapor deposition) film is formed on the inner surface of a plastic container by plasma, a source gas for cleaning a dirt containing carbon powder as a main component adhered to the outer surface of the source gas introduction pipe. In the method of cleaning a pipe, in the process of forming a CVD film on the inner surface of the plastic container and then extracting the raw material gas introduction pipe from the inside of the plastic container, the compressed air is injected toward the dirt and the compressed air is injected. The dirt removed by the suction / discharge means is prevented from moving to the film forming chamber and the plastic container on which the CVD film is formed. Cleaning of the raw material gas introduction pipe to be used in the CVD film-forming apparatus characterized by discharging the dirt to the outside of the deposition chamber. 前記成膜チャンバーの上部又は上方位置に設けた圧縮エアーの噴射部から前記原料ガス導入管の求心方向に向け圧縮エアーを噴射することを特徴とする請求項1記載のCVD成膜装置に使用する原料ガス導入管の清掃方法。2. The CVD film forming apparatus according to claim 1, wherein compressed air is injected from a compressed air injection unit provided at an upper portion or an upper position of the film forming chamber in a centripetal direction of the source gas introduction pipe. How to clean the source gas inlet pipe. 前記噴射部の上方位置に設けた吸引排出部から前記吸引排出手段によって前記圧縮エアーと前記汚れを吸引除去することを特徴とする請求項1又は2記載のCVD成膜装置に使用する原料ガス導入管の清掃方法。3. A source gas introduction for use in a CVD film forming apparatus according to claim 1, wherein said compressed air and said dirt are sucked and removed by said suction and discharge means from a suction and discharge part provided above said injection part. How to clean the pipe. 前記成膜チャンバーの上部又は上方位置に圧縮エアーの噴射部を設け、該噴射部の上方位置に吸引排出部を設け、該吸引排出部の上方位置に圧縮エアーの第2噴射部を設け、前記噴射部は下から上に向けて圧縮エアーを噴射し且つ前記第2噴射部は上から下に向けて圧縮エアーを噴射すると共に、前記吸引排出部は前記圧縮エアーと前記汚れを吸引除去することを特徴とする請求項1記載のCVD成膜装置に使用する原料ガス導入管の清掃方法。An injection unit for compressed air is provided above or above the film forming chamber, a suction discharge unit is provided above the injection unit, and a second injection unit for compressed air is provided above the suction discharge unit, The injection unit injects compressed air from bottom to top, and the second injection unit injects compressed air from top to bottom, and the suction / discharge unit suctions and removes the compressed air and the dirt. 2. A method for cleaning a raw material gas introduction pipe used in a CVD film forming apparatus according to claim 1. 前記吸引排出手段による吸引排気量は、前記圧縮エアーの空気供給量よりも多いことを特徴とする請求項1、2、3又は4記載のCVD成膜装置に使用する原料ガス導入管の清掃方法。5. The method for cleaning a raw material gas inlet pipe used in a CVD film forming apparatus according to claim 1, wherein the amount of suction and exhaust by the suction and discharge means is larger than the amount of compressed air supplied. . 前記CVD膜の成膜はターンテーブル上にサークル状に設置した複数の前記成膜チャンバーでそれぞれ行ない、前記ターンテーブルが1回転する間に、前記原料ガス導入管を前記プラスチック容器内から抜き出す過程で前記原料ガス導入管の外表面に付着形成された炭素粉を主成分とする汚れを圧縮エアーの噴射により除去し、その除去した汚れを前記成膜チャンバーの系外に吸引排出する工程を完了することを特徴とする請求項1、2、3、4又は5記載のCVD成膜装置に使用する原料ガス導入管の清掃方法。The film formation of the CVD film is performed in each of the plurality of film forming chambers arranged in a circle on a turntable, and during the rotation of the turntable, the source gas introduction pipe is drawn out of the plastic container. The step of removing dirt mainly composed of carbon powder adhered and formed on the outer surface of the raw material gas introduction pipe by jetting compressed air and sucking and discharging the dirt removed outside the film forming chamber is completed. The method for cleaning a raw material gas introduction pipe used in a CVD film forming apparatus according to claim 1, 2, 3, 4, or 5. 密封可能で外部電極の機能を備えた成膜チャンバーにプラスチック容器を収容し、該プラスチック容器内に挿入した昇降自在で内部電極を兼ねた原料ガス導入管から原料ガスを導入し、該原料ガスをプラズマ化させてプラスチック容器内表面にCVD膜を形成するときに、前記原料ガス導入管の外表面に付着形成される炭素粉を主成分とする汚れを清掃する原料ガス導入管の清掃方法において、前記プラスチック容器の内表面にCVD膜を形成したのち前記原料ガス導入管を前記プラスチック容器内から抜き出す過程で、前記汚れに向けて超音波エアーをブローするととともに該超音波エアーのブローによって除去された前記汚れが前記成膜チャンバー及びCVD膜を形成したプラスチック容器側に移行しないように吸引排出手段により前記汚れを前記成膜チャンバーの系外に排出させることを特徴とするCVD成膜装置に使用する原料ガス導入管の清掃方法。A plastic container is housed in a film forming chamber capable of being sealed and provided with an external electrode function, and a raw material gas is introduced from a raw material gas introduction pipe which is inserted into the plastic container and is capable of moving up and down and also serving as an internal electrode. When forming a CVD film on the inner surface of the plastic container by plasma, in the method of cleaning the raw material gas introduction pipe for cleaning the dirt mainly composed of carbon powder attached to the outer surface of the raw material gas introduction pipe, After forming the CVD film on the inner surface of the plastic container, in the process of extracting the raw material gas introduction pipe from the inside of the plastic container, the air was blown toward the dirt and removed by blowing the ultrasonic air. The suction and discharge means prevents the dirt from transferring to the film forming chamber and the plastic container side on which the CVD film is formed. Cleaning of the raw material gas introduction pipe to be used in the CVD film-forming apparatus characterized by discharging the record to the outside of the deposition chamber. 前記成膜チャンバーの上部又は上方位置に設けた超音波エアーのブロー部から前記原料ガス導入管の求心方向に向け超音波エアーをブローすることを特徴とする請求項7記載のCVD成膜装置に使用する原料ガス導入管の清掃方法。8. The CVD film forming apparatus according to claim 7, wherein ultrasonic air is blown from a blow part of the ultrasonic air provided at an upper part or an upper position of the film forming chamber toward a centripetal direction of the source gas introduction pipe. How to clean the source gas inlet pipe to be used. 前記ブロー部の上方位置に設けた吸引排出部から前記吸引排出手段によって前記超音波エアーと前記汚れを吸引除去することを特徴とする請求項7又は8記載のCVD成膜装置に使用する原料ガス導入管の清掃方法。The raw material gas used in the CVD film forming apparatus according to claim 7 or 8, wherein the ultrasonic air and the dirt are suction-removed by the suction / discharge unit from a suction / discharge unit provided above the blow unit. How to clean the inlet pipe. 前記成膜チャンバーの上部又は上方位置に超音波エアーのブロー部を設け、該ブロー部の上方位置に吸引排出部を設け、該吸引排出部の上方位置に超音波エアーの第2ブロー部を設け、前記ブローは下から上に向けて超音波エアーをブローし且つ前記第2ブロー部は上から下に向けて超音波エアーをブローすると共に、前記吸引排出部は前記超音波エアーと前記汚れを吸引除去することを特徴とする請求項7記載のCVD成膜装置に使用する原料ガス導入管の清掃方法。An ultrasonic air blow section is provided above or above the film forming chamber, a suction / discharge section is provided above the blow section, and a second ultrasonic air blow section is provided above the suction / discharge section. The blow blows ultrasonic air from bottom to top, and the second blow unit blows ultrasonic air from top to bottom, and the suction / discharge unit cleans the ultrasonic air and the dirt. The method for cleaning a source gas introduction pipe used in a CVD film forming apparatus according to claim 7, wherein the source gas introduction pipe is removed by suction. 前記吸引排出手段による吸引排気量は、前記超音波エアーの空気供給量よりも多いことを特徴とする請求項7、8、9又は10記載のCVD成膜装置に使用する原料ガス導入管の清掃方法。11. The cleaning of a source gas introduction pipe used in a CVD film forming apparatus according to claim 7, wherein an amount of suction and exhaust by the suction and discharge unit is larger than an amount of air supplied by the ultrasonic air. Method. 前記CVD膜の成膜はターンテーブル上にサークル状に設置した複数の前記成膜チャンバーでそれぞれ行ない、前記ターンテーブルが1回転する間に、前記原料ガス導入管を前記プラスチック容器内から抜き出す過程で前記原料ガス導入管の外表面に付着形成された炭素粉を主成分とする汚れを超音波エアーのブローにより除去し、その除去した汚れを前記成膜チャンバーの系外に吸引排出する工程を完了することを特徴とする請求項7、8、9、10又は11記載のCVD成膜装置に使用する原料ガス導入管の清掃方法。The film formation of the CVD film is performed in each of the plurality of film forming chambers arranged in a circle on a turntable, and during the rotation of the turntable, the source gas introduction pipe is drawn out of the plastic container. The step of removing dirt mainly composed of carbon powder adhered and formed on the outer surface of the raw material gas introduction pipe by blowing ultrasonic air, and suctioning and discharging the dirt removed to the outside of the film forming chamber is completed. 12. The method for cleaning a raw material gas introduction pipe used in a CVD film forming apparatus according to claim 7, 8, 9, 10, 10 or 11. 密封可能で外部電極の機能を備えた成膜チャンバーにプラスチック容器を収容し、該プラスチック容器内に挿入した昇降自在で内部電極を兼ねた原料ガス導入管から原料ガスを導入し、該原料ガスをプラズマ化させてプラスチック容器内表面にCVD膜を形成するときに、前記原料ガス導入管の外表面に付着形成される炭素粉を主成分とする汚れを清掃する原料ガス導入管の清掃装置において、前記プラスチック容器の内表面にCVD膜を形成した後のタイミングに合わせて前記原料ガス導入管を前記プラスチック容器内から抜き出す原料ガス導入管抜き出し手段と、前記汚れに向けて圧縮エアーを噴射する圧縮エアー噴射手段と、前記圧縮エアーの噴射によって除去された前記汚れが前記成膜チャンバー及びCVD膜を形成したプラスチック容器側に移行しないように前記成膜チャンバーの系外に排出させる吸引排出手段とを備えたことを特徴とするCVD成膜装置に使用する原料ガス導入管の清掃装置。A plastic container is housed in a film forming chamber capable of being sealed and provided with an external electrode function, and a raw material gas is introduced from a raw material gas introduction pipe which is inserted into the plastic container and is capable of moving up and down and also serving as an internal electrode. When forming a CVD film on the inner surface of the plastic container by plasma, in the cleaning device of the raw material gas introduction pipe for cleaning the dirt mainly composed of carbon powder adhered to the outer surface of the raw material gas introduction pipe, Source gas introduction pipe withdrawing means for extracting the source gas introduction pipe from the inside of the plastic container at a timing after forming the CVD film on the inner surface of the plastic container, and compressed air for injecting compressed air toward the dirt An injection means, and a plastic on which the dirt removed by the injection of the compressed air forms the film forming chamber and the CVD film. Cleaning apparatus of the source gas inlet pipe for use in CVD film forming apparatus characterized by comprising a suction exhaust means for discharging to the outside of the film-forming chamber so as not to shift to the container side. 前記圧縮エアー噴射手段により噴射される圧縮エアーの噴射部を前記成膜チャンバーの上部又は上方位置で前記原料ガス導入管の外側周囲に配置したことを特徴とする請求項13記載のCVD成膜装置に使用する原料ガス導入管の清掃装置。14. The CVD film forming apparatus according to claim 13, wherein an injection part of the compressed air injected by the compressed air injection means is arranged at an upper part or an upper part of the film forming chamber and around the outside of the source gas introducing pipe. Cleaning equipment for raw material gas inlet pipes 前記圧縮エアーと前記汚れを吸引除去するための吸引排出部を前記噴射部の上方位置で前記原料ガス導入管の外側周囲に配置したことを特徴とする請求項13又は14記載のCVD成膜装置に使用する原料ガス導入管の清掃装置。15. The CVD film forming apparatus according to claim 13, wherein a suction / discharge unit for suctioning and removing the compressed air and the dirt is disposed around the outside of the source gas introduction pipe at a position above the injection unit. Cleaning equipment for raw material gas inlet pipes 前記圧縮エアー噴射手段により噴射される圧縮エアーの噴射部を前記成膜チャンバーの上部又は上方位置で前記原料ガス導入管の外側周囲に配置し、前記圧縮エアーと前記汚れを吸引除去するための吸引排出部を前記噴射部の上方位置で前記原料ガス導入管の外側周囲に配置し、前記圧縮エアー噴射手段により噴射される圧縮エアーの第2噴射部を前記吸引排出部の上方位置で前記原料ガス導入管の外側周囲に配置し、前記噴射部の圧縮エアー噴射方向を上方に向け且つ前記第2噴射部の圧縮エアーの噴射方向を下方に向けたことを特徴とする請求項13記載のCVD成膜装置に使用する原料ガス導入管の清掃装置。An injection unit for compressed air injected by the compressed air injection unit is disposed around the outside of the source gas introduction pipe at an upper position or above the film forming chamber, and suction for removing the compressed air and the dirt is performed. A discharge unit is disposed around the outside of the raw material gas introduction pipe at a position above the injection unit, and a second injection unit of compressed air injected by the compressed air injection unit is placed at a position above the suction and discharge unit. 14. The CVD method according to claim 13, wherein the compressed air injection direction of the injection section is directed upward and the compressed air injection direction of the second injection section is directed downward. Cleaning device for raw material gas inlet pipe used in membrane equipment. 密封可能で外部電極の機能を備えた成膜チャンバーにプラスチック容器を収容し、該プラスチック容器内に挿入した昇降自在で内部電極を兼ねた原料ガス導入管から原料ガスを導入し、該原料ガスをプラズマ化させてプラスチック容器内表面にCVD膜を形成するときに、前記原料ガス導入管の外表面に付着形成される炭素粉を主成分とする汚れを清掃する原料ガス導入管の清掃装置において、前記プラスチック容器の内表面にCVD膜を形成した後のタイミングに合わせて前記原料ガス導入管を前記プラスチック容器内から抜き出す原料ガス導入管抜き出し手段と、前記汚れに向けて超音波エアーをブローする超音波エアーブロー手段と、前記超音波エアーのブローによって除去された前記汚れが前記成膜チャンバー及びCVD膜を形成したプラスチック容器側に移行しないように前記成膜チャンバーの系外に排出させる吸引排出手段とを備えたことを特徴とするCVD成膜装置に使用する原料ガス導入管の清掃装置。A plastic container is housed in a film forming chamber capable of being sealed and provided with an external electrode function, and a raw material gas is introduced from a raw material gas introduction pipe which is inserted into the plastic container and can be moved up and down and also serves as an internal electrode. When forming a CVD film on the inner surface of the plastic container by plasma, in the cleaning device of the raw material gas introduction pipe for cleaning the dirt mainly composed of carbon powder adhered to the outer surface of the raw material gas introduction pipe, Source gas introduction pipe withdrawing means for extracting the source gas introduction pipe from the inside of the plastic container in synchronization with the timing after forming the CVD film on the inner surface of the plastic container, and an ultrasonic blower for blowing ultrasonic air toward the dirt Sonic air blowing means, and the dirt removed by the blowing of the ultrasonic air forms the film forming chamber and the CVD film. Cleaning apparatus of the source gas inlet pipe for use in CVD film forming apparatus characterized by comprising a suction exhaust means for discharging to the outside of the film-forming chamber so as not to migrate to the plastic container side. 前記超音波エアーブロー手段によりブローされる超音波エアーのブロー部を前記成膜チャンバーの上部又は上方位置に配置したことを特徴とする請求項17記載のCVD成膜装置に使用する原料ガス導入管の清掃装置。18. A raw material gas introduction pipe used in a CVD film forming apparatus according to claim 17, wherein a blow part of the ultrasonic air blown by said ultrasonic air blowing means is arranged above or above said film forming chamber. Cleaning equipment. 前記超音波エアーと前記汚れを吸引除去するための吸引排出部を前記ブロー部の上方位置に配置したことを特徴とする請求項17又は18記載のCVD成膜装置に使用する原料ガス導入管の清掃装置。19. The raw material gas introduction pipe for use in a CVD film forming apparatus according to claim 17, wherein a suction / discharge unit for suctioning and removing the ultrasonic air and the dirt is arranged at a position above the blow unit. Cleaning device. 前記超音波エアーブロー手段によりブローされる超音波エアーのブロー部を前記成膜チャンバーの上部又は上方位置に配置し、前記超音波エアーと前記汚れを吸引除去するための吸引排出部を前記ブロー部の上方位置に配置し、前記超音波エアーブロー手段によりブローされる超音波エアーの第2ブロー部を前記吸引排出部の上方位置に配置し、前記ブロー部の超音波エアーブロー方向を上方に向け且つ前記第2ブロー部の超音波エアーのブロー方向を下方に向けたことを特徴とする請求項17記載のCVD成膜装置に使用する原料ガス導入管の清掃装置。A blow unit for ultrasonic air blown by the ultrasonic air blow means is disposed above or above the film forming chamber, and a suction and discharge unit for sucking and removing the ultrasonic air and the dirt is provided in the blow unit. And a second blow portion of the ultrasonic air blown by the ultrasonic air blowing means is disposed at a position above the suction / discharge portion, and the ultrasonic air blow direction of the blow portion is directed upward. 18. The apparatus for cleaning a raw material gas introduction pipe used in a CVD film forming apparatus according to claim 17, wherein the blowing direction of the ultrasonic air from the second blow section is directed downward. 密封可能な成膜チャンバーにプラスチック容器を収容し、該プラスチック容器内に挿入した昇降自在の原料ガス導入管から原料ガスを導入し、該原料ガスをマイクロ波によりプラズマ化させてプラスチック容器内表面にCVD膜を形成するときに、前記原料ガス導入管の外表面に付着形成される炭素粉を主成分とする汚れを清掃する原料ガス導入管の清掃方法において、前記プラスチック容器の内表面にCVD膜を形成したのち前記原料ガス導入管を前記プラスチック容器内から抜き出す過程で、前記汚れに向けて圧縮エアーを噴射又は超音波エアーをブローするとともに該圧縮エアーの噴射又は該超音波エアーのブローによって除去された前記汚れが前記成膜チャンバー及びCVD膜を形成したプラスチック容器側に移行しないように吸引排出手段により前記汚れを前記成膜チャンバーの系外に排出させることを特徴とするCVD成膜装置に使用する原料ガス導入管の清掃方法。A plastic container is housed in a sealable film forming chamber, a source gas is introduced from a vertically movable source gas introduction pipe inserted into the plastic container, and the source gas is turned into plasma by microwave to be applied to the inner surface of the plastic container. In the method of cleaning a raw material gas introduction pipe for cleaning a dirt mainly composed of carbon powder adhered and formed on an outer surface of the raw material gas introduction pipe when forming a CVD film, the CVD film may be formed on an inner surface of the plastic container. After forming the above, in the process of extracting the raw material gas introduction pipe from the inside of the plastic container, compressed air is blown toward the dirt or ultrasonic air is blown and the compressed air is blown or the ultrasonic air is blown to remove. Suction so that the contaminated soil does not transfer to the film forming chamber and the plastic container on which the CVD film is formed. Cleaning of the raw material gas introduction pipe to be used in the CVD film forming apparatus according to claim by detection means thereby discharging the dirt to the outside of the deposition chamber. 密封可能な成膜チャンバーにプラスチック容器を収容し、該プラスチック容器内に挿入した昇降自在の原料ガス導入管から原料ガスを導入し、該原料ガスをマイクロ波によりプラズマ化させてプラスチック容器内表面にCVD膜を形成するときに、前記原料ガス導入管の外表面に付着形成される炭素粉を主成分とする汚れを清掃する原料ガス導入管の清掃装置において、前記プラスチック容器の内表面にCVD膜を形成した後のタイミングに合わせて前記原料ガス導入管を前記プラスチック容器内から抜き出す原料ガス導入管抜き出し手段と、前記汚れに向けて圧縮エアーを噴射する圧縮エアー噴射手段と、前記圧縮エアーの噴射によって除去された前記汚れが前記成膜チャンバー及びCVD膜を形成したプラスチック容器側に移行しないように前記成膜チャンバーの系外に排出させる吸引排出手段とを備えたことを特徴とするCVD成膜装置に使用する原料ガス導入管の清掃装置。A plastic container is housed in a sealable film forming chamber, a source gas is introduced from a vertically movable source gas introduction pipe inserted into the plastic container, and the source gas is turned into plasma by microwave to be applied to the inner surface of the plastic container. In the apparatus for cleaning a raw material gas introduction pipe for cleaning a dirt mainly composed of carbon powder adhered and formed on an outer surface of the raw material gas introduction pipe when forming a CVD film, a CVD film is formed on an inner surface of the plastic container. A source gas introducing pipe extracting means for extracting the source gas introducing pipe from the inside of the plastic container at a timing after forming the compressed gas, a compressed air injection means for injecting compressed air toward the dirt, and an injection of the compressed air The contaminants removed by the above process do not transfer to the film forming chamber and the plastic container on which the CVD film is formed. The cleaning apparatus of the source gas inlet pipe for use in CVD film forming apparatus characterized by comprising a suction exhaust means for discharging to the outside of the deposition chamber. 密封可能な成膜チャンバーにプラスチック容器を収容し、該プラスチック容器内に挿入した昇降自在の原料ガス導入管から原料ガスを導入し、該原料ガスをマイクロ波によりプラズマ化させてプラスチック容器内表面にCVD膜を形成するときに、前記原料ガス導入管の外表面に付着形成される炭素粉を主成分とする汚れを清掃する原料ガス導入管の清掃装置において、前記プラスチック容器の内表面にCVD膜を形成した後のタイミングに合わせて前記原料ガス導入管を前記プラスチック容器内から抜き出す原料ガス導入管抜き出し手段と、前記汚れに向けて超音波エアーをブローする超音波エアーブロー手段と、前記超音波エアーのブローによって除去された前記汚れが前記成膜チャンバー及びCVD膜を形成したプラスチック容器側に移行しないように前記成膜チャンバーの系外に排出させる吸引排出手段とを備えたことを特徴とするCVD成膜装置に使用する原料ガス導入管の清掃装置。A plastic container is housed in a sealable film forming chamber, a source gas is introduced from a vertically movable source gas introduction pipe inserted into the plastic container, and the source gas is turned into plasma by microwave to be applied to the inner surface of the plastic container. In the apparatus for cleaning a raw material gas introduction pipe for cleaning a dirt mainly composed of carbon powder adhered and formed on an outer surface of the raw material gas introduction pipe when forming a CVD film, a CVD film is formed on an inner surface of the plastic container. A source gas introduction pipe extracting means for extracting the source gas introduction pipe from the inside of the plastic container in accordance with a timing after forming, an ultrasonic air blowing means for blowing ultrasonic air toward the dirt, and the ultrasonic The dirt removed by air blow is applied to the film forming chamber and the plastic container side on which the CVD film is formed. Cleaning apparatus of the source gas inlet pipe for use in CVD film forming apparatus characterized by comprising a suction exhaust means for discharging to the outside of the film-forming chamber so as not to row. 前記原料ガス導入管に使用する基体素材は、表面を研磨したSUS304若しくはSUS316とするか、あるいはその表面処理である硬質金合金メッキの材質を99.7Au−0.3Co、99.8Au−0.2Ni等の酸性硬質金メッキとしたものであることを特徴とする請求項13乃至23記載の原料ガス導入管の清掃装置。The base material used for the raw material gas introduction pipe is SUS304 or SUS316 whose surface is polished, or the material of hard gold alloy plating which is the surface treatment is 99.7Au-0.3Co, 99.8Au-0. 24. The apparatus for cleaning a raw material gas introduction pipe according to claim 13, wherein the cleaning apparatus is made of an acidic hard gold plating of 2Ni or the like.
JP2004511578A 2002-06-05 2003-05-21 Method and apparatus for cleaning source gas introduction pipe used in CVD film forming apparatus Expired - Lifetime JP3595334B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2002164151 2002-06-05
JP2002164151 2002-06-05
PCT/JP2003/006331 WO2003104523A1 (en) 2002-06-05 2003-05-21 Method and device for cleaning raw material gas introduction tube used in cvd film forming apparatus

Publications (2)

Publication Number Publication Date
JP3595334B2 true JP3595334B2 (en) 2004-12-02
JPWO2003104523A1 JPWO2003104523A1 (en) 2005-10-06

Family

ID=29727565

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004511578A Expired - Lifetime JP3595334B2 (en) 2002-06-05 2003-05-21 Method and apparatus for cleaning source gas introduction pipe used in CVD film forming apparatus

Country Status (6)

Country Link
US (1) US7189290B2 (en)
EP (1) EP1510595A4 (en)
JP (1) JP3595334B2 (en)
CN (1) CN1659307A (en)
AU (1) AU2003242357A1 (en)
WO (1) WO2003104523A1 (en)

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2907351B1 (en) * 2006-10-18 2009-02-06 Sidel Participations PLASMA CONTAINER TREATMENT MACHINE, COMPRISING DECAL DEPRESSURIZATION AND PRESSURIZATION CIRCUITS
DE102007045216A1 (en) * 2007-09-21 2009-04-02 Khs Corpoplast Gmbh & Co. Kg Apparatus for the plasma treatment of workpieces
DE102008037159A1 (en) * 2008-08-08 2010-02-11 Krones Ag Apparatus and method for the plasma treatment of hollow bodies
WO2010129783A1 (en) * 2009-05-06 2010-11-11 3M Innovative Properties Company Apparatus and method for plasma treatment of containers
ES2452519T3 (en) 2009-05-13 2014-04-01 Sio2 Medical Products, Inc. Container holder
US7985188B2 (en) 2009-05-13 2011-07-26 Cv Holdings Llc Vessel, coating, inspection and processing apparatus
US9458536B2 (en) 2009-07-02 2016-10-04 Sio2 Medical Products, Inc. PECVD coating methods for capped syringes, cartridges and other articles
US11624115B2 (en) 2010-05-12 2023-04-11 Sio2 Medical Products, Inc. Syringe with PECVD lubrication
US9878101B2 (en) 2010-11-12 2018-01-30 Sio2 Medical Products, Inc. Cyclic olefin polymer vessels and vessel coating methods
US9272095B2 (en) 2011-04-01 2016-03-01 Sio2 Medical Products, Inc. Vessels, contact surfaces, and coating and inspection apparatus and methods
US9951419B2 (en) * 2011-09-03 2018-04-24 Ying-Bing JIANG Apparatus and method for making atomic layer deposition on fine powders
US11116695B2 (en) 2011-11-11 2021-09-14 Sio2 Medical Products, Inc. Blood sample collection tube
JP6095678B2 (en) 2011-11-11 2017-03-15 エスアイオーツー・メディカル・プロダクツ・インコーポレイテッド Passivation, pH protection or slippery coatings for pharmaceutical packages, coating processes and equipment
WO2013099960A1 (en) * 2011-12-27 2013-07-04 麒麟麦酒株式会社 Apparatus for forming thin film
EP2846755A1 (en) 2012-05-09 2015-03-18 SiO2 Medical Products, Inc. Saccharide protective coating for pharmaceutical package
WO2014071061A1 (en) 2012-11-01 2014-05-08 Sio2 Medical Products, Inc. Coating inspection method
US9903782B2 (en) 2012-11-16 2018-02-27 Sio2 Medical Products, Inc. Method and apparatus for detecting rapid barrier coating integrity characteristics
US9764093B2 (en) 2012-11-30 2017-09-19 Sio2 Medical Products, Inc. Controlling the uniformity of PECVD deposition
BR112015012470B1 (en) 2012-11-30 2022-08-02 Sio2 Medical Products, Inc PRODUCTION METHOD OF A MEDICAL DRUM FOR A MEDICAL CARTRIDGE OR SYRINGE
WO2014134577A1 (en) 2013-03-01 2014-09-04 Sio2 Medical Products, Inc. Plasma or cvd pre-treatment for lubricated pharmaceutical package, coating process and apparatus
CN110074968B (en) 2013-03-11 2021-12-21 Sio2医药产品公司 Coated packaging material
US9937099B2 (en) 2013-03-11 2018-04-10 Sio2 Medical Products, Inc. Trilayer coated pharmaceutical packaging with low oxygen transmission rate
US20160017490A1 (en) 2013-03-15 2016-01-21 Sio2 Medical Products, Inc. Coating method
US11326254B2 (en) * 2014-03-03 2022-05-10 Picosun Oy Protecting an interior of a gas container with an ALD coating
WO2015148471A1 (en) 2014-03-28 2015-10-01 Sio2 Medical Products, Inc. Antistatic coatings for plastic vessels
US11077233B2 (en) 2015-08-18 2021-08-03 Sio2 Medical Products, Inc. Pharmaceutical and other packaging with low oxygen transmission rate
WO2019057310A1 (en) * 2017-09-25 2019-03-28 Applied Materials, Inc. System for cleaning a vacuum chamber, method for cleaning a vacuum chamber and use of a compressor for cleaning a vacuum chamber
DE102018109217A1 (en) * 2018-04-18 2019-10-24 Khs Corpoplast Gmbh Apparatus for coating hollow bodies with at least one coating station
TWI706816B (en) * 2019-08-13 2020-10-11 明志科技大學 Atmospheric pressure plasma apparatus for cleaning straw
WO2023250385A1 (en) * 2022-06-21 2023-12-28 Sio2 Medical Products, Inc. Methods and systems for coating, cleaning, and inspecting pharmaceutical containers for particles and defects

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5232511A (en) * 1990-05-15 1993-08-03 Semitool, Inc. Dynamic semiconductor wafer processing using homogeneous mixed acid vapors
JP2788412B2 (en) * 1994-08-11 1998-08-20 麒麟麦酒株式会社 Apparatus and method for producing carbon film-coated plastic container
US5711819A (en) * 1996-04-24 1998-01-27 Miyasaki; Mace T. Method for cleaning the interior of tanks and other objects
JP3256459B2 (en) * 1996-05-20 2002-02-12 株式会社大協精工 Sanitary goods container and method for producing the same
US6112695A (en) * 1996-10-08 2000-09-05 Nano Scale Surface Systems, Inc. Apparatus for plasma deposition of a thin film onto the interior surface of a container
US5944908A (en) * 1996-10-10 1999-08-31 Henkel Corporation Cleaning compositions and processes suitable for replacing grit blasting to clean metal mold surfaces for plastics
JP3115252B2 (en) 1997-03-14 2000-12-04 麒麟麦酒株式会社 Apparatus and method for producing carbon film-coated plastic container
EP1010773A4 (en) * 1997-02-19 2004-08-25 Kirin Brewery Method and apparatus for producing plastic container having carbon film coating
JP3072269B2 (en) 1997-02-19 2000-07-31 麒麟麦酒株式会社 Apparatus and method for producing carbon film-coated plastic container
JP2001335946A (en) * 2000-05-24 2001-12-07 Mitsubishi Shoji Plast Kk System and method for cvd film deposition
JP2002121667A (en) 2000-10-12 2002-04-26 Mitsubishi Shoji Plast Kk Method and apparatus for continuously forming dlc film in plastic container
WO2002051707A1 (en) * 2000-12-25 2002-07-04 Mitsubishi Shoji Plastics Corporation Production device for dlc film-coated plastic container and production method therefor
DE10109087A1 (en) * 2001-02-24 2002-10-24 Leoni Bordnetz Sys Gmbh & Co Method for producing a molded component with an integrated conductor track
EP1500600A4 (en) * 2002-04-26 2008-03-26 Hokkai Can Plastic containers coated on the inner surface and process for production thereof
EP1367145B1 (en) * 2002-05-24 2006-05-17 Schott Ag CVD apparatus

Also Published As

Publication number Publication date
WO2003104523A1 (en) 2003-12-18
US7189290B2 (en) 2007-03-13
EP1510595A4 (en) 2007-05-09
CN1659307A (en) 2005-08-24
JPWO2003104523A1 (en) 2005-10-06
AU2003242357A1 (en) 2003-12-22
EP1510595A1 (en) 2005-03-02
AU2003242357A8 (en) 2003-12-22
US20050227019A1 (en) 2005-10-13

Similar Documents

Publication Publication Date Title
JP3595334B2 (en) Method and apparatus for cleaning source gas introduction pipe used in CVD film forming apparatus
JP4031654B2 (en) CVD film forming apparatus and method for cleaning internal electrode for CVD film forming apparatus
KR100910070B1 (en) Cleaning apparatus and cleaning method
JP3369418B2 (en) Ultrasonic vibrator, ultrasonic cleaning nozzle, ultrasonic cleaning device, substrate cleaning device, substrate cleaning processing system, and ultrasonic cleaning nozzle manufacturing method
US10090189B2 (en) Substrate cleaning apparatus comprising a second jet nozzle surrounding a first jet nozzle
JP4385657B2 (en) Film forming apparatus and film forming method
JP2001213517A (en) Conveying device for plate member
CN101437630A (en) Apparatus for isolated bevel edge clean and method for using the same
JP2002308231A (en) Cleaning apparatus for plastic bottle
US10685856B2 (en) Substrate processing method and substrate processing apparatus
US20070170812A1 (en) System apparatus and methods for processing substrates using acoustic energy
JP4415703B2 (en) Mold cleaning method and apparatus, molding method and apparatus
JP6966917B2 (en) Board processing method and board processing equipment
JP2008088451A (en) Film deposition method and film deposition system
US9121502B2 (en) Double-sealing device for a machine for the plasma treatment of containers
KR20050019119A (en) Method and device for cleaning raw material gas introduction tube used in cvd film forming apparatus
JP2005076082A (en) Apparatus for forming cvd film and method for cleaning inner electrode
JP2004008976A (en) Apparatus and method for cleaning vessel
US20140083456A1 (en) Method and apparatus for substrate edge cleaning
WO2005035826A1 (en) Plasma cvd film-forming apparatus
JP3565690B2 (en) Closed-type cleaning apparatus and method for cleaning precision substrate using this apparatus
JP2003267325A (en) Gas-cleaning method and gas-cleaning device for plastic container
JP2001044466A (en) Method and system for cleaning integrated thin film solar cell
JP2005087804A (en) Method of washing vessel and tubular body
KR100877286B1 (en) Structure for removing powder on conveyor belt

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040831

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040902

R150 Certificate of patent or registration of utility model

Ref document number: 3595334

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070910

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070910

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080910

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090910

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090910

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100910

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100910

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110910

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110910

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120910

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120910

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120910

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130910

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130910

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term