JP3592363B2 - Blowing out equipment - Google Patents

Blowing out equipment Download PDF

Info

Publication number
JP3592363B2
JP3592363B2 JP12482494A JP12482494A JP3592363B2 JP 3592363 B2 JP3592363 B2 JP 3592363B2 JP 12482494 A JP12482494 A JP 12482494A JP 12482494 A JP12482494 A JP 12482494A JP 3592363 B2 JP3592363 B2 JP 3592363B2
Authority
JP
Japan
Prior art keywords
pressure
pipe
steam
low
blowing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP12482494A
Other languages
Japanese (ja)
Other versions
JPH07332014A (en
Inventor
裕 有吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP12482494A priority Critical patent/JP3592363B2/en
Publication of JPH07332014A publication Critical patent/JPH07332014A/en
Application granted granted Critical
Publication of JP3592363B2 publication Critical patent/JP3592363B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • F01K23/106Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle with water evaporated or preheated at different pressures in exhaust boiler
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、一軸型コンバインドサイクル発電設備の建設途上における機器、配管設備のブローイングアウト設備に関する。
【0002】
【従来の技術】
通常、主蒸気、再熱蒸気配管は管内フラッシング(ブローイングアウト)を行い大気への開放(フリーブロー)を実施している。
ブローイングアウトは据付完了した蒸気タービンサイクル機器の試運転前段階で必要とする重要な作業の一つであり、その目的は、溶接棒・スパッタ等の設備内への混入異物の除去と錆等の設備内部発生異物の除去である。したがって、ブローイングアウト時に蒸気が管内の異物を吹き飛ばす力は通常運転時の力よりも強くしなければならない。また、フラッシングの媒体として蒸気を利用する場合スチィームフラッシングまたはスチィームブローとも呼ばれている。
【0003】
ところで、蒸気が管内に残存する異物を吹き払う力は次のように考えることができる。
異物のある管路内の流体の流れは、異物をはさむ管路の流れの間にはエネルギーの損失はきわめて少なく、かつ流体を非圧縮として取り扱えば、ベルヌーイの定理より、単位体積の流体の有するエネルギーは、一般的には次式で表わされる。
【0004】
【数1】

Figure 0003592363
【0005】
ここで、p:一つの流線における圧力、γ:流体の比重量、
Z:基準水平面からの高さ、g:重力の加速度、V:流速
いま、管路内を毎秒Qm の流体が流れているとすれば、その流体の有する全エネルギーPは上式の与えるエネルギーのQ倍となる。
【0006】
【数2】
Figure 0003592363
【0007】
流体中の物体あるいは流体が充満して流れる管路などの流れにおいては、高さに基づく圧力γZの項を無視して取り扱い、後でこの分の修正を行えばよい。しかし、気体中にある物体のまわりの流れを取り扱う場合は、γが小さいのでγZの項を無視して差し支えないから、動力学的作用のみを考える時は、次のように表される。
【0008】
【数3】
Figure 0003592363
【0009】
管路中にある異物の前後の静圧の変化は少ないので、ベルヌーイの定理より静圧を除いたこの気流より利用しうる動力P、即ち単位体積の気体の有する運動のエネルギーは、動圧γ/2g*V(kg/m)にその流量(m /sec.)を乗じたものとなる。即ち、
【0010】
【数4】
Figure 0003592363
従って、気体が管内に残存する異物を吹き払う力Fは次式で表される。
【0011】
【数5】
Figure 0003592363
【0012】
ここで、A:異物の流れを受ける断面積、D:管の内径、W:気体の流量、v:気体の比容積
したがって、通常運転時とブローイングアウト時の作用力を比較するには、γ・V またはW ・vを比較すればよいことになる。これらをクリーニングフォース(CF)と呼んでいる。また、これがブローイングアウト時の運転の目安となる。
【0013】
従来の蒸気タービンプラントにおけるブローイングアウト時の仮設設備系統は、図2に示すように、燃焼ボイラ41と燃焼ボイラ41で発生した蒸気の持つ熱エネルギーを機械エネルギーに変換する蒸気タービン42および仕事を終えた蒸気を冷却し,復水に戻す復水器50を主要構成機器としている。
【0014】
同図において、主蒸気配管のブローイングアウトでは、燃焼ボイラ41で発生した蒸気は、高圧主蒸気管44を通り高圧主塞止弁45に導かれ仮上蓋より仮設蒸気配管52を通りブローイングアウト判定用ターゲット53、サイレンサー55を経て大気に開放される。ブローイングアウト用に使用される蒸気は、復水器50に回収されないので、常時補給が必要である。このため復水器50内は真空を保持し補給水内にある溶存酸素を脱気し,プレボイラ系機器を通り燃焼ボイラ41に給水される。
【0015】
また、再熱蒸気配管のブローイングアウトでは、燃焼ボイラ41で発生した蒸気は再熱器47、高温再熱蒸気管48を通り再熱蒸気主塞止弁49に導かれ仮上蓋より仮設蒸気配管52を通りブローイングアウト判定用ターゲット53、サイレンサー55を経て大気に開放される。一方、低温再熱蒸気管46は燃焼ボイラ41より通常の蒸気の流れと反対方向に蒸気が流れる。高圧タービン42と低温再熱蒸気管46の取り合い点は、高圧タービン内に蒸気を流さないために止板が施工されている。従って、蒸気は止板の上流より仮設蒸気配管52を通りブローイングアウト判定用ターゲット53、サイレンサー55を通り大気に開放される。
【0016】
ブローイングアウト用に使用される蒸気は、復水器50に回収されないため常時補給が必要である。このため復水器50内は真空を保持し補給水内にある溶存酸素を脱気し、プレボイラ系機器を通り燃焼ボイラに給水される。
【0017】
一軸型コンバインドサイクルプラント(非再熱)の場合は、ガスタービンとガスタービンから排出される高温ガスを熱源とする排熱回収ボイラ、および排熱回収ボイラで発生した蒸気の持つ熱エネルギーを機械エネルギーに変換する蒸気タービンを主要構成機器としている。
【0018】
図3は一軸上にガスタービン71、発電機72、蒸気タービン73の順に配置した一軸型コンバインドサイクル発電設備における従来のブローイングアウト時の概略系統図である。
【0019】
高圧主蒸気配管76のブローイングアウトの場合は、ガスタービン71と発電機72を直結し、蒸気タービン73のみをパワートレンから切り放し、排熱回収ボイラ74で蒸気を発生せしめるためにガスタービン71を運転する。復水器85は余剰蒸気を冷却するため真空保持して待機する。また、ブローイングアウト用に使用される蒸気は、全量復水器85に回収されないため常時補給が必要である。このため復水器内で真空により補給水内にある溶存酸素を脱気し、プレボイラ系機器を通り排熱回収ボイラ74に給水される。
【0020】
排熱回収ボイラ74で発生した蒸気は、高圧主蒸気配管76を通り高圧主塞止弁77に導かれ仮上蓋より仮設蒸気配管81を通りブローイングアウト判定用ターゲット82、仮設操作弁83、仮設配管84を経てサイレンサー91から大気に開放される。
【0021】
また、低圧主蒸気配管79のブローイングアウトの場合も、ガスタービン71と発電機72を直結し、蒸気タービン73のみをパワートレンから切り放し、排熱回収ボイラ74で蒸気を発生せしめるためにガスタービン71を運転する。復水器85は余剰蒸気を冷却するため真空保持して待機する。また、ブローイングアウト用に使用される蒸気は、全量復水器85に回収されないため常時補給が必要である。このため復水器内で真空により補給水内にある溶存酸素を脱気し、プレボイラ系機器を通り排熱回収ボイラ74に給水される。
【0022】
排熱回収ボイラ74で発生した蒸気は、低圧主蒸気配管79を通り低圧主塞止弁80に導かれ、仮上蓋より仮設蒸気配管81を通りブローイングアウト判定用ターゲット82、仮設操作弁83、仮設配管84を経てサイレンサー91から大気に開放される。
【0023】
【発明が解決しようとする課題】
次に、上記従来技術の問題点を以下に説明する。
(1)フレキシビリティーのない工程
ブローイングアウト実施時期が着火直後と限定される。すなわち、フラッシング媒体としての蒸気は熱源がなければ発生しないため必然的に着火以降の実施となる。蒸気タービン側からの要求は機器保護の観点から設備内に残存する異物は極力除去した後の運転となるため、ブローイングアウト実施時期に対しフレキシビリティーに欠けることとなる。
【0024】
(2)高負荷運転と再アライメント設定
基本的にはブローイングアウト時に蒸気が管内の異物を吹き飛ばす力は、通常運転時の力よりも強くしなければならない。ガスタービン関連の調整をブローイングアウト開始前に終わらせなくてはならないが、全てを終わらせることは困難である。しかし、このような状態で排熱回収ボイラで必要なクリーニングフォースを得る適切な蒸気条件を作り出すためにはガスタービンの高負荷運転を行わなければならない。
【0025】
図3に示す一軸型コンバインドサイクル発電プラントの場合、ブローイングアウト終了後蒸気タービンをパワートレンに接続し、本来のパワートレンとしてのアライメント設定を再度行う必要がある。
【0026】
(3)早期エンジニアリング段階における錯綜
ブローイングアウト用仮設設備の配置が広範囲となり、準備段階におけるエンジニアリングに多大な労力を要する。タービン建屋内から屋外にいたるまで仮設配管計画をエンジニアリング初期に行わなければならず他のエンジニアリングとの錯綜を生じる。
【0027】
(4)騒音
蒸気を大気に開放するため大きな騒音が発生する。近年、環境保全に重点が置かれ建設期間中といえども騒音低減の要求が高まっている。大気開放箇所にはサイレンサーを配置し騒音の低減を計っているが、すべての条件を満足するためには多大な費用の負担を要する。
【0028】
本発明は、上記従来技術における各種問題点を解決するためになされたもので、その目的はブローイングアウト実施時期のフレキシビリティーがあり、高負荷運転が可能、低騒音で、他のエンジニアリングと錯綜しない一軸型コンバインドサイクル発電設備のブローイングアウト設備を提供することにある。
【0029】
【課題を解決するための手段】
上記目的を達成するため、本発明の請求項1は、一軸上にガスタービン、高・中・低圧の各蒸気タービン、発電機の順に直結したパワートレンと、排熱回収ボイラとからなる一軸型コンバインドサイクル発電設備のブローイングアウト設備において、前記発電設備の常設設備と、前記常設設備への仮配管を含む仮設空気圧縮設備と、前記各蒸気タービン入口弁上流より復水器への異物を回収する異物回収器を配置した仮配管と、前記発電設備の常設配管とから構成されたことを特徴とする。
【0030】
【作用】
本発明によると、ブローイングアウトの実施時期にフレキシビリティーがあり、それに要する作業量が少なくてすむ。また、仮設配管の引き回し範囲が縮小され、エンジニアリング量が少なくなり、さらに仮設空気圧縮機の容量の低減が可能となるとともに騒音の低減も図られる。
【0031】
【実施例】
以下、本発明の実施例を図を参照して説明する。
図1は本発明の一実施例の系統図であり、同図により一軸上にガスタービン、蒸気タービン、発電機の順に直結配置したパワートレンと排熱回収ボイラからなる一軸型コンバインドサイクル発電設備におけるブローイングアウト設備について説明する。
【0032】
同図に示すように、1は排熱回収ボイラであり、この排熱回収ボイラ一1に接続されてガスタービン2と高圧蒸気タービン3と中圧蒸気タービン4と低圧蒸気タービン5と発電機6とが一軸上に直結配置されている。他の主要機器としては、高圧ドラム7、高圧過熱器8、再熱器9、ブローイングアウト判定用ターゲット14、減温装置16、異物回収器17、復水器19、中圧ドラム20、中圧過熱器21、低圧ドラム27、低圧過熱器28、復水器真空ポンプ32、仮設空気圧縮機設備33、高圧蒸発器35、中圧蒸発器36、低圧蒸発器37が設けられている。また、各種配管として高圧主蒸気管10、中圧主蒸気管22、低温再熱管24、高温再熱管25、低圧主蒸気管29、補給水管31、仮設空気配管34が有り、さらに各種弁として高圧主塞止弁11、バイパス管12、バイパス入口弁13、操作弁15、バイパス止弁18、中圧主蒸気止弁23、再熱主塞止弁26、低圧主塞止弁30が設けられている。
【0033】
次に、プラント側の前提条件を下記のとおりとする。すなわち、プラント冷却水(軸受冷却水、海水)系統運転、プラント復水再循環運転、プラント補助蒸気系統運転、プラント復水器真空保持運転、プラント制御用真空系統運転とする。
【0034】
まず、第1に、高圧主蒸気系統のブローイングアウトについて説明する。
図1において、仮設空気圧縮器33を運転し、仮設空気配管34を通り高圧主蒸気系統を昇圧、蓄圧し規定の圧力で保持する。蓄圧範囲は、高圧蒸発器35、高圧ドラム7、高圧過熱器8、高圧主蒸気管10、高圧主塞止弁11までと、高圧主塞止弁11上流よりバイパス管12を通り操作弁15までである。
【0035】
ブローイングアウトは操作弁15を短時間で全閉から全開とし、高圧主蒸気系統に蓄圧された空気を復水器19に排出する。バイパス管12にはブローイングアウト判定用ターゲット14およびサイクロンセパレータ、ストレーナ等に代表される異物回収器17が設置されている。高圧主蒸気系統内に残存していた異物が空気により吹き飛ばされブローイングアウト判定用ターゲット14に衝突し打痕跡によりその存在を確認するとともに異物回収器17にて異物を捕獲する。
【0036】
上記蓄圧、放圧の作業は、系統内部の異物がなくなるまで繰り返される。
従って、ブローイングアウト判定用ターゲット14を容易に取り出し、迅速に判定が可能となるように、復水器真空保持エリア内には設置せず、バイパス入口弁13とバイパス仕切弁18にて配管系統から分離可能なものとする。バイパス管12と復水器19との取合部には復水器内に冷却水細管の損傷防止装置が常設されており、異物回収器17を通り抜けた微小異物に対しても復水器17は保護される。
【0037】
空気は騒音低減効果のある復水器19に排出され膨脹するが、復水器真空ポンプ32により大気へとさらに排出される。復水器真空ポンプ32の容量が足りない場合は、仮設の真空ポンプを追加して対応する。
【0038】
第2に、中圧主蒸気系統のブローイングアウトについて説明する。
仮設空気圧縮機33を運転し、仮設空気配管34を通り中圧主蒸気系統を昇圧、蓄圧し規定の圧力で保持する。蓄圧範囲は中圧蒸発器36、中圧ドラム20、中圧過熱器21、中圧主蒸気管22、中圧主蒸気止弁23までと、中圧主蒸気止弁23上流よりバイパス管12を通り操作弁15までである。
【0039】
ブローイングアウトは操作弁15を短時間で全閉から全開とし、中圧主蒸気系統に蓄圧された空気を復水器19に排出する。バイパス管12にはブローイングアウト判定用ターゲット14およびサイクロンセパレータ、ストレーナ等に代表される異物回収器17が設置されている。中圧主蒸気系統内に残存していた異物が空気により吹き飛ばされ、ブローイングアウト判定用ターゲット14に衝突し、打痕跡によりその存在を確認するとともに異物回収器17にて異物を捕獲する。
【0040】
上記蓄圧・放圧の作業は、系統内部の異物がなくなるまで繰り返される。従って、ブローイングアウト判定用ターゲット14を容易に取り出し、迅速に判定が可能となるように復水器真空保持エリア内には設置せず、バイパス入口弁13とバイパス仕切弁18にて配管系統から分離可能なものとする。バイパス管12と復水器19との取合部には器内に冷却水細管の損傷防止装置が常設されており、異物回収器17を通り抜けた微小異物に対しても復水器19は保護される。
【0041】
空気は騒音低減効果のある復水器19に排出され膨脹するが、復水器真空ポンプ32により大気へとさらに排出される。復水器真空ポンプ32の容量が足りない場合は、仮設の真空ポンプを追加して対応する。
【0042】
第3に、再熱蒸気系統のブローイングアウトについて説明する。
仮設空気圧縮機33を運転し、仮設空気配管34を通り高圧主蒸気系統を昇圧、蓄圧し規定の圧力で保持する。蓄圧範囲は高圧蒸発器35、高圧ドラム7、高圧過熱器8、高圧主蒸気管10、高圧主塞止弁11上流よりバイパス入口弁13までと、高圧主塞止弁11上蓋よりバイパス管12、低温再熱管24、再熱器9、高温再熱管25、再熱蒸気弁26の上蓋よりバイパス管12を通り操作弁15までである。
【0043】
ブローイングアウトは操作弁15を短時間で全閉から全開とし、再熱蒸気系統に蓄積された空気を復水器19に排出する。バイパス管12にはブローイングアウト判定用ターゲット14およびサイクロンセパレータ、ストレーナ等に代表される異物回収器17が設置されている。再熱蒸気系統内に残存していた異物が空気により吹き飛ばされブローイングアウト判定用ターゲット14に衝突し打痕跡によりその存在を確認するとともに異物回収器17にて異物を捕獲する。
【0044】
上記蓄圧・放圧の作業は、系統内部の異物がなくなるまで繰り返される。従って、ブローイングアウト判定用ターゲット14を容易に取り出し、迅速に判定が可能となるように復水器真空保持エリア内には設置せず、バイパス入口弁13とバイパス仕切弁18にて配管系統から分離可能なものとする。バイパス管12と復水器19との取合部には器内に冷却水細管の損傷防止装置が常設されており、異物回収器17を通り抜けた微小異物に対しても復水器19は保護される。
【0045】
空気は騒音低減効果のある復水器19に排出され膨脹するが、復水器真空ポンプ32により大気へとさらに排出される。復水器真空ポンプ32の容量が足りない場合は、仮設の真空ポンプを追加して対応する。
【0046】
第4に、低圧蒸気系統のブローイングアウトについて説明する。
仮設空気圧縮機33を運転し仮設空気配管34を通り低圧主蒸気系統を昇圧、蓄圧し規定の圧力で保持する。蓄圧範囲は低圧蒸発器37、低圧ドラム27、低圧過熱器28、低圧主蒸気管29、低圧主塞止弁30までと、低圧主塞止弁30上流よりバイパス止弁12を通り操作弁15までである。
【0047】
ブローイングアウトは操作弁15を短時間で全閉から全開とし、低圧主蒸気系統に蓄積された空気を復水器19に排出する。バイパス管12にはブローイングアウト判定用ターゲット14およびサイクロンセパレータ、ストレーナ等に代表される異物回収器17が設置されている。低圧主蒸気系統内に残存していた異物が空気により吹き飛ばされブローイングアウト判定用ターゲット14に衝突し打痕跡によりその存在を確認するとともに異物回収器17にて異物を捕獲する。
【0048】
上記蓄圧・放圧の作業は系統内部の異物がなくなるまで繰り返される。従って、ブローイングアウト判定用ターゲット14を容易に取り出し、迅速に判定が可能となるように復水器真空保持エリア内には設置せず、バイパス入口弁13とバイパス仕切弁18にて配管系統から分離可能なものとする。バイパス管12と復水器19との取合部には器内に冷却水細管の損傷防止装置が常設されており、異物回収器17を通り抜けた微小異物に対しても復水器19は保護される。
【0049】
空気は騒音低減効果のある復水器19に排出され膨脹するが、復水器真空ポンプ32により大気へとさらに排出される。復水器真空ポンプ32の容量が足りない場合は、仮設の真空ポンプを追加して対応する。
【0050】
上記した本実施例によると、以下のような作用効果が得られる。
(1)フレキシビリティーのない工程に対しては、仮設空気圧縮機設備33を設置し、フラッシングの媒体に蒸気の代りに空気を使用することにより主要設備の調整工程に影響を与えることなく据え付け工事が終了次第、ブローイングアウトの実施が可能となる。
(2)高負荷運転と再アライメント設定に対しては、ガスタービンの運転を行わずにフリーブロー操作を行うため、蒸気タービンを切り離す必要がない。従って、ガスタービンによる高負荷運転もパワートレンのアライメント再設定も必要ない。
(3)早期エンジニアリング段階における錯綜に対しては、フリーブロー用配管は基本的に常設の配管を多く使用するためエンジニアリングに費やす労力は少なくてすむ。ただ、復水器19に接続される配管に、フリーブロー判定用ターゲット14ならびに吹き飛ばされた異物を回収するためのサイクロンセパレータ、ストレーナ等の異物回収器17を配置するための仮設設備を検討するのみで広範囲な配管ルートの検討は不要となる。また、仮設空気圧縮機設備33は、排熱回収ボイラ1の高圧ドラム7、中圧ドラム20、低圧ドラム27を空気溜として利用するため空気を供給するのに排熱回収ボイラ1近傍に配置することが好ましい。従って、空気を使用したブローイングアウトはエンジニアリングの早期段階における錯綜を軽減することになる。
(4)騒音に対しては、ブローイングアウトの放出端を復水器19にすることで環境騒音としては大幅に軽減することが可能となる。
(5)クリーニングフォース増加の利点
気体の理論流出速度は次式にて表される。
【0051】
【数6】
Figure 0003592363
【0052】
ここで、V:理論流出速度、k:気体の比熱比、
p1 :一次圧(元圧)、p2 :二次圧、v:気体の比体積
ブローイングアウトの放出端を復水器19にすることにより、二次側圧力が大気圧から下がり真空サイドとなる。これにより配管内流速は増加する。従って、クリーニングフォースγ・V またはW ・vも増加する。このことは、同じ一次圧(元圧)でもクリーニングフォースを大きくとれることであり、また、一次圧を下げても同じクリーニングフォースが得られることである。これは仮設空気圧縮機22の容量の低減につながる。
【0053】
復水器19に排出された空気は常設の復水器真空ポンプ32により大気に放出される。常設の復水器真空ポンプ32はH.E.I(HEAT EXCHANGER INSTITUTE,TABLE 4)より選定されるのが基本であるが、設備内蓄圧空気容量との協調を計ることが必要であり、検討結果によっては、仮設の真空ポンプの追加が必要となる。
【0054】
【発明の効果】
以上説明したように、本発明によれば次のような効果がある。
(1)実施時期にフレキシビリティーがある。すなわち、据え付け完了後主機を運転しなくともブローイングアウトが可能となり、工程面でフレキシビリティーの幅が広がる。
(2)ブローイングアウトに要する作業量が少なくてすむ。すなわち、 主機を運転しないため、ブローイングアウト時運転する補機の数が少なく運転員に対する負担が軽減される。
(3)早期エンジニアリング段階における検討の労力が少なくてすむ。すなわち、仮設配管の引き回し範囲が縮小され、エンジニアリング量が少なくなる。
(4)騒音の低減が可能となる。すなわち、境界線騒音の低減により環境保全が計られる。
(5)仮設空気圧縮機の容量の低減が可能となる。すなわち、真空引きすることにより配管内流速の増加が計れるためブローイングフォースを大きくすることができる。また、ブローイングフォースを合わせた場合、規定圧の低減が可能となり、蓄圧のための仮設空気圧縮機の容量低減が可能となる。
【図面の簡単な説明】
【図1】本発明の一実施例のコンバインドサイクル発電設備のブローイングアウト時の系統構成図。
【図2】従来の汽力発電設備のブローイングアウト時の系統構成図。
【図3】従来のコンバイントサイクル発電設備のブローイングアウト時の系統構成図。
【符号の説明】
1…排熱回収ボイラ、2…ガスタービン、3…高圧蒸気タービン、4…中圧蒸気タービン、5…低圧蒸気タービン、6,43,72…発電機、7…高圧ドラム、8…高圧過熱器、9,47…再熱器、10,44…高圧主蒸気管、11,45…高圧主塞止弁、12…バイパス管、13…バイパス入口弁、14…ブローイングアウト判定用ターゲット、15…操作弁、16…減温装置、17…異物回収器、18…バイパス止弁、19,50,85…復水器、20…中圧ドラム、21…中圧過熱器、22…中圧主蒸気管、23…中圧主蒸気止弁、24,46…低温再熱管、25,48…高温再熱管、26…再熱主塞止弁、27…低圧ドラム、28…低圧過熱器、29…低圧主蒸気管、30…低圧主塞止弁、31…補給水管、32…復水器真空ポンプ、33…仮設空気圧縮機設備、34…仮設空気配管、35…高圧蒸発器、36…中圧蒸発器、37…低圧蒸発器、41…燃焼ボイラ、42,73…蒸気タービン、49…再熱主塞止弁、51…補給水管、52…仮設蒸気配管、53,82…ブローイングアウト判定用ターゲット、54,83…仮設操作弁、55,91…サイレンサー、56,87…復水器真空ポンプ、57,88…復水ポンプ、58…低圧給水加熱器、59…脱気器、60…ボイラ給水ポンプ、61…高圧給水加熱器、71…ガスタービン、74…排熱回収ボイラ、75…高圧ドラム、76…高圧主蒸気配管、77…高圧主塞止弁、78…低圧ドラム、79…低圧主蒸気配管、80…低圧主塞止弁、81,89…仮設配管、84…仮設配管、86…補給水管、90…移送ポンプ。[0001]
[Industrial applications]
The present invention relates to a blow-out facility for equipment and piping facilities during construction of a single-shaft combined cycle power generation facility.
[0002]
[Prior art]
Normally, the main steam and reheat steam pipes are flushed (blown out) in the pipes to open them to the atmosphere (free blow).
Blowing out is one of the important tasks required before the commissioning of the steam turbine cycle equipment that has been installed, and its purpose is to remove foreign substances mixed in the equipment such as welding rods and spatters and to install equipment such as rust. This is the removal of internally generated foreign matter. Therefore, the force at which the steam blows off foreign matter in the pipe during blowing out must be greater than the force during normal operation. When steam is used as a medium for flushing, it is also called steam flushing or steam blow.
[0003]
By the way, the force by which the steam blows away the foreign matter remaining in the pipe can be considered as follows.
The flow of fluid in a pipe with foreign matter has very little energy loss during the flow of the pipe containing the foreign matter, and if the fluid is treated as incompressible, it has a unit volume of fluid according to Bernoulli's theorem. Energy is generally expressed by the following equation.
[0004]
(Equation 1)
Figure 0003592363
[0005]
Here, p: pressure in one streamline, γ: specific weight of fluid,
Z: Height from a reference horizontal plane, g: Acceleration of gravity, V: Flow velocity If a fluid of Qm 3 flows per second in a pipe, the total energy P of the fluid is the energy given by the above equation. Q times of
[0006]
(Equation 2)
Figure 0003592363
[0007]
In the flow of an object in a fluid or a flow of a pipe filled with the fluid, the term of the pressure γZ based on the height may be ignored and the correction may be performed later. However, when dealing with the flow around an object in a gas, the term of γZ can be ignored because γ is small. Therefore, when only the dynamic action is considered, it is expressed as follows.
[0008]
(Equation 3)
Figure 0003592363
[0009]
Since the change in the static pressure before and after the foreign matter in the conduit is small, the power P available from this airflow excluding the static pressure from Bernoulli's theorem, that is, the energy of the motion of a unit volume of gas is the dynamic pressure γ / 2g * V (kg / m) multiplied by the flow rate (m 3 / sec.). That is,
[0010]
(Equation 4)
Figure 0003592363
Therefore, the force F by which the gas blows away the foreign matter remaining in the pipe is expressed by the following equation.
[0011]
(Equation 5)
Figure 0003592363
[0012]
Here, A: the cross-sectional area for receiving the flow of foreign matter, D: the inner diameter of the pipe, W: the flow rate of the gas, v: the specific volume of the gas. · V 2 or W 2 · v it is sufficient to compare. These are called a cleaning force (CF). This is also a guide for driving during blowing out.
[0013]
As shown in FIG. 2, the temporary equipment system at the time of blowing out in the conventional steam turbine plant finishes the work with the combustion boiler 41 and the steam turbine 42 that converts the heat energy of the steam generated in the combustion boiler 41 into mechanical energy and the work. The condenser 50 that cools the returned steam and returns it to the condensate is the main component.
[0014]
In the drawing, in the blowing out of the main steam pipe, the steam generated in the combustion boiler 41 passes through the high pressure main steam pipe 44 and is guided to the high pressure main closing valve 45, and passes through the temporary steam pipe 52 from the temporary upper lid to determine the blowing out. The air is released to the atmosphere via the target 53 and the silencer 55. Since the steam used for blowing out is not collected in the condenser 50, it must be constantly replenished. For this reason, the inside of the condenser 50 is maintained in a vacuum, the dissolved oxygen in the makeup water is degassed, and the water is supplied to the combustion boiler 41 through the pre-boiler system equipment.
[0015]
In the blowout of the reheat steam pipe, the steam generated in the combustion boiler 41 passes through the reheater 47 and the high-temperature reheat steam pipe 48, is led to the main reheat steam stop valve 49, and is supplied from the temporary lid to the temporary steam pipe 52. Through the target 53 for blowing out determination and the silencer 55 to be released to the atmosphere. On the other hand, the steam flows through the low-temperature reheat steam pipe 46 from the combustion boiler 41 in a direction opposite to the normal steam flow. At the connection point between the high-pressure turbine 42 and the low-temperature reheat steam pipe 46, a stop plate is provided to prevent steam from flowing into the high-pressure turbine. Accordingly, the steam is released from the upstream of the stop plate through the temporary steam pipe 52, the blowing-out determination target 53, and the silencer 55 to the atmosphere.
[0016]
Since the steam used for blowing out is not collected in the condenser 50, it needs to be constantly replenished. For this reason, the inside of the condenser 50 maintains a vacuum, degass the dissolved oxygen in the makeup water, and is supplied to the combustion boiler through the pre-boiler system equipment.
[0017]
In the case of a single-shaft combined cycle plant (non-reheat), a heat recovery steam generator that uses a gas turbine and high-temperature gas discharged from the gas turbine as a heat source, and heat energy of steam generated by the heat recovery steam generator is used as mechanical energy. The main component is a steam turbine that converts the gas into steam.
[0018]
FIG. 3 is a schematic diagram of a conventional single-shaft combined cycle power generation facility in which a gas turbine 71, a generator 72, and a steam turbine 73 are arranged on one shaft in the order of blowing out.
[0019]
In the case of blowing out the high-pressure main steam pipe 76, the gas turbine 71 is directly connected to the generator 72, only the steam turbine 73 is disconnected from the power train, and the gas turbine 71 is operated to generate steam by the exhaust heat recovery boiler 74. I do. The condenser 85 stands by while holding the vacuum to cool the excess steam. Further, since the entire amount of steam used for blowing out is not recovered by the condenser 85, it is necessary to constantly supply the steam. For this reason, the dissolved oxygen in the makeup water is degassed by vacuum in the condenser and supplied to the exhaust heat recovery boiler 74 through the pre-boiler system equipment.
[0020]
The steam generated in the exhaust heat recovery boiler 74 passes through the high-pressure main steam pipe 76 and is guided to the high-pressure main closing valve 77, passes through the temporary steam pipe 81 from the temporary upper lid, blows out determination target 82, the temporary operation valve 83, and the temporary pipe The air is released from the silencer 91 to the atmosphere via 84.
[0021]
Further, in the case of blowing out of the low-pressure main steam pipe 79, directly connected generator 72 and gas turbine 71, disassociate only the steam turbine 73 from the power train, the gas turbine 71 to allowed to generate steam in the exhaust heat recovery boiler 74 To drive. The condenser 85 stands by while holding the vacuum to cool the excess steam. Further, since the entire amount of steam used for blowing out is not recovered by the condenser 85, it is necessary to constantly supply the steam. For this reason, the dissolved oxygen in the makeup water is degassed by vacuum in the condenser and supplied to the exhaust heat recovery boiler 74 through the pre-boiler system equipment.
[0022]
The steam generated in the exhaust heat recovery boiler 74 is guided to a low-pressure main blocking valve 80 through a low-pressure main steam pipe 79, passes through a temporary steam pipe 81 from a temporary upper lid, a blowing-out determination target 82, a temporary operation valve 83, and a temporary The air is released from the silencer 91 to the atmosphere via a pipe 84.
[0023]
[Problems to be solved by the invention]
Next, problems of the above-described conventional technology will be described below.
(1) The process blowing out time without flexibility is limited to immediately after ignition. That is, since steam as a flushing medium is not generated without a heat source, it is inevitably performed after ignition. The requirement from the steam turbine side is to remove foreign substances remaining in the equipment as much as possible from the viewpoint of equipment protection, so that the operation lacks flexibility with respect to the timing of blowing out.
[0024]
(2) High-load operation and realignment setting Basically, the force with which steam blows off foreign matter in the pipe during blowing out must be greater than the force during normal operation. Gas turbine related adjustments must be completed before the start of blowing out, but it is difficult to complete all. However, in such a state, a high load operation of the gas turbine must be performed in order to create appropriate steam conditions for obtaining a necessary cleaning force in the exhaust heat recovery boiler.
[0025]
In the case of the single-shaft combined cycle power plant shown in FIG. 3, it is necessary to connect the steam turbine to the power train after blowing out, and to perform the alignment setting as the original power train again.
[0026]
(3) The layout of temporary equipment for complicated blowing-out in the early engineering stage becomes widespread, and engineering in the preparation stage requires a great deal of labor. Temporary piping planning from the turbine building to the outside must be performed in the early stage of engineering, which causes complications with other engineering.
[0027]
(4) Noise Since the steam is released to the atmosphere, a large noise is generated. In recent years, there has been an increasing demand for noise reduction even during the construction period with an emphasis on environmental protection. Although silencers are placed in the open-to-atmosphere to reduce noise, enormous costs are required to satisfy all conditions.
[0028]
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned various problems in the prior art, and has an object of having flexibility in performing a blowing-out, capable of high load operation, low noise, and complicated with other engineering. Another object of the present invention is to provide a blowing-out facility for a single-shaft combined cycle power generation facility.
[0029]
[Means for Solving the Problems]
In order to achieve the above object, a first aspect of the present invention is a single-shaft type including a gas turbine, high-, medium-, and low-pressure steam turbines, a power train directly connected to a generator in this order, and an exhaust heat recovery boiler. In a blowing-out facility of a combined cycle power facility, a permanent facility of the power facility, a temporary air compression facility including a temporary pipe to the permanent facility, and collecting foreign matter to a condenser from upstream of each steam turbine inlet valve. It is characterized by comprising a temporary pipe in which a foreign substance collector is arranged and a permanent pipe of the power generation facility.
[0030]
[Action]
According to the present invention, there is flexibility in the implementation period of the blowing-out, it requires less amount of work needed. In addition, the routing range of the temporary piping is reduced, the amount of engineering is reduced, the capacity of the temporary air compressor can be reduced, and noise can be reduced.
[0031]
【Example】
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a system diagram of one embodiment of the present invention. FIG. 1 shows a single-shaft combined cycle power generation facility including a power train and an exhaust heat recovery boiler which are directly connected to a gas turbine, a steam turbine, and a generator in this order. The blowing out equipment will be described.
[0032]
As shown in FIG. 1, reference numeral 1 denotes an exhaust heat recovery boiler, which is connected to the exhaust heat recovery boiler 1 and has a gas turbine 2, a high-pressure steam turbine 3 , a medium-pressure steam turbine 4, a low-pressure steam turbine 5, and a generator 6 Are arranged directly on one axis. Other main equipment includes a high-pressure drum 7, a high-pressure superheater 8, a reheater 9, a blowing-out determination target 14, a temperature reducer 16, a foreign matter collector 17, a condenser 19, a medium-pressure drum 20, a medium-pressure drum A superheater 21, a low-pressure drum 27, a low-pressure superheater 28, a condenser vacuum pump 32, a temporary air compressor facility 33, a high-pressure evaporator 35, a medium-pressure evaporator 36, and a low-pressure evaporator 37 are provided. Various pipes include a high-pressure main steam pipe 10, a medium-pressure main steam pipe 22, a low-temperature reheat pipe 24, a high-temperature reheat pipe 25, a low-pressure main steam pipe 29, a makeup water pipe 31, and a temporary air pipe 34. A main stop valve 11, a bypass pipe 12 , a bypass inlet valve 13, an operation valve 15, a bypass stop valve 18, a medium pressure main steam stop valve 23, a reheat main stop valve 26, and a low pressure main stop valve 30 are provided. I have.
[0033]
Next, the preconditions on the plant side are as follows. That is, plant cooling water (bearing cooling water, seawater) system operation, plant condensate recirculation operation, plant auxiliary steam system operation, plant condenser vacuum holding operation , and plant control vacuum system operation.
[0034]
First, the blowing-out of the high-pressure main steam system will be described.
In FIG. 1, the temporary air compressor 33 is operated to increase the pressure of the high-pressure main steam system through the temporary air pipe 34, accumulate the pressure, and maintain the specified pressure. The pressure accumulation range includes the high-pressure evaporator 35, the high-pressure drum 7, the high-pressure superheater 8, the high-pressure main steam pipe 10, the high-pressure main stop valve 11, and the upstream of the high-pressure main stop valve 11 through the bypass pipe 12 to the operation valve 15. It is.
[0035]
In the blowing-out, the operation valve 15 is completely closed to fully opened in a short time, and the air stored in the high-pressure main steam system is discharged to the condenser 19. The bypass pipe 12 is provided with a blowing-out determination target 14 and a foreign matter collector 17 such as a cyclone separator and a strainer. The foreign matter remaining in the high-pressure main steam system is blown off by the air and collides with the blowing-out determination target 14. The presence of the foreign matter is confirmed by a dent mark, and the foreign matter is captured by the foreign matter collecting device 17.
[0036]
The operation of accumulating and releasing the pressure is repeated until there is no foreign matter in the system.
Therefore, the blowout-out determination target 14 is easily taken out and is not installed in the condenser vacuum holding area so that the determination can be quickly performed. It shall be separable. At the junction between the bypass pipe 12 and the condenser 19, a device for preventing damage to the cooling water thin tube is permanently installed in the condenser, and the condenser 17 is also provided for the minute foreign matter passing through the foreign matter collector 17. Is protected.
[0037]
The air is discharged to the condenser 19 which has a noise reducing effect and expands, but is further discharged to the atmosphere by the condenser vacuum pump 32. When the capacity of the condenser vacuum pump 32 is insufficient, a temporary vacuum pump is added to cope with the problem.
[0038]
Second, the blowing out of the medium-pressure main steam system will be described.
The temporary air compressor 33 is operated to increase the pressure of the medium-pressure main steam system through the temporary air pipe 34, accumulate the pressure, and maintain the specified pressure. The pressure accumulation range includes the intermediate-pressure evaporator 36, the intermediate-pressure drum 20, the intermediate-pressure superheater 21, the intermediate-pressure main steam pipe 22, the intermediate-pressure main steam stop valve 23, and the bypass pipe 12 from the upstream of the intermediate-pressure main steam stop valve 23. As far as the operation valve 15 is concerned.
[0039]
In the blowing out, the operation valve 15 is completely closed to fully opened in a short time, and the air stored in the intermediate-pressure main steam system is discharged to the condenser 19. The bypass pipe 12 is provided with a blowing-out determination target 14 and a foreign matter collector 17 such as a cyclone separator and a strainer. The foreign matter remaining in the medium-pressure main steam system is blown off by the air, collides with the blowing-out determination target 14, the presence of which is confirmed by the dent mark, and the foreign matter is captured by the foreign matter collector 17.
[0040]
The operation of accumulating and releasing pressure is repeated until there is no foreign matter in the system. Therefore, the blowout-out determination target 14 is easily taken out and is not installed in the condenser vacuum holding area so that the determination can be performed quickly, and is separated from the piping system by the bypass inlet valve 13 and the bypass gate valve 18. It is possible. At the junction of the bypass pipe 12 and the condenser 19, a device for preventing damage to the cooling water capillary is permanently installed inside the vessel, and the condenser 19 is protected against minute foreign substances passing through the foreign substance collector 17 as well. Is done.
[0041]
The air is discharged to the condenser 19 which has a noise reducing effect and expands, but is further discharged to the atmosphere by the condenser vacuum pump 32. When the capacity of the condenser vacuum pump 32 is insufficient, a temporary vacuum pump is added to cope with the problem.
[0042]
Third, the blowing out of the reheat steam system will be described.
The temporary air compressor 33 is operated to raise and accumulate the high-pressure main steam system through the temporary air pipe 34 and to maintain the specified pressure. The pressure accumulation range is from the high-pressure evaporator 35, the high-pressure drum 7, the high-pressure superheater 8, the high-pressure main steam pipe 10, the upstream of the high-pressure main stop valve 11 to the bypass inlet valve 13 , the bypass pipe 12 from the high-pressure main stop valve 11 upper lid, From the upper lid of the low-temperature reheat pipe 24, the reheater 9, the high-temperature reheat pipe 25, and the reheat steam valve 26 to the operation valve 15 through the bypass pipe 12.
[0043]
In the blowing out, the operation valve 15 is completely closed to fully opened in a short time, and the air accumulated in the reheat steam system is discharged to the condenser 19. The bypass pipe 12 is provided with a blowing-out determination target 14 and a foreign matter collector 17 such as a cyclone separator and a strainer. The foreign matter remaining in the reheat steam system is blown off by the air and collides with the blowing-out determination target 14. The presence of the foreign matter is confirmed by a dent mark, and the foreign matter is captured by the foreign matter collector 17.
[0044]
The operation of accumulating and releasing pressure is repeated until there is no foreign matter in the system. Therefore, the blowout-out determination target 14 is easily taken out and is not installed in the condenser vacuum holding area so that the determination can be performed quickly, and is separated from the piping system by the bypass inlet valve 13 and the bypass gate valve 18. It is possible. At the junction of the bypass pipe 12 and the condenser 19, a device for preventing damage to the cooling water capillary is permanently installed inside the vessel, and the condenser 19 is protected against minute foreign substances passing through the foreign substance collector 17 as well. Is done.
[0045]
The air is discharged to the condenser 19 which has a noise reducing effect and expands, but is further discharged to the atmosphere by the condenser vacuum pump 32. When the capacity of the condenser vacuum pump 32 is insufficient, a temporary vacuum pump is added to cope with the problem.
[0046]
Fourth, blowing out of the low-pressure steam system will be described.
The temporary air compressor 33 is operated to increase the pressure of the low-pressure main steam system through the temporary air pipe 34, accumulate the pressure, and maintain the specified pressure. The pressure accumulation range is from the low-pressure evaporator 37, the low-pressure drum 27, the low-pressure superheater 28, the low-pressure main steam pipe 29, the low-pressure main stop valve 30 to the operation valve 15 through the bypass stop valve 12 from the upstream of the low-pressure main stop valve 30. It is.
[0047]
In the blowing-out operation, the operation valve 15 is completely closed to fully opened in a short time, and the air accumulated in the low-pressure main steam system is discharged to the condenser 19. The bypass pipe 12 is provided with a blowing-out determination target 14 and a foreign matter collector 17 such as a cyclone separator and a strainer. The foreign matter remaining in the low-pressure main steam system is blown off by the air, collides with the blowing-out determination target 14, and its presence is confirmed by a dent mark, and the foreign matter is captured by a foreign matter collector 17.
[0048]
The operation of accumulating and releasing the pressure is repeated until there is no foreign matter in the system. Therefore, the blowout-out determination target 14 is easily taken out and is not installed in the condenser vacuum holding area so that the determination can be performed quickly, and is separated from the piping system by the bypass inlet valve 13 and the bypass gate valve 18. It is possible. At the junction of the bypass pipe 12 and the condenser 19, a device for preventing damage to the cooling water capillary is permanently installed inside the vessel, and the condenser 19 is protected against minute foreign substances passing through the foreign substance collector 17 as well. Is done.
[0049]
The air is discharged to the condenser 19 which has a noise reducing effect and expands, but is further discharged to the atmosphere by the condenser vacuum pump 32. When the capacity of the condenser vacuum pump 32 is insufficient, a temporary vacuum pump is added to cope with the problem.
[0050]
According to the above-described embodiment, the following operational effects can be obtained.
(1) For processes without flexibility, a temporary air compressor facility 33 is installed, and air is used instead of steam as a medium for flushing, so that it is installed without affecting the adjustment process of main facilities. As soon as the construction is completed, blowing out will be possible.
(2) For the high-load operation and the realignment setting, since the free blow operation is performed without operating the gas turbine, there is no need to disconnect the steam turbine. Therefore, neither high load operation by the gas turbine nor resetting of the alignment of the power train is required.
(3) As for the free-blowing piping, a large amount of permanent piping is basically used for the complexities in the early engineering stage, so that less labor is required for engineering. However, only a temporary facility for arranging a foreign matter collecting device 17 such as a cyclone separator, a strainer, etc. for collecting a blown foreign matter in a pipe connected to the condenser 19 is described. Therefore, it is not necessary to consider a wide range of piping routes. Further, the temporary air compressor equipment 33 is disposed near the exhaust heat recovery boiler 1 to supply air to use the high pressure drum 7, the medium pressure drum 20, and the low pressure drum 27 of the exhaust heat recovery boiler 1 as an air reservoir. Is preferred. Therefore, blowing out using air reduces complications in the early stages of engineering.
(4) With respect to noise, by setting the discharge end of the blowing-out to the condenser 19, it is possible to greatly reduce environmental noise.
(5) Advantage of cleaning force increase The theoretical outflow speed of gas is expressed by the following equation.
[0051]
(Equation 6)
Figure 0003592363
[0052]
Here, V: theoretical outflow velocity, k: specific heat ratio of gas,
p1: primary pressure (original pressure), p2: secondary pressure, v: the specific volume blowing-out of the gas is set to the discharge end of the condenser 19, so that the secondary pressure drops from the atmospheric pressure to the vacuum side. Thereby, the flow velocity in the pipe increases. Therefore, the cleaning force γ · V 2 or W 2 · v also increases. This means that the cleaning force can be increased even at the same primary pressure (source pressure), and that the same cleaning force can be obtained even when the primary pressure is reduced. This leads to a reduction in the capacity of the temporary air compressor 22.
[0053]
The air discharged to the condenser 19 is discharged to the atmosphere by a permanent condenser vacuum pump 32. The permanent condenser vacuum pump 32 is E. FIG. I (HEAT EXCHANGER INSTITUTE, TABLE 4) is basically selected, but it is necessary to coordinate with the accumulated air capacity in the equipment, and depending on the examination results, it may be necessary to add a temporary vacuum pump. Become.
[0054]
【The invention's effect】
As described above, the present invention has the following effects.
(1) There is flexibility at the time of implementation. In other words, after the installation is completed, blowing out is possible without operating the main engine, and the flexibility of the process is expanded.
(2) The amount of work required for blowing out is small. That is, since the main engine is not operated, the number of auxiliary machines to be operated during blowing out is small, and the burden on the operator is reduced.
(3) Efforts for examination in the early engineering stage are reduced. That is, the routing range of the temporary piping is reduced, and the amount of engineering is reduced.
(4) Noise can be reduced. That is, environmental protection is achieved by reducing boundary noise.
(5) The capacity of the temporary air compressor can be reduced. In other words, the evacuation can increase the flow velocity in the pipe, so that the blowing force can be increased. Also, when the blowing force is adjusted, the specified pressure can be reduced, and the capacity of the temporary air compressor for accumulating pressure can be reduced.
[Brief description of the drawings]
FIG. 1 is a system configuration diagram at the time of blowing out of a combined cycle power generation facility according to an embodiment of the present invention.
FIG. 2 is a system configuration diagram at the time of blowing out of a conventional steam power generation facility.
FIG. 3 is a system configuration diagram at the time of blowing out of a conventional combined cycle power generation facility.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Exhaust heat recovery boiler, 2 ... Gas turbine, 3 ... High pressure steam turbine, 4 ... Medium pressure steam turbine, 5 ... Low pressure steam turbine, 6, 43, 72 ... Generator, 7 ... High pressure drum, 8 ... High pressure superheater , 9, 47 ... reheater, 10, 44 ... high-pressure main steam pipe, 11, 45 ... high-pressure main shut-off valve, 12 ... bypass pipe , 13 ... bypass inlet valve, 14 ... blowing-out judgment target, 15 ... operation Valve, 16: Temperature reducing device, 17: Foreign matter recovery device, 18: Bypass stop valve, 19, 50, 85: Condenser, 20: Medium pressure drum, 21: Medium pressure superheater, 22: Medium pressure main steam pipe 23, medium pressure main steam stop valve, 24, 46 low temperature reheat tube, 25, 48 high temperature reheat tube, 26 reheat main stop valve, 27 low pressure drum, 28 low pressure superheater, 29 low pressure main Steam pipe, 30: low-pressure main stop valve, 31: makeup water pipe, 32: condenser vacuum pump 33, temporary air compressor equipment, 34, temporary air piping, 35, high-pressure evaporator, 36, medium-pressure evaporator, 37, low-pressure evaporator, 41, combustion boiler, 42, 73, steam turbine, 49 Main blocking valve, 51: Make-up water pipe, 52: Temporary steam pipe, 53, 82 ... Blowing-out determination target, 54, 83 ... Temporary operating valve, 55, 91 ... Silencer, 56, 87 ... Condenser vacuum pump, 57, 88: condensing pump, 58: low pressure feed water heater, 59: deaerator, 60: boiler feed pump, 61: high pressure feed water heater, 71: gas turbine, 74: waste heat recovery boiler, 75: high pressure drum , 76 high-pressure main steam pipe, 77 high-pressure main stop valve, 78 low-pressure drum, 79 low-pressure main steam pipe, 80 low-pressure main stop valve, 81, 89 temporary pipe, 84 temporary pipe, 86 Makeup water pipe, 90 ... Transfer pon .

Claims (4)

一軸上にガスタービン、高・中・低圧の各蒸気タービン、発電機を直結したパワートレンと、排熱回収ボイラとからなる一軸型コンバインドサイクル発電設備のブローイングアウト設備において、
前記排熱回収ボイラ内の低圧ドラムと低圧過熱器とを結ぶ配管、中圧ドラムと中圧過熱器とを結ぶ配管および高圧ドラムと高圧過熱器とを結ぶ配管のそれぞれから分岐した仮設配管を設け、この各仮設配管の他端を前記パワートレンおよび排熱回収ボイラとは別に設けた仮設空気圧縮設備に接続するとともに、
前記蒸気タービン入口に配設された主塞止弁上流側から分岐して復水器に接続されるバイパス管を各蒸気タービン毎に設けたことを特徴とするブローイングアウト設備。
Blow-out equipment of a single-shaft combined cycle power generation facility consisting of a gas turbine, high-, medium-, and low-pressure steam turbines on one shaft, a power train directly connected to a generator, and an exhaust heat recovery boiler.
Provision of a pipe connecting the low-pressure drum and the low-pressure superheater, a pipe connecting the medium-pressure drum and the medium-pressure superheater, and a pipe connecting the high-pressure drum and the high-pressure superheater in the exhaust heat recovery boiler. The other end of each temporary pipe is connected to a temporary air compression facility provided separately from the power train and the exhaust heat recovery boiler,
A blow-out facility , wherein a bypass pipe branching from an upstream side of a main stop valve disposed at the steam turbine inlet and connected to a condenser is provided for each steam turbine .
前記バイパス管は、上流側から入口弁、ブローイングアウト判定用ターゲット、操作弁が順に配設されるとともにこの操作弁と復水器の間には異物回収器が配設されていることを特徴とする請求項1記載のブローイングアウト設備。In the bypass pipe, an inlet valve, a blowing-out determination target, and an operation valve are sequentially arranged from the upstream side, and a foreign matter collector is arranged between the operation valve and the condenser. The blowing-out facility according to claim 1, wherein 一軸上にガスタービン、高・中・低圧の各蒸気タービン、発電機を直結したパワートレンと、排熱回収ボイラとからなる一軸型コンバインドサイクル発電設備のブローイングアウト設備において、Blow-out equipment of a single-shaft combined cycle power generation facility consisting of a gas turbine, high-, medium-, and low-pressure steam turbines on one shaft, a power train directly connected to a generator, and an exhaust heat recovery boiler.
前記排熱回収ボイラ内の低圧ドラムと低圧過熱器とを結ぶ配管、中圧ドラムと中圧過熱器とを結ぶ配管および高圧ドラムと高圧過熱器とを結ぶ配管のそれぞれから分岐した仮設配管を設け、この各仮設配管の他端を前記パワートレンおよび排熱回収ボイラとは別に設けた仮設空気圧縮設備に接続するとともに、Provision of a pipe connecting the low-pressure drum and the low-pressure superheater, a pipe connecting the medium-pressure drum and the medium-pressure superheater, and a pipe connecting the high-pressure drum and the high-pressure superheater in the exhaust heat recovery boiler. The other end of each temporary pipe is connected to a temporary air compression facility provided separately from the power train and the exhaust heat recovery boiler,
前記蒸気タービン入口に配設された主塞止弁上流側から分岐して復水器に接続される第1のバイパス管を各蒸気タービン毎に設ける一方、A first bypass pipe branched from an upstream side of the main closing valve disposed at the steam turbine inlet and connected to the condenser is provided for each steam turbine,
さらに前記高圧蒸気タービン入口に配設された高圧主塞止弁上流側から分岐して低温再熱管に接続される第2のバイパス管を設けたことを特徴とするブローイングアウト設備。A blowing-out facility, further comprising a second bypass pipe branched from an upstream side of the high-pressure main blocking valve disposed at the high-pressure steam turbine inlet and connected to a low-temperature reheating pipe.
前記第1のバイパス管は、上流側から入口弁、ブローイングアウト判定用ターゲット、操作弁が順に配設されているとともに、この操作弁とThe first bypass pipe is provided with an inlet valve, a blowing-out determination target, and an operation valve in this order from the upstream side. 復水器の間には異物回収器が配設されていることを特徴とする請求項4記載のブローイングアウト設備。The blow-out equipment according to claim 4, wherein a foreign matter recovery device is provided between the condensers.
JP12482494A 1994-06-07 1994-06-07 Blowing out equipment Expired - Lifetime JP3592363B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12482494A JP3592363B2 (en) 1994-06-07 1994-06-07 Blowing out equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12482494A JP3592363B2 (en) 1994-06-07 1994-06-07 Blowing out equipment

Publications (2)

Publication Number Publication Date
JPH07332014A JPH07332014A (en) 1995-12-19
JP3592363B2 true JP3592363B2 (en) 2004-11-24

Family

ID=14895020

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12482494A Expired - Lifetime JP3592363B2 (en) 1994-06-07 1994-06-07 Blowing out equipment

Country Status (1)

Country Link
JP (1) JP3592363B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101660433A (en) * 2008-07-29 2010-03-03 通用电气公司 Heat recovery steam generator for a combined cycle power plant

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6044765B2 (en) * 2012-10-22 2016-12-14 三菱日立パワーシステムズ株式会社 Temporary piping system for blowing out boiler and blowing out method
CN108202056A (en) * 2018-03-08 2018-06-26 华北电力科学研究院有限责任公司 The blowpipe temporary system and control method of three discard heat boilers

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101660433A (en) * 2008-07-29 2010-03-03 通用电气公司 Heat recovery steam generator for a combined cycle power plant

Also Published As

Publication number Publication date
JPH07332014A (en) 1995-12-19

Similar Documents

Publication Publication Date Title
US6499302B1 (en) Method and apparatus for fuel gas heating in combined cycle power plants
JP4191894B2 (en) Method of operating gas / steam combined turbine facility and gas / steam combined turbine facility for implementing the method
EP0743425A1 (en) Combined cycle with steam cooled gas turbine
EP2103785A2 (en) Combined cycle plant
US8038801B2 (en) Method and apparatus for the cleaning of components of a power plant by the injection of a medium and measuring device for measuring the degree of purity of the medium
JPH06317106A (en) Steam-gas turbine composite type power plant
JPH03124902A (en) Combined cycle power plant and operating method therefor
JP2016142211A (en) Piping system cleaning method, piping system, and steam turbine plant
JP3592363B2 (en) Blowing out equipment
KR100447291B1 (en) Method and device for increasing the pressure of a gas
US11802689B2 (en) Commissioning power plants
JP4004800B2 (en) Combined cycle power generation system
JPH10331607A (en) Exhaust heat recovery boiler blowing device and a boiler blowing-out method
JP3604197B2 (en) Blow-out device for single-shaft combined power plant
JPS588997A (en) Waste heat collecting heat exchanger
CN115199365A (en) Combined cycle power plant with series heat exchanger
JP7066572B2 (en) Temporary piping system for boiler blow-out and boiler blow-out method
CN100467833C (en) Dual-purpose vacuum apparatus for industrial afterheat power generation and flue gas dust collection
WO1999037889A1 (en) Combined cycle power plant
JP2011111925A (en) Fossil fuel combustion thermal power system including carbon dioxide separation and capture unit
JP3880746B2 (en) Waste heat recovery device and operation method thereof
JP3524939B2 (en) Exhaust-reburn combined cycle power plant
JP2001193413A (en) Combined plant and its operating method
JP2002371807A (en) Turbine equipment and steam converting device
JPH02218803A (en) Foreign material recovering device

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040824

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040825

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070903

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080903

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080903

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090903

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090903

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100903

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110903

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110903

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120903

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120903

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130903

Year of fee payment: 9

EXPY Cancellation because of completion of term