JP3591479B2 - Liquid crystal element - Google Patents

Liquid crystal element Download PDF

Info

Publication number
JP3591479B2
JP3591479B2 JP2001122467A JP2001122467A JP3591479B2 JP 3591479 B2 JP3591479 B2 JP 3591479B2 JP 2001122467 A JP2001122467 A JP 2001122467A JP 2001122467 A JP2001122467 A JP 2001122467A JP 3591479 B2 JP3591479 B2 JP 3591479B2
Authority
JP
Japan
Prior art keywords
liquid crystal
crystal molecules
substrate
voltage
pair
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001122467A
Other languages
Japanese (ja)
Other versions
JP2001356351A (en
Inventor
和廣 西山
昭雄 滝本
一徳 小森
幸生 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2001122467A priority Critical patent/JP3591479B2/en
Publication of JP2001356351A publication Critical patent/JP2001356351A/en
Application granted granted Critical
Publication of JP3591479B2 publication Critical patent/JP3591479B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Liquid Crystal (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a new liquid crystal mode having high contrast, fast response and wide viewing angle characteristics in a liquid crystal device. SOLUTION: The liquid crystal molecules are made to respond stepwise into two or more directions when a voltage is applied by using a means such as to give alignment information with two or more directions to the substrate surface.

Description

【0001】
【発明の属する技術分野】
本発明は、液晶素子の製造方法及び駆動方法に関するものである。
【0002】
【従来の技術】
液晶素子はワードプロセッサーやコンピューターなどのモニター、投写型TVや、携帯用の小型テレビ、また光スイッチング素子など光を制御する素子として幅広く利用されている。このような液晶素子の代表例として、ツイステッドネマティック(TN)液晶や、垂直配向(VA)液晶を用いた液晶表示素子がある。
【0003】
このTN液晶は分子配列の方位性により素子を見る角度によって光の透過率や反射率が大きく変わり色付きや、コントラストの低下を招くという視野角特性であり、これを補正するために、素子表面に位相差フィルムや、散乱フィルムを配置しなければならなかった。またリバースチルトドメインや、界面付近の液晶の配向方向性によりコントラストが低いという欠点があった。
【0004】
またVA液晶はTN液晶同様、見る角度によって光の透過率や反射率が大きく変化し色付き、コントラスト低下等の視野角特性を有する。そこで画素内を2分割、4分割するなどして視野角を拡大する方法が近年用いられているが、効率の低下や液晶の応答時間の低下、またプロセスの煩雑性などの問題がある。またVA液晶は一般的に高コントラストが得られると考えられているが、黒表示寺の液晶分子のわずかな傾きによる光漏れにより最高レベルのコントラストを得ることができなかった。
【0005】
さらに最近視野角特性を向上させる目的でインプレインスイッチング(IPS)という方法が注目されており、これは基板面内で液晶を駆動させるため視野角特性が非常によい。しかし同一基板の同一面内に両電極を形成するため、電極間の短絡防止のための絶縁層が電極上に必要になってくる。そのため長時間固定パターンを表示したときの焼き付き現象が問題となっている。
【0006】
【発明が解決しようとする課題】
このように従来の液晶液晶モードであるTN、VAにおいては視野角依存性が大きく、見る方向によって色付きや、コントラストの低下、階調反転などの問題があり、応答速度も満足のいくものではなかった。またIPSにおいては視野角は改善されるものの焼き付きの発生、電極構造の複雑化など多くの問題が存在する。
【0007】
本発明は、これらの現状の液晶素子における問題点をすべて解決するものであり、高コントラストで広い視野角特性を有し高速応答する液晶素子を提供するものである。
【0008】
【課題を解決するための手段】
前記目的を達成する本発明の請求項1記載の液晶素子は、上下一対の基板と、誘電率異方性が負である液晶分子を有し、前記上下一対の基板の間に挟持された液晶層と、前記上下一対の基板の外側に配置された一対の偏光板とを備える液晶素子であって、前記液晶分子は、電圧が印加されたとき、前記一対の偏光板のいずれかの偏光板の透過軸と前記液晶分子の方向が平行となるような第1の方向に傾斜し、さらに電圧が印加されたとき、前記基板の表面に平行な面内の方向で、前記第1の方向とは異なる第2の方向に動くことを特徴とする液晶素子である。
また、前記目的を達成する本発明の請求項2記載の液晶素子は、上下一対の基板と、誘電率異方性が正である液晶分子を有し、前記上下一対の基板の間に挟持された液晶層とを備える液晶素子であって、前記液晶分子は、電圧が印加されたとき、前記基板の表面と前記液晶分子の長軸とのなす角が増加するような第1の方向に傾斜し、さらに電圧が印加されたとき、前記基板の表面に平行な面内の方向で、前記第1の方向とは異なる第2の方向に動くことを特徴とする液晶素子である。
また、本発明の液晶素子の製造方法は電圧を印加して液晶分子を第1の方向に傾斜させるための配向情報を与える第1の工程と、さらに電圧を印加して前記第1の方向に傾斜している前記液晶分子を前記第1の方向とは異なる第2の方向に傾斜させるための配向情報を与える第2の工程を有する。
【0009】
また、本発明の液晶素子の製造方法は第1の程、第2の程のうち少なくとも一方に基板表面に凹凸をつけることを特徴とする。凹凸を形成する方法としては感光性樹脂によりパターンニングする方法が最も容易である。フォトマスクでのパターンニング、レーザーの2光束干渉を用いてパターンニング、電子ビームを用いてパターンニング、レーザーアブレーションによりパターンニングのいずれであっても良い。またこの時感光性樹脂が導電性であればなお良い。また別の方法として無機物、または有機物を基板上に膜形成し、延伸またはひっかき、擦り等の物理的接触を加えて一方向に凹凸を形成しても良いこの時凹凸が帯状に規則正しく配列する必要はない。またこの時の無機物、有機物の膜が導電性であればさらによい。さらに別の方法として、別の基板等に予め凹凸のパターンを形成しておき、それを転写して基板表面に凹凸を付加してもよい、転写の方法としてはロールコーターのようなもので回転させて転写する方法、版画のように平板を用い貼りあわせて転写してもよい、また基板全面一度に転写する必要はなく、はんこのように、小さな領域に分けて何度も転写して全面に凹凸を付けてもよい。
【0010】
また、本発明の液晶素子の製造方法は第1の程、第2の程のうち少なくとも一方に紫外線を照射することを特徴とする。紫外線としては直線偏光されたものされてないものどちらでも良いが直線偏光されたものの方がより良く、基板に対して角度を付けて照射することも可能である。また照射する前の基板表面に紫外線により反応する化学結合等が存在すれば、紫外線照射により結合、分解等が生じるため配向情報として与えやすい。ポリイミドやシロキサン系の配向膜は市販されているため最も用いやすい。
【0011】
また、本発明の液晶素子の製造方法は第1の程、第2の程のうち少なくとも一方にラビング処理を行うことを特徴とする。ラビングに使用する布は何でもよく、レーヨンやコットンが一般的である。
【0013】
【発明の実施の形態】
まず、本発明の第一の液晶素子について図1を用いて説明する。図1は上基板101と下の基板102に挟まれた誘電率異方性が負の液晶分子103を模式的に描いたものである。例えば液晶分子103が電圧印加前は基板に対してほぼ垂直に配列していてその後電圧印加とともに液晶分子103は傾斜し図1(b)のようになる。そしてさらに電圧を印加することによって最初液晶分子103が動いた方向とは違う方向に動き、図1(c)のようになる。液晶分子がこのような異なる2方向の応答をすることによって、液晶素子特性が向上することになる。例えば偏光板104と偏光板105をそれぞれ透過軸106、透過軸107を矢印に示すとおり配置する。図1(a)の状態においては光が上または下方向から入射した時には偏光板の透過軸が直交しているため光は全く透過しない。そして図1(b)の状態になった時も液晶分子103は偏光板104の透過軸106と平行に傾斜しているため、やはり光は全く透過しない。次に図1(c)の状態になった時液晶分子は偏光板104に対してほぼ45度に配列しているため、適当な液晶層厚に設定してやることによって光が透過することとなる。従来のTNやVAモードと違うところは、液晶分子が基板面内で動くことにより光の透過と遮断を制御するところである。つまりIPSモードの様に面内でスイッチングするため広視野角特性が得られる。
【0014】
またコントラストに関しては、図1(a)の状態から図1(b)の状態に液晶分子103を傾斜させるために通常初期状態(図1(a))でラビング等の方法で透過軸106の方向にわずかに傾斜させておく必要がある。ここで従来法であるVA液晶モードではこの傾く方向に対して45度に偏光板の透過軸を配置するため黒表示時においても若干の光漏れがありコントラストの低下を招いていた。しかし本発明はこの液晶分子103を傾斜させる方向と偏光板104の透過軸106の方向が平行であるため、液晶分子により光が変調されることは全くなく偏光板104と偏光板105のみで生じる光遮断(黒表示)と同等の光遮断が得られ、非常に高いコントラストが得られる。本発明の液晶分子の動きが変化する方向は2方向のみでなく2方向以上であればよい。また段階的に液晶分子が動く方向が変化するのではなく、方向1から方向2へなめらかに変化しても良く、また円弧状に動いても良い。しかし段階的に動く方が素子の特性としては優れている。
【0015】
次に電圧無印加時に液晶分子が基板に対して平行配向している場合を図2を用いて説明する。図2は上基板201と下の基板202に挟まれた誘電率異方性が正の液晶分子203を模式的に描いたものである。例えば液晶分子203が電圧印加前は基板に対してほぼ平行に配列していてその後電圧印加とともに液晶分子203は立ち上がり図2(b)のようになる。そしてさらに電圧を印加することによって最初液晶分子203が動いた方向とは違う方向である基板表面と平行な面内方向に動き、図2(c)のようになる。液晶分子がこのような異なる2方向の応答をすることによって、液晶素子特性が向上することになる。例えば偏光板204と偏光板205をそれぞれ透過軸206、透過軸207を矢印に示すとおり配置する。図2(a)の状態においては光が上または下方向から入射した時には偏光板の透過軸が直交し、液晶分子が透過軸206に対して45度に傾いているため液晶層厚を適当に設定してやると光は完全に通過する。そして図2(b)の状態になった時は液晶分子203は若干傾斜が残ったままほぼ垂直に配列するため僅かしか光は通過しない。次に図2(c)の状態になった時液晶分子は偏光板204の透過軸206に平行になるため完全に光が遮断される。従来のTNモードと違うところは、光を遮断する状態(黒表示)においてすべての液晶分子が偏光板の透過軸の方向と平行に配列しているため完全な光遮断が達成でき高コントラストが得られることである。本発明の液晶分子の動きが変化する方向は2方向のみでなく2方向以上であればよい。また段階的に液晶分子が動く方向が変化するのではなく、方向1から方向2へなめらかに変化しても良く、また円弧状に動いても良い。
【0016】
これらの2方向以上の液晶分子の応答を可能にするには、液晶パネルの2枚の基板のうちの少なくとも一方の基板表面に2方向以上の液晶の配向を制御する情報を与えてやることにより達成できる。この時両方の基板に2方向以上の配向情報を与えてもいいし、片方のみでもかまわないが、両方の基板に配向情報を与えた方が配向安定性が増すためより良い。
【0017】
例えば両方の基板ともそれぞれ2方向の配向情報を与える場合を考える。液晶材料は例えば誘電率異方性が負の場合を考える。まず2枚の電極を有する基板の電極上に感光性樹脂を100Å〜5μm塗布し0.1μmピッチ〜5μmピッチの帯状のストライプパターンのフォトマスクを用いてパターンニングする。この時の帯状の遮光領域と露光領域の比は必ずしも1:1でなくて良い。また帯状に完全にパターンが抜けなくても、例えばポジレジストであれば露光部分のレジストが残っても良い。またこの凹凸を作る方法としては、感光性樹脂を用いてレーザーの2光束干渉を用いて帯状のパターンニングをしても良い。また、レーザビームやレーザーアブレーションを用いても良い。さらに、感光性樹脂を用いず、別の材料の無機物、有機物、または電極そのものを膜形成し、延伸、ひっかき、擦り等の物理的接触を加えて一方向に凹凸を形成しても良い。さらに印刷の要領で、他の基板やローラーに凹凸物質を形成しておいてそれを転写しても良い。
【0018】
またこれらの電極301上の凹凸302を形成する物質が絶縁物であった場合は、図3に示すように電極301上に形成された凹凸302部のさらに上層に導電層303を設け、電極301と導電層303を導電性物質304で繋ぐと、電極状の絶縁物による焼き付き現象や、駆動電圧の高電圧化が避けられるためより良い。
【0019】
このようにして形成された凹凸401、電極402を有する基板403とさらに同様の方法で作成した凹凸404、電極405を有する基板406をそれぞれ準備し、基板403、406ともに垂直配向性の配向膜を塗布する。そして基板403は矢印407の方向にラビングし、基板406は矢印408の方向にラビング処理を行う。図4に示すように2枚の基板を配置し通常の方法で液晶セルを組立、誘電率異方性が負の液晶409を注入して、偏光板410、411を透過軸がそれぞれ412、413になるように配置し液晶セルを完成させる。この液晶セルは基板の凹凸の方向の配向情報とラビングの方向の配向情報2つを持つものとなる。図4(a)は電圧を印加していないときの液晶の配向を示している。液晶分子は長軸の端で基板表面と接しており液晶分子409が受け取る配向情報としてはラビングという配向情報であり、ラビング方向に僅かに傾いている。この時上または、下から光を透過させても、液晶分子は偏光板の透過軸方向に傾いているため完全遮断される。次に電極402、405間に電圧を印加していくと液晶分子409はさらにラビング方向に傾斜し、図4(b)のようになる。この時もまだ光は遮断である。さらに電圧を印加すると、液晶分子の長軸の側面が基板表面と接するようになり、液晶分子409が基板形状の配向情報を受け取り、図4(c)に示すように基板表面の凹凸401、404の方向に向きを変える。この時液晶分子は偏光板410、411の透過軸方向412、413と45度の角度をなすように配列されているため入射させた光は、液晶分子による変調を受けて透過する。
【0020】
このように2段階に液晶分子の方向を変化させるためコントラストが非常に高く、また基板面内の液晶分子の移動で光の透過、遮断を行うため視野角特性が非常によい。この例においては液晶分子が上下方向に傾く段階1と面内で向きを変える段階2が段階的に行われているが、液晶分子が上下方向に傾きながら、面内でも角度を変えるというような段階1と段階2が区別なく発生しても良い。またこの例では両方の基板表面ともに垂直配向の配向膜を塗布して液晶分子を垂直配向させたが、片方の基板に水平配向用の配向膜を塗布してハイブリッドタイプとして駆動しても良い。
【0021】
駆動方法としては液晶分子が偏光板の透過軸方向に傾き始めるしきい値電圧部分は用いずさらにその電圧を超えて、液晶分子が面内で角度を変える始める電圧以上を用いて光のスイッチングを行うのが最も良い。なぜならば液晶の応答速度は電圧が高いほど速いため、高電圧領域のみでスイッチングを行う方が高速に応答する領域を用いることができるためである。
【0022】
次に液晶材料を誘電率異方性が正の液晶を用いた場合を考える。例えば2方向の配向情報は前記例と同様の基板の凹凸とラビングを用いる。基板に凹凸を形成するまでは同様の方法で行う。このようにして形成された凹凸501、電極502を有する基板503とさらに同様の方法で作成した凹凸504、電極505を有する基板506をそれぞれ準備し、基板503、506ともに水平配向性の配向膜(TN用配向膜)を塗布する。そして基板503は矢印507の方向にラビングし、基板506は矢印508の方向にラビング処理を行う。図5に示すように2枚の基板を配置し通常の方法で液晶セルを組立、誘電率異方性が正の液晶509を注入して、偏光板510、511を透過軸がそれぞれ512、513になるように配置し液晶セルを完成させる。この液晶セルは基板の凹凸の方向の配向情報とラビングの方向の配向情報2つを持つものとなる。図5(a)は電圧を印加していないときの液晶の配向を示している。液晶分子の長軸は基板表面と接しており非常に強い配向規制力を持つ水平配向性配向膜のラビング方向に支配されて液晶分子509はラビング方向にほぼ水平に(0゜〜10゜)配向している。この時上または、下から光を透過させてると、液晶分子は偏光板の透過軸方向に対し45゜傾いているため完全に透過する。次に電極502、505間に電圧を印加していくと液晶分子509はさらにラビング方向に傾斜したまま、図5(b)のように立ち上がってくる(基板表面と、液晶分子の長軸のなす角度が増加)。この角度の増加に従って光はだんだん遮断されてくる。さらに電圧を印加すると、液晶分子509とラビングの相互作用が少なくなり液晶分子509が基板形状の配向情報を受け取り、図5(c)に示すように基板表面の凹凸501、504の方向に向きを変える。この時液晶分子は偏光板510、511の透過軸方向512、513と平行に配列しているため入射させた光は、液晶分子による変調を全く受けずに完全遮光となる。このように2段階に液晶分子の方向を変化させ、光を遮断する状態においては液晶分子をほとんどすべて偏光板の透過軸方向に配列させることから非常に高いコントラストが得られる。この例においては液晶分子が上下方向に傾く段階1と面内で向きを変える段階2が段階的に行われているが、液晶分子が上下方向に傾きながら、面内でも角度を変えるというような段階1と段階2が区別なく発生しても良い。またこの例では両方の基板表面ともに水平配向の配向膜を塗布して液晶分子を垂直配向させたが、片方の基板に垂直配向用の配向膜を塗布してハイブリッドタイプとして駆動しても良い。以上のように誘電率異方性が負、正どちらにおいても液晶素子として非常に高い特性を示す。またこの2方向以上の配向情報としては例として示した基板の凹凸やラビングだけでなく、偏光もしくは無偏光の紫外線照射、また紫外線の斜め照射でもよい。また電極表面に電極のない部分を存在させ、液晶層内で斜め電界を発生させる方法、2枚の基板のそれぞれの電極以外に第3の電極を形成させ斜め電界を発生させる方法を用いて液晶分子を2段階に応答させても良い。
【0023】
また2方向以上の配向情報はそれぞれ同じもの、例えばラビングとラビングでもよいが異なるのもの同士、例えば基板の凹凸と紫外線照射のほうが配向規制力の差が形成し易いため、配向方向1から配向方向2への移動が起こりやすいためより良い。
【0024】
また液晶材料としては自発分極を持つ液晶でもかまわない。
【0025】
さらに基板の凹凸に関しては図6(a)に示すように凹凸601は帯状である必要はなく図6(b)に示すように途中で分断されててもよい。
【0026】
また配向情報の一つ、特に光を透過する状態の液晶の配向状態を決める配向情報が2方向または4方向に面内で分割されているとさらに視野角が向上して良い。
【0027】
図7を用いて2方向に分割する場合を詳しく説明する。図7は液晶セル上面からみた概略図であり基板701、凹凸702、誘電率異方性が負の液晶分子703、ラビング方向704、第一の偏光板の透過軸705、第2の偏光板の透過軸706のみ記載している。偏光板は液晶セルのを挟むように上下に2枚配置されている。配向膜は垂直配向用配向膜を塗布しており電圧無印加の状態(図7(a))では液晶分子は基板表面(紙面)に対してほぼ垂直に配向している。次に電圧を印加すると図7(b)に示すようにラビング方向に液晶分子が傾斜する。さらに電圧を印加すると図7(c)に示すように基板の凹凸に沿って液晶分子が再配列する。この時基板の凹凸はジグザグ構造(2方向に分割)になっているため液晶分子は微小領域毎に90゜異なる方向を向く。このように配列することにより光が透過ししかも視野角が広がり対称性も増す。
【0028】
本発明の液晶素子は反射タイプでも透過タイプでも良く、また偏光板を用いた直視モニターやテレビだけでなく、偏光ビームスプリッター等の光学素子を用いてプロジェクターなどの表示素子として使用可能である。また光の透過と遮断、反射と遮断を利用した光スイッチング素子としての利用可能である。
【0029】
また視野角に関しては本発明の液晶素子は非常に優れているが、位相差フィルムや、散乱板等を用いることによってさらに特性は向上する。
【0030】
(実施の形態)
(1)図8に示すように光学研磨したガラス基板801(12mm×17mm×1.1mm)に透明導電膜802としてインジウム・ティン・オキサイド(以下ITOと称す)をスパッタ法によって1000Å成膜する。その後ポジ型のレジストを1μm塗布しフォトリソグラフィーによって、ピッチ1μmの帯状で凹凸のレジストパターン803とした。150℃30分の熱処理を行い硬化させた後、垂直配向膜を200Åで塗布し、200℃で硬化後、凹凸に対して45゜の方向にコットン布を用いてラビングをした。
【0031】
(2)同様の方法で同じものを作製し、図8(b)に示すように、凹凸のピッチの方向が平行になるよう、またラビングの方向が反平行になるように3μmビーズ807を含有したシール樹脂808で貼り合わせた。誘電率異方性が−4.1で複屈折率が0.12の液晶材料809を真空注入した。
【0032】
(3)このセルの上下に偏光板を配置しコントラストを測定してところ、3000:1のコントラストが得られた。また視野角特性を測定したところ上下、左右160゜以上でコントラスト10:1が得られた。
【0033】
【発明の効果】
本発明によれば、電圧印加によって液晶分子を2方向以上に段階的に応答させることにより、高コントラスト、広視野角、高速応答を有する液晶素子が作製でき、従来のTN、VA、IPAモードのすべての問題を解決するというという優れたものである。
【図面の簡単な説明】
【図1】本発明の一実施形態である液晶素子の概念斜視図
【図2】本発明の一実施形態である液晶素子の概念斜視図
【図3】本発明の一実施形態である液晶素子の概念断面図
【図4】本発明の第一の実施例である液晶素子の概念斜視図
【図5】本発明の第二の実施例である液晶素子の概念斜視図
【図6】本発明の第三の実施例である液晶素子の概念投影図
【図7】本発明の第四の実施例である液晶素子の概念斜視図
【図8】本発明の第五の実施例である液晶素子の概念断面図
【符号の説明】
101 基板
102 基板
103 液晶分子
104 偏光板
105 偏光板
106 透過軸
107 透過軸
201 基板
202 基板
203 液晶分子
204 偏光板
205 偏光板
206 透過軸
207 透過軸
301 電極
302 凹凸
303 導電層
304 導電性物質
401 凹凸
402 電極
403 基板
404 凹凸
405 電極
406 基板
407 ラビング方向
408 ラビング方向
409 液晶
410 偏光板
411 偏光板
412 透過軸
413 透過軸
501 凹凸
502 電極
503 基板
504 凹凸
505 電極
506 基板
507 ラビング方向
508 ラビング方向
509 液晶
510 偏光板
511 偏光板
512 透過軸
513 透過軸
601 凹凸
701 基板
702 凹凸
703 液晶分子
704 ラビング方向
705 透過軸
706 透過軸
801 ガラス基板
802 透明導電膜
803 凹凸のレジストパターン
804 ガラス基板
805 透明導電膜
806 凹凸のレジストパターン
807 3μmビーズ
808 シール樹脂
809 液晶材料
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for manufacturing and a method for driving a liquid crystal element.
[0002]
[Prior art]
2. Description of the Related Art Liquid crystal elements are widely used as monitors for word processors and computers, projection TVs, portable small televisions, and light control elements such as optical switching elements. As a typical example of such a liquid crystal element, there is a liquid crystal display element using a twisted nematic (TN) liquid crystal or a vertical alignment (VA) liquid crystal.
[0003]
This TN liquid crystal has a viewing angle characteristic in which light transmittance and reflectivity vary greatly depending on the angle at which the element is viewed due to the orientation of the molecular arrangement, causing coloration and a decrease in contrast. A retardation film and a scattering film had to be arranged. Further, there is a disadvantage that the contrast is low due to the reverse tilt domain and the orientation direction of the liquid crystal near the interface.
[0004]
The VA liquid crystal, like the TN liquid crystal, has a viewing angle characteristic such as a change in light transmittance and reflectance depending on a viewing angle, coloring, and a decrease in contrast. Therefore, a method of expanding the viewing angle by dividing the inside of a pixel into two or four has been used in recent years. However, there are problems such as a decrease in efficiency, a decrease in response time of liquid crystal, and a complicated process. Although VA liquid crystals are generally considered to provide high contrast, the highest level of contrast could not be obtained due to light leakage due to slight inclination of the liquid crystal molecules in the black display.
[0005]
In recent years, attention has been paid to a method called in-plane switching (IPS) for the purpose of improving the viewing angle characteristics, and since the method drives a liquid crystal within a substrate surface, the viewing angle characteristics are very good. However, since both electrodes are formed on the same surface of the same substrate, an insulating layer for preventing a short circuit between the electrodes is required on the electrodes. Therefore, the burn-in phenomenon when a fixed pattern is displayed for a long time is a problem.
[0006]
[Problems to be solved by the invention]
As described above, in the conventional liquid crystal liquid crystal modes TN and VA, the viewing angle dependency is large, and there are problems such as coloring, a decrease in contrast, and grayscale inversion depending on the viewing direction, and the response speed is not satisfactory. Was. In the IPS, although the viewing angle is improved, there are many problems such as the occurrence of image sticking and the complicated electrode structure.
[0007]
The present invention solves all of the problems of the current liquid crystal devices, and provides a liquid crystal device having high contrast, a wide viewing angle characteristic, and high-speed response.
[0008]
[Means for Solving the Problems]
A liquid crystal device according to claim 1 of the present invention, which achieves the above object, comprises a pair of upper and lower substrates and liquid crystal molecules having a negative dielectric anisotropy, and is interposed between the upper and lower substrates. A liquid crystal element comprising a layer and a pair of polarizing plates disposed outside the pair of upper and lower substrates, wherein the liquid crystal molecules are arranged such that, when a voltage is applied, any one of the pair of polarizing plates And the liquid crystal molecules are tilted in a first direction such that the directions of the liquid crystal molecules are parallel to each other. When a voltage is further applied, the first direction and the liquid crystal molecules are in an in-plane direction parallel to the surface of the substrate. Is a liquid crystal element characterized by moving in a different second direction.
The liquid crystal device according to claim 2 of the present invention for achieving the above object has a pair of upper and lower substrates and liquid crystal molecules having a positive dielectric anisotropy, and is sandwiched between the pair of upper and lower substrates. A liquid crystal layer comprising a liquid crystal layer, wherein the liquid crystal molecules are tilted in a first direction such that when a voltage is applied, the angle between the surface of the substrate and the major axis of the liquid crystal molecules increases. The liquid crystal element is characterized in that, when a voltage is further applied, the liquid crystal element moves in a direction parallel to the surface of the substrate in a second direction different from the first direction.
A method for manufacturing a liquid crystal device of the present invention the first step and the first direction and further applying a voltage to provide an alignment information for tilting the liquid crystal molecules by applying voltages to the first direction A second step of providing alignment information for tilting the liquid crystal molecules tilted in a second direction different from the first direction.
[0009]
A method for manufacturing a liquid crystal device of the present invention, as the first factory, characterized by attaching the irregularities on at least one surface of the substrate of about a second factory. The easiest way to form the unevenness is to pattern with a photosensitive resin. Patterning using a photomask, patterning using two-beam interference of laser, patterning using an electron beam, and patterning using laser ablation may be used. At this time, it is even better if the photosensitive resin is conductive. As another method, a film of an inorganic substance or an organic substance may be formed on a substrate, and unevenness may be formed in one direction by applying physical contact such as stretching, scratching, or rubbing . At this time, it is not necessary that the irregularities are regularly arranged in a belt shape. It is further preferable that the inorganic and organic films at this time are conductive. As still another method, an uneven pattern may be formed in advance on another substrate or the like, and the transferred pattern may be added to the surface of the substrate, and the transfer method may be performed using a roll coater or the like. It is possible to transfer it by using a flat plate like a print, and it is not necessary to transfer the whole surface at once, like a stamp, divide it into small areas and transfer it many times May be provided with irregularities.
[0010]
A method for manufacturing a liquid crystal device of the present invention, as the first factory, and irradiating ultraviolet rays to at least one of about a second factory. The ultraviolet light may be either non-linearly polarized light or non-linearly polarized light, but linearly polarized light is better, and it is possible to irradiate the substrate at an angle. Further, if there is a chemical bond or the like that reacts with ultraviolet rays on the substrate surface before the irradiation, the bonding or decomposition occurs due to the irradiation of the ultraviolet rays, so that it is easy to give as alignment information. Since polyimide and siloxane-based alignment films are commercially available, they are most easily used.
[0011]
A method for manufacturing a liquid crystal device of the present invention, as the first factory, and performing a rubbing treatment to at least one of about a second factory. Any cloth can be used for rubbing, and rayon or cotton is generally used.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
First, the first liquid crystal element of the present invention will be described with reference to FIG. FIG. 1 schematically illustrates liquid crystal molecules 103 having a negative dielectric anisotropy sandwiched between an upper substrate 101 and a lower substrate 102. For example, before the voltage is applied, the liquid crystal molecules 103 are arranged almost perpendicular to the substrate, and then, when the voltage is applied, the liquid crystal molecules 103 are inclined as shown in FIG. Then, by further applying a voltage, the liquid crystal molecules 103 move in a direction different from the direction in which the liquid crystal molecules 103 first move, as shown in FIG. When the liquid crystal molecules respond in such two different directions, the characteristics of the liquid crystal element are improved. For example, the polarizing plate 104 and the polarizing plate 105 are arranged as indicated by arrows with the transmission axis 106 and the transmission axis 107, respectively. In the state of FIG. 1A, when light is incident from above or below, no light is transmitted at all because the transmission axes of the polarizing plates are orthogonal. 1B, the liquid crystal molecules 103 are inclined parallel to the transmission axis 106 of the polarizing plate 104, so that no light is transmitted at all. Next, when the state shown in FIG. 1C is reached, the liquid crystal molecules are arranged at approximately 45 degrees with respect to the polarizing plate 104, so that light can be transmitted by setting an appropriate liquid crystal layer thickness. The difference from the conventional TN and VA modes is that the liquid crystal molecules move in the plane of the substrate to control transmission and blocking of light. That is, since the switching is performed in the plane as in the IPS mode, a wide viewing angle characteristic can be obtained.
[0014]
Regarding the contrast, in order to tilt the liquid crystal molecules 103 from the state shown in FIG. 1A to the state shown in FIG. 1B, the direction of the transmission axis 106 is usually determined by rubbing or the like in the initial state (FIG. 1A). Must be slightly tilted. Here, in the VA liquid crystal mode, which is a conventional method, the transmission axis of the polarizing plate is arranged at 45 degrees with respect to the tilt direction, so that even at the time of black display, there is slight light leakage, which causes a decrease in contrast. However, in the present invention, since the direction in which the liquid crystal molecules 103 are tilted and the direction of the transmission axis 106 of the polarizing plate 104 are parallel to each other, no light is modulated by the liquid crystal molecules, and the light is generated only by the polarizing plate 104 and the polarizing plate 105. Light blocking equivalent to light blocking (black display) is obtained, and very high contrast is obtained. The directions in which the movements of the liquid crystal molecules of the present invention change are not limited to two directions, but may be any two or more directions. Also, the direction in which the liquid crystal molecules move does not change stepwise, but may change smoothly from the direction 1 to the direction 2 or may move in an arc shape. However, moving in a stepwise manner is more excellent as an element characteristic.
[0015]
Next, the case where the liquid crystal molecules are aligned parallel to the substrate when no voltage is applied will be described with reference to FIG. FIG. 2 schematically illustrates liquid crystal molecules 203 having a positive dielectric anisotropy sandwiched between an upper substrate 201 and a lower substrate 202. For example, before the voltage is applied, the liquid crystal molecules 203 are arranged almost in parallel to the substrate, and thereafter, when the voltage is applied, the liquid crystal molecules 203 rise and become as shown in FIG. Further, by further applying a voltage, the liquid crystal molecules 203 move in a direction different from the direction in which the liquid crystal molecules 203 first move and in an in-plane direction parallel to the substrate surface, as shown in FIG. 2C. When the liquid crystal molecules respond in such two different directions, the characteristics of the liquid crystal element are improved. For example, the polarizing plate 204 and the polarizing plate 205 are arranged as indicated by arrows with the transmission axis 206 and the transmission axis 207, respectively. In the state shown in FIG. 2A, when light is incident from above or below, the transmission axes of the polarizing plates are orthogonal to each other, and the liquid crystal molecules are inclined at 45 degrees with respect to the transmission axis 206. When set, the light passes completely. In the state shown in FIG. 2B, the liquid crystal molecules 203 are arranged almost vertically with a slight inclination remaining, so that only a small amount of light passes. Next, when the state shown in FIG. 2C is reached, the liquid crystal molecules are parallel to the transmission axis 206 of the polarizing plate 204, so that light is completely blocked. The difference from the conventional TN mode is that in a state where light is blocked (black display), complete liquid light blocking can be achieved and high contrast can be obtained because all liquid crystal molecules are arranged parallel to the direction of the transmission axis of the polarizing plate. Is to be done. The directions in which the movements of the liquid crystal molecules of the present invention change are not limited to two directions, but may be any two or more directions. Also, the direction in which the liquid crystal molecules move does not change stepwise, but may change smoothly from the direction 1 to the direction 2 or may move in an arc shape.
[0016]
In order to enable the response of liquid crystal molecules in two or more directions, information for controlling the orientation of the liquid crystal in two or more directions is given to at least one of two substrates of the liquid crystal panel. Can be achieved. At this time, orientation information in two or more directions may be given to both substrates, or only one of them may be given. However, giving orientation information to both substrates is better because orientation stability is increased.
[0017]
For example, consider a case where both substrates provide orientation information in two directions. For example, a liquid crystal material has a negative dielectric anisotropy. First, a photosensitive resin is applied on the electrodes of a substrate having two electrodes at a thickness of 100 to 5 μm and patterned using a photomask having a strip-like stripe pattern with a pitch of 0.1 μm to 5 μm. At this time, the ratio between the band-shaped light-shielding region and the exposure region does not necessarily have to be 1: 1. Even if the pattern is not completely removed in a band shape, for example, if the resist is a positive resist, the exposed portion of the resist may remain. In addition, as a method of forming the unevenness, a belt-shaped patterning may be performed by using two-beam interference of a laser by using a photosensitive resin. Further, a laser beam or laser ablation may be used. Furthermore, instead of using a photosensitive resin, another material such as an inorganic material, an organic material, or an electrode itself may be formed into a film, and physical contact such as stretching, scratching, or rubbing may be applied to form unevenness in one direction. Further, in the manner of printing, an uneven substance may be formed on another substrate or roller and then transferred.
[0018]
In the case where the substance forming the unevenness 302 on the electrode 301 is an insulator, a conductive layer 303 is provided further above the unevenness 302 formed on the electrode 301 as shown in FIG. And the conductive layer 303 are connected to each other with a conductive substance 304, which is more preferable because a burn-in phenomenon due to an electrode-like insulator and an increase in driving voltage can be avoided.
[0019]
The unevenness 401 and the substrate 403 having the electrode 402 formed in this manner and the substrate 406 having the unevenness 404 and the electrode 405 formed by the same method are respectively prepared, and the substrates 403 and 406 are each provided with a vertically oriented alignment film. Apply. The substrate 403 is rubbed in the direction of arrow 407, and the substrate 406 is rubbed in the direction of arrow 408. As shown in FIG. 4, two substrates are arranged, a liquid crystal cell is assembled by a usual method, liquid crystal 409 having a negative dielectric anisotropy is injected, and polarizing plates 410 and 411 have transmission axes 412 and 413, respectively. And complete the liquid crystal cell. This liquid crystal cell has two pieces of orientation information in the direction of the unevenness of the substrate and in the direction of the rubbing. FIG. 4A shows the orientation of the liquid crystal when no voltage is applied. The liquid crystal molecules are in contact with the substrate surface at the end of the long axis, and the orientation information received by the liquid crystal molecules 409 is orientation information called rubbing, which is slightly inclined in the rubbing direction. At this time, even if light is transmitted from above or below, the liquid crystal molecules are completely blocked because they are inclined in the transmission axis direction of the polarizing plate. Next, when a voltage is applied between the electrodes 402 and 405, the liquid crystal molecules 409 are further inclined in the rubbing direction, as shown in FIG. At this time, the light is still blocked. When a voltage is further applied, the long axis side surface of the liquid crystal molecules comes into contact with the substrate surface, and the liquid crystal molecules 409 receive the orientation information of the substrate shape, and as shown in FIG. Turn in the direction of. At this time, since the liquid crystal molecules are arranged so as to form an angle of 45 degrees with the transmission axis directions 412 and 413 of the polarizing plates 410 and 411, the incident light is transmitted by being modulated by the liquid crystal molecules.
[0020]
As described above, since the direction of the liquid crystal molecules is changed in two steps, the contrast is very high, and the viewing angle characteristic is very good because the light is transmitted and cut off by the movement of the liquid crystal molecules in the substrate surface. In this example, the step 1 in which the liquid crystal molecules are tilted in the vertical direction and the step 2 in which the liquid crystal molecules are turned in the plane are performed in a stepwise manner. Stage 1 and stage 2 may occur without distinction. Further, in this example, the liquid crystal molecules are vertically aligned by applying a vertical alignment film on both substrate surfaces. However, an alignment film for horizontal alignment may be applied to one substrate to drive as a hybrid type.
[0021]
As a driving method, the switching of light is performed by using a threshold voltage portion at which the liquid crystal molecules start to tilt in the transmission axis direction of the polarizing plate, and further using a voltage exceeding the voltage and at which the liquid crystal molecules start to change the angle in the plane. Best to do. This is because the higher the voltage, the higher the response speed of the liquid crystal. Therefore, switching only in a high voltage region can use a region that responds faster.
[0022]
Next, the case where a liquid crystal material having a positive dielectric anisotropy is used will be considered. For example, as the orientation information in two directions, unevenness and rubbing of the substrate similar to the above-described example are used. The same method is used until the unevenness is formed on the substrate. The substrate 503 having the unevenness 501 and the electrode 505 formed in the same manner as the substrate 503 having the unevenness 501 and the electrode 502 formed as described above is prepared, and both the substrates 503 and 506 have a horizontal alignment film ( (TN alignment film). The substrate 503 is rubbed in the direction of arrow 507, and the substrate 506 is rubbed in the direction of arrow 508. As shown in FIG. 5, two substrates are arranged, a liquid crystal cell is assembled by a normal method, liquid crystal 509 having a positive dielectric anisotropy is injected, and polarizing plates 510 and 511 have transmission axes of 512 and 513, respectively. And complete the liquid crystal cell. This liquid crystal cell has two pieces of orientation information in the direction of the unevenness of the substrate and in the direction of the rubbing. FIG. 5A shows the orientation of the liquid crystal when no voltage is applied. The major axis of the liquid crystal molecules is in contact with the substrate surface and is governed by the rubbing direction of the horizontal alignment film having a very strong alignment regulating force, and the liquid crystal molecules 509 are oriented almost horizontally (0 ° to 10 °) in the rubbing direction. are doing. At this time, when light is transmitted from above or below, the liquid crystal molecules are completely transmitted because they are inclined by 45 ° with respect to the transmission axis direction of the polarizing plate. Next, when a voltage is applied between the electrodes 502 and 505, the liquid crystal molecules 509 rise as shown in FIG. 5B while still tilting in the rubbing direction (the substrate surface and the long axis of the liquid crystal molecules are formed). Angle increases). As the angle increases, light is increasingly blocked. When a voltage is further applied, the interaction between the liquid crystal molecules 509 and the rubbing is reduced, and the liquid crystal molecules 509 receive the orientation information of the substrate shape, and as shown in FIG. Change. At this time, since the liquid crystal molecules are arranged in parallel to the transmission axis directions 512 and 513 of the polarizing plates 510 and 511, the incident light is completely shielded without any modulation by the liquid crystal molecules. In this way, the direction of the liquid crystal molecules is changed in two stages, and in a state where light is blocked, almost all the liquid crystal molecules are arranged in the transmission axis direction of the polarizing plate, so that a very high contrast can be obtained. In this example, the step 1 in which the liquid crystal molecules are tilted in the vertical direction and the step 2 in which the liquid crystal molecules are turned in the plane are performed in a stepwise manner. Stage 1 and stage 2 may occur without distinction. Also, in this example, the liquid crystal molecules are vertically aligned by applying a horizontal alignment film on both substrate surfaces. However, an alignment film for vertical alignment may be applied to one of the substrates to drive as a hybrid type. As described above, the liquid crystal element exhibits extremely high characteristics regardless of whether the dielectric anisotropy is negative or positive. As the orientation information in two or more directions, not only the unevenness and rubbing of the substrate shown as an example, but also polarized or unpolarized ultraviolet irradiation or ultraviolet oblique irradiation may be used. In addition, a method of generating an oblique electric field in the liquid crystal layer by providing a portion having no electrode on the electrode surface and a method of generating a diagonal electric field by forming a third electrode in addition to the respective electrodes of the two substrates and generating the oblique electric field. The molecule may respond in two steps.
[0023]
Further, the alignment information in two or more directions may be the same, for example, rubbing and rubbing, but different ones, for example, unevenness of the substrate and irradiation with ultraviolet light can easily form a difference in alignment regulating force. It is better because the movement to 2 easily occurs.
[0024]
Further, the liquid crystal material may be a liquid crystal having spontaneous polarization.
[0025]
Further, as for the unevenness of the substrate, the unevenness 601 does not need to be in a band shape as shown in FIG. 6A, and may be divided in the middle as shown in FIG. 6B.
[0026]
The viewing angle may be further improved if one of the orientation information, in particular, the orientation information that determines the orientation of the liquid crystal in a state of transmitting light is divided in two or four directions in the plane.
[0027]
The case of division in two directions will be described in detail with reference to FIG. FIG. 7 is a schematic view from the top of the liquid crystal cell, showing a substrate 701, unevenness 702, liquid crystal molecules 703 having negative dielectric anisotropy, a rubbing direction 704, a transmission axis 705 of a first polarizing plate, and a second polarizing plate. Only the transmission axis 706 is shown. Two polarizing plates are arranged vertically above and below the liquid crystal cell. The alignment film is coated with an alignment film for vertical alignment, and in a state where no voltage is applied (FIG. 7A), the liquid crystal molecules are aligned almost perpendicular to the substrate surface (paper surface). Next, when a voltage is applied, the liquid crystal molecules are inclined in the rubbing direction as shown in FIG. When a voltage is further applied, the liquid crystal molecules rearrange along the irregularities of the substrate as shown in FIG. At this time, since the unevenness of the substrate has a zigzag structure (divided in two directions), the liquid crystal molecules are directed in directions different by 90 ° for each minute area. By arranging in this way, light is transmitted and the viewing angle is widened, and the symmetry is increased.
[0028]
The liquid crystal element of the present invention may be of a reflective type or a transmissive type, and can be used not only as a direct-view monitor or a television using a polarizing plate, but also as a display element such as a projector using an optical element such as a polarizing beam splitter. Further, it can be used as an optical switching element utilizing transmission and blocking of light and reflection and blocking.
[0029]
Although the liquid crystal element of the present invention is very excellent in viewing angle, the characteristics are further improved by using a retardation film, a scattering plate or the like.
[0030]
(Embodiment)
(1) As shown in FIG. 8, indium tin oxide (hereinafter referred to as ITO) is formed as a transparent conductive film 802 by a sputtering method on a glass substrate 801 (12 mm × 17 mm × 1.1 mm) which has been optically polished. Thereafter, a positive resist was applied to a thickness of 1 μm, and a photolithography was performed to form a striped resist pattern 803 having a pitch of 1 μm. After heat treatment at 150 ° C. for 30 minutes for curing, a vertical alignment film was applied at 200 ° C., cured at 200 ° C., and rubbed with a cotton cloth in the direction of 45 ° with respect to the unevenness.
[0031]
(2) The same thing is manufactured by the same method, and as shown in FIG. 8B, the 3 μm beads 807 are included so that the direction of the pitch of the unevenness is parallel and the direction of the rubbing is antiparallel. The sealing resin 808 was used for bonding. A liquid crystal material 809 having a dielectric anisotropy of -4.1 and a birefringence of 0.12 was injected under vacuum.
[0032]
(3) A polarizing plate was arranged above and below the cell, and the contrast was measured. As a result, a contrast of 3000: 1 was obtained. When the viewing angle characteristics were measured, a contrast of 10: 1 was obtained in the vertical and horizontal directions and at 160 ° or more.
[0033]
【The invention's effect】
According to the present invention, a liquid crystal element having a high contrast, a wide viewing angle, and a high-speed response can be manufactured by causing liquid crystal molecules to respond stepwise in two or more directions by applying a voltage, and a conventional TN, VA, or IPA mode can be manufactured. It is an excellent solution to all problems.
[Brief description of the drawings]
FIG. 1 is a conceptual perspective view of a liquid crystal element according to an embodiment of the present invention. FIG. 2 is a conceptual perspective view of a liquid crystal element according to an embodiment of the present invention. FIG. 3 is a liquid crystal element according to an embodiment of the present invention. FIG. 4 is a conceptual perspective view of a liquid crystal element according to a first embodiment of the present invention. FIG. 5 is a conceptual perspective view of a liquid crystal element according to a second embodiment of the present invention. FIG. 7 is a conceptual perspective view of a liquid crystal element according to a third embodiment of the present invention. FIG. 7 is a conceptual perspective view of a liquid crystal element according to a fourth embodiment of the present invention. FIG. 8 is a liquid crystal element according to a fifth embodiment of the present invention. Conceptual cross-sectional view of [Description of symbols]
101 substrate 102 substrate 103 liquid crystal molecules 104 polarizing plate 105 polarizing plate 106 transmission axis 107 transmission axis 201 substrate 202 substrate 203 liquid crystal molecules 204 polarizing plate 205 polarizing plate 206 transmission axis 207 transmission axis 301 electrode 302 unevenness 303 conductive layer 304 conductive material 401 Unevenness 402 Electrode 403 Substrate 404 Unevenness 405 Electrode 406 Substrate 407 Rubbing direction 408 Rubbing direction 409 Liquid crystal 410 Polarizing plate 411 Polarizing plate 412 Transmission axis 413 Transmission axis 501 Liquid crystal 510 Polarizing plate 511 Polarizing plate 512 Transmission axis 513 Transmission axis 601 Roughness 701 Substrate 702 Roughness 703 Liquid crystal molecule 704 Rubbing direction 705 Transmission axis 706 Transmission axis 801 Glass substrate 802 Transmission Resist pattern 807 3 [mu] m bead 808 sealing resin 809 liquid crystal material of the resist pattern 804 glass substrate 805 transparent conductive film 806 irregularities of the conductive film 803 irregularities

Claims (5)

上下一対の基板と、誘電率異方性が負である液晶分子を有し、前記上下一対の基板の間に挟持された液晶層と、前記上下一対の基板の外側に配置された一対の偏光板とを備える液晶素子であって、A pair of upper and lower substrates, liquid crystal molecules having negative dielectric anisotropy, a liquid crystal layer sandwiched between the pair of upper and lower substrates, and a pair of polarized light disposed outside the pair of upper and lower substrates. A liquid crystal element comprising a plate and
前記液晶分子は、The liquid crystal molecules are
電圧が印加されたとき、前記一対の偏光板のいずれかの偏光板の透過軸と前記液晶分子の方向が平行となるような第1の方向に傾斜し、When a voltage is applied, the liquid crystal molecules are inclined in a first direction such that the transmission axis of one of the pair of polarizing plates and the direction of the liquid crystal molecules are parallel to each other,
さらに電圧が印加されたとき、前記基板の表面に平行な面内の方向で、前記第1の方向とは異なる第2の方向に動くことを特徴とする液晶素子。A liquid crystal element, wherein, when a voltage is further applied, the liquid crystal element moves in a second direction different from the first direction in a direction in a plane parallel to the surface of the substrate.
上下一対の基板と、誘電率異方性が正である液晶分子を有し、前記上下一対の基板の間に挟持された液晶層とを備える液晶素子であって、A liquid crystal element including a pair of upper and lower substrates and liquid crystal molecules having a positive dielectric anisotropy, and a liquid crystal layer sandwiched between the pair of upper and lower substrates,
前記液晶分子は、The liquid crystal molecules are
電圧が印加されたとき、前記基板の表面と前記液晶分子の長軸とのなす角が増加するような第1の方向に傾斜し、When a voltage is applied, the liquid crystal molecules tilt in a first direction such that an angle between the surface of the substrate and a major axis of the liquid crystal molecules increases,
さらに電圧が印加されたとき、前記基板の表面に平行な面内の方向で、前記第1の方向とは異なる第2の方向に動くことを特徴とする液晶素子。A liquid crystal element, wherein, when a voltage is further applied, the liquid crystal element moves in a second direction different from the first direction in a direction in a plane parallel to the surface of the substrate.
液晶分子は、第1の方向から第2の方向へ円弧状に動くことを特徴とする請求項1または2に記載の液晶素子。The liquid crystal element according to claim 1, wherein the liquid crystal molecules move in an arc from the first direction to the second direction. 基板表面に凹凸が設けられた請求項1〜3のいずれかに記載の液晶素子。The liquid crystal device according to claim 1, wherein the substrate surface is provided with irregularities. 基板にラビング処理が施された請求項4記載の液晶素子。The liquid crystal device according to claim 4, wherein a rubbing treatment is applied to the substrate.
JP2001122467A 2001-04-20 2001-04-20 Liquid crystal element Expired - Fee Related JP3591479B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001122467A JP3591479B2 (en) 2001-04-20 2001-04-20 Liquid crystal element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001122467A JP3591479B2 (en) 2001-04-20 2001-04-20 Liquid crystal element

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP22239699A Division JP3204256B2 (en) 1999-02-12 1999-08-05 Liquid crystal element, method of manufacturing the same, liquid crystal display element and method of driving the same

Publications (2)

Publication Number Publication Date
JP2001356351A JP2001356351A (en) 2001-12-26
JP3591479B2 true JP3591479B2 (en) 2004-11-17

Family

ID=18972175

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001122467A Expired - Fee Related JP3591479B2 (en) 2001-04-20 2001-04-20 Liquid crystal element

Country Status (1)

Country Link
JP (1) JP3591479B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9939682B2 (en) 2013-02-15 2018-04-10 E-Vision, Llc Liquid crystal alignment layers and method of fabrication

Also Published As

Publication number Publication date
JP2001356351A (en) 2001-12-26

Similar Documents

Publication Publication Date Title
JP2877601B2 (en) Liquid crystal display device and its manufacturing method
KR100382586B1 (en) LCD and its manufacturing method
JPH1184413A (en) Production of space optical modulator, formation of cell walls for space optical modulator, space optical modulator and cell wall for space optical modulator
JPH09160061A (en) Liquid crystal display element
JP2000056296A (en) Liquid crystal display device
JPH11271810A (en) Liquid crystal display panel and liquid crystal display
KR100255058B1 (en) Liquid crystal display apparatus having high wide visual angle and high contrast
TWI375097B (en) Method of manufacturing liquid crystal display
JPH07191313A (en) Liquid crystal display device
KR100372279B1 (en) Liquid crystal device and manufacturing method thereof
JP3356273B2 (en) Liquid crystal display
JP2002214613A (en) Liquid crystal display
JP4028633B2 (en) Liquid crystal display
JP3204256B2 (en) Liquid crystal element, method of manufacturing the same, liquid crystal display element and method of driving the same
JP2004302260A (en) Liquid crystal display and its manufacturing method
US20020057408A1 (en) Homeotropic and hybrid alignment types of liquid crystal displays and a manufacturing method thereof
JP3591479B2 (en) Liquid crystal element
JP3203331B2 (en) Reflective liquid crystal display
JP3226521B2 (en) Reflective liquid crystal display
JPH09146096A (en) Liquid crystal display device and its production
JP2002214646A (en) Liquid crystal display element
JPH0829790A (en) Liquid crystal display device
JP5315117B2 (en) Liquid crystal display
JPH10105084A (en) Liquid crystal display device and its manufacture
JP3522845B2 (en) LCD panel

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040413

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040608

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040803

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040816

LAPS Cancellation because of no payment of annual fees