JP3590690B2 - Steel cord for reinforcing rubber products - Google Patents

Steel cord for reinforcing rubber products Download PDF

Info

Publication number
JP3590690B2
JP3590690B2 JP08705796A JP8705796A JP3590690B2 JP 3590690 B2 JP3590690 B2 JP 3590690B2 JP 08705796 A JP08705796 A JP 08705796A JP 8705796 A JP8705796 A JP 8705796A JP 3590690 B2 JP3590690 B2 JP 3590690B2
Authority
JP
Japan
Prior art keywords
steel cord
cord
core
wire
rubber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP08705796A
Other languages
Japanese (ja)
Other versions
JPH09256282A (en
Inventor
芳郎 小林
Original Assignee
金井 宏彰
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 金井 宏彰 filed Critical 金井 宏彰
Priority to JP08705796A priority Critical patent/JP3590690B2/en
Publication of JPH09256282A publication Critical patent/JPH09256282A/en
Application granted granted Critical
Publication of JP3590690B2 publication Critical patent/JP3590690B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B1/00Constructional features of ropes or cables
    • D07B1/06Ropes or cables built-up from metal wires, e.g. of section wires around a hemp core
    • D07B1/0606Reinforcing cords for rubber or plastic articles
    • D07B1/062Reinforcing cords for rubber or plastic articles the reinforcing cords being characterised by the strand configuration
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/20Rope or cable components
    • D07B2201/2015Strands
    • D07B2201/2016Strands characterised by their cross-sectional shape
    • D07B2201/2018Strands characterised by their cross-sectional shape oval
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/20Rope or cable components
    • D07B2201/2015Strands
    • D07B2201/2019Strands pressed to shape
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/20Rope or cable components
    • D07B2201/2047Cores
    • D07B2201/2052Cores characterised by their structure
    • D07B2201/2059Cores characterised by their structure comprising wires

Landscapes

  • Ropes Or Cables (AREA)
  • Tires In General (AREA)

Description

【0001】
【産業上の利用分野】
本発明は自動車用タイヤ、コンベアベルト等のゴム製品補強材として使用されるゴム製品補強用スチールコードに関するものであり、ゴムのスチールコード内部空洞への充填性を改善し、かつ、スチールコードの繰り返し曲げ荷重に対する疲労強度を向上させることができ、これによってスチールコードによって補強されたゴム製品の耐久性を著しく向上させることができるものである。
【0002】
【従来の技術】
ゴム製品補強用スチールコードは、5〜7本の素線を互いに堅く撚り合わせて密着させた、いわゆるクローズ撚りコードと、素線を互いに緩く撚り合わせた、いわゆるオープン撚りコードと、ほとんど撚り合わせない素線群に他の素線群を堅く撚り合わせたものとに大別される。
クローズ撚りコードの例として図2に示すものがある。このスチールコード21は芯素線21aの回りに6本の側素線21bを互いに密着させて撚り合わせたものである。このスチールコードは芯素線21aの周囲に空洞部Dが存在しており、側素線21bが互いに密着しているために、スチールコード21を2枚のゴムシートの間に挾んでこれを圧縮して複合シートを形成した場合、ゴム材が空洞部Dに浸入せず、単にスチールコードをゴムシートによって包み込んだだけの複合体となり、ゴム材がスチールコードの空洞部Dに完全に入り込んでゴムシートとスチールコードとが一体化された、いわば完全な複合体にはならない。このものを自動車のタイヤに組み込んだものにおいては、ゴム材とスチールコードとの接着が不十分であり、このために自動車の走行時にゴム材がスチールコードから剥離していわゆるセパレーション現象を起こす可能性が大きく、またゴム材中の水分やタイヤの切疵より浸入した水分がスチールコード21の空洞部Dに達すると、この水分は空洞部Dを伝わってたちまちスチールコード21の長手方向に伝播し、スチールコードを腐食させ、その結果その機械的強度を著しく低下させることになる。
この問題を解決するために、上記の空洞部にゴム材が可及的に浸入しやすくしたスチールコードの構造が種々提案されている。例えば図3に示すように芯素線32の線径を太くして、芯素線の回りに密着して撚り合わせた側素線33相互の間に間隙Cが形成したもの、図4に示すように、芯素線42に予め小さなスパイラル状くせ付けを施しておいてこれに側素線43を密着して撚り合わせたもの(例えば特開平6−191218号公報)、あるいは図5に示すように芯素線52に予め小さな振幅の波状くせ付けを施しておいてこれに側素線53を密着して撚り合わせたものがその一例である(例えば、特開平6−191217号公報)
。さらに、素線に過大な型付けを施し、各素線間に間隙を設けながら緩く撚り合わせたいわゆるオープン撚りのスチールコード(例えば特開昭57−43866号公報)や、図6に示すような上記オープン撚りのスチールコードをローラで偏平に潰して断面形状を楕円にしたいわゆる偏平オープン撚りスチールコード(特開平2−133687号公報)もまたその一例である。
図3に示す従来のスチールコード31の構造は、芯素線32と側素線33との間の間隙にゴム材が十分浸入し、その結果空洞部は形成されず、したがってスチールコード内部を水分が伝播することはないが、芯素線32の径が太いためにスチールコード31の直径が大きくなり、そのためにゴムシートの厚みが大きくなる。これを自動車に用いた場合スチールコード31の直径が大きくなるために、スチールコードのタイヤの円周方向曲げに対する柔軟性が乏しく、乗り心地が損なわれる。
さらに、このものは芯素線32が常に側素線33に接触しているので、フレッティング摩耗を生じ、このためにスチールコードの疲労値が高く、耐久性が低い。
また、芯素線42にスパイラル状くせ付けをした図4に示すスチールコード41は、芯素線42に側素線43が常に接触しているものではないので疲労値は改善されるが、断面形状が略真円形状であるので、スチールコードの曲げに対する剛性がどの方向に対しても同じであり、タイヤの所定のコーナリング性能を確保するようにする(所定のタイヤの横方向剛性を確保できるようにスチールコードの直径を選択する)と、タイヤの円周方向の曲げに対する剛性が高すぎ、乗り心地が悪くなる。
また、上記スチールコード41は、図2のようなクローズ撚りのスチールコード21に比べてコード径が太くなり、カレンダー(ゴム被覆工程)後のシートが厚くなってしまい、加えてコード径が太いためにシートに所要本数のスチールコードを埋め込むことができず、シートの強度が低い。したがってこれをタイヤに用いるときはシートの重ね枚数を増やす必要があり、結果としてタイヤの重量が増加する。
また、芯素線52に波状のくせ付けを施した図5に示すスチールコード51は、芯素線52の移動軌跡で描かれる略トラック型(いわゆる運動場のトラック)の空間(図中の点線で囲まれた空間)の中に側素線53が入り込みにくいために、芯素線52の自由度がある程度大きい。そのため、芯素線52が上下のゴムシートの間にスチールコードを挾んで加圧し加硫して一体化する加工による外力により移動しやすく、スチールコードの安定性が低下する。したがって、スチールコード製造時やゴムシート製造時の取扱作業性が悪くなる。さらに、このスチールコード41および51は、芯素線にスパイラル状あるいは波状のくせ付け加工を施すため、その分製造コストが高くなる。
また、上記スチールコード41および51は、スパイラル状あるいは波状のくせのピッチに対応して、側素線の撚りピッチを設定する必要があり(そうでないと、撚り形状が崩れる)、したがって、撚線機の調整作業が容易でなく、取扱作業性に問題がある。
また、図6に示す偏平オープン状のスチールコード61においては、ゴム材が各素線62の全周に接着し、かつスチールコード内部まで十分に浸入するためには、各素線間の間隙をゴム材が浸入するに十分な間隔、すなわち0.02mm以上にする必要がある。しかし、このように間隙を各素線間に十分にとると、スチールコードの製造時において撚り構造が不安定になりやすく、素線の片寄りが生じたり撚りがスチールコードの長手方向に不均一になるという問題がある。このものは各素線の自由度が比較的大きいので、スチールコードをゴムシートに埋め込んで加硫プレスする際に、せっかく生じた隙間が外力によって減少し、あるいは素線移動により間隙の偏りが生じ、ゴム材がコード内部に十分に浸入しにくくなる。こうなると、繰り返し曲げ応力によって座屈が生じやすくなり、スチールコードひいてはゴム製品の寿命が短くなってしまう。また、この偏平オープン状のスチールコード61は低荷重での伸びが大きいためにゴムシート製造工程における取扱いが難しい。
【0003】
【発明が解決しようとする課題】
本発明は多数の側素線と同等の太さの芯素線を有する略楕円形状のスチールコードについて、芯素線に予めくせ付け加工を施すことなく、側素線間に所要の間隙を形成したスチールコードをゴムシートで挾んで加圧し加硫するときも所定の間隙が確保されてゴムがスチールコード内部に容易、確実に浸入するようにその構造を工夫することをその課題とするものである。
【0004】
【課題を解決するための手段】
上記課題解決のために講じた手段は次ぎの要素(イ)〜(ニ)によって構成されるものである。
(イ)1本の芯素線の周囲に6本の側素線を配して撚り合わせた1+6構造のスチールコードとしたこと、
(ロ)真直ぐな芯素線の周囲に側素線を撚り合わせたオープン構造としたものを圧縮加工してコードの断面形状がコード長手方向に略同一向きの偏平オープン構造としたこと、
(ハ)上記加圧加工時に隣接する2本の側素線の間に芯素線を部分的に割り込ませたこと、
(ニ)コード1撚りピッチにおける上記の芯素線の割り込みの最大量を芯素線直径の30%以上50%以下としたこと。
【0005】
【作 用】
図1を参照しつつ作用を説明する。
真直ぐな芯素線2は6本の撚られた側素線3の中にあって、スチールコード1が圧縮加工によって略楕円形状に潰されるのであるから芯素線2が上下の側素線の間で強圧されて隣接する側素線間に割り込んで側素線と組み合わされる。そしてこの割り込みは、コードの1撚りピッチにおいて小さいところと大きい(割り込み最大)ところがあり(図1の割り込み状態を参照)、割り込みの増減がコードの1撚りピッチ間隔で周期的に繰り返す状態である。そして、隣接する側素線3と4との間に割り込んだ割込量H(図1参照)は、芯素線2の外周が側素線3、4の共通接線Lから突出した量(図示の共通接線Lと芯素線2の接線Lの間隔)である。この割込量Hはスチールコードに沿って、最大、最小の間で周期的に変動するが、この最大値の大小は、主としてスチールコード1が圧縮加工によって略楕円形状に潰されるときのその圧縮力の大小やスチールコードの撚りピッチの大小や側素線の型付け率の大小によって調節される。
スチールコードを撚るときは真直ぐな芯素線が芯になるので撚り構造が安定し、側素線が片寄ること、側素線の撚りが不均一になることが回避される。
また、潰された楕円形状に成形された状態では、芯素線が側素線と堅く組み合わされるので、側素線の自由度が小さくなり、したがって、上下のゴムシート間にスチールコードを挾んで加圧し加硫するときも、側素線間の間隙が変動しにくく、所定の間隙が保たれる。したがって、この間隙からゴムがスチールコードの内部に浸入しやすく、ゴムがスチールコード内に十分充填される。
最大割込量が小さいと上記の作用・効果が小さくなり、反対に最大割込量が大きいと上記の作用・効果は大きいが、スチールコードに対する上記の圧縮加工のために素線表面に生じる圧痕や損傷が増大し、その結果スチールコードの疲労強度が低下する。
そして、上記最大割込量Hmaxが芯素線径dに対して0.3dに満たない場合は芯素線の上記の作用が小さく、そのために側素線の自由度が大きくなり、実用上の効果はほとんど期待されない。反対に最大割込量Hmaxが芯素線径dに対して0.5dを超えると上記の圧痕、損傷のための疲労強度の低下が顕著になり実用上望ましくない。
勿論、上記の圧痕、損傷を防止するための特別な表面処理を素線に施せば最大割込量Hmaxを0.5dよりも大きくすることが実用上可能ではあるが、最大割込量Hmaxを0.5dよりも大きくしても、上記作用・効果はそれほど増大しない。
なお、側素線の数が少ないほど芯素線の曲がりが緩やかになり上記の作用・効果は軽微になる。反対に側素線の数が多いと芯素線の曲がりがきつくなるので、加圧加工時に素線表面に生じる圧痕や損傷が増大し、その結果、スチールコードの疲労強度が低下する。したがって、側素線の数が5本、7本でも本発明の作用・効果を全く生じないではないが、側素線を6本とするスチールコードが最も実用的である。
【0006】
【実施態様】
スチールコードの撚りピッチを6〜20mmとする。
6mm以下では極度の加工のために断線が生じやすく、またスチールコードの単位長さ当たりの撚り回数が多くなり生産性が低下する。また、芯素線のくせピッチは側素線の撚りピッチよりも小さいので6mm未満では、芯素線を隣接する側素線の間に大きく割り込ませることが物理的に困難である。
他方、スチールコードの撚りピッチが20mm以上であるときは、スチールコードの柔軟性が小さくなり、またフレアーも生じやすくなるので実用的でない。
芯素線の線径を0.2mm〜0.4mmとする。
素線が余り細いと素線の強度が不足し、余り太いとスチールコードの柔軟性が不足し、疲労値が低くなる。断面形状が楕円形状の本発明のスチールコードにおいてはこのことが一層顕著であり、0.4mmを超えると実用的でない。
【0007】
【実 施 例】
次いで、図1を参照しつつ実施例を説明する。
このスチールコード1は、素線径0.35mmの真直ぐな1本の芯素線2の周囲に型付けした6本の側素線を撚りピッチ16mmで、平均コード直径が1.07mmの略真円形に撚り合わせ、これを圧延ローラによって長径が1.36mm、短径が0.99mmの略楕円形状に成形したものである。この圧延ローラによる加圧加工により、芯素線は塑性変形して隣合う側素線の間に割り込む。このスチールコードを樹脂に埋め込み、これをスチールコードの長手方向に2mm間隔で切断した各断面を撮影した拡大写真の複写図(1〜8)を図9に示す。図9のうち割込量が最大(コードの1撚りピッチにおける最大)のものにおける割込量を測定することによってこの実施例における最大割込量を測定することができる。3番目の複写図が割込量が最大である。
本発明のスチールコードの特性を確認するために、最大割込量を適宜変えた本発明のスチールコード数種(0.32d、0.43d、0.48d)と従来のスチールコード数種と二つの比較例(最大割込量が0.17d、0.58d)との比較試験を行い、ゴムの浸入率、剛性比、耐疲労性、取扱作業性について定量的に評価した。この評価結果は次ぎの表1に示すとおりである。
【表 1】
なお、このテストの試験条件、評価方法は次ぎのとおりである。
ゴム浸入率は、各コードに5Kgの引張荷重をかけた状態でゴム中に埋め込み、加硫した後、コードをゴム中から取り出してそのコードを分解して素線の一定長さを観察し、観察した長さに対してゴムと接触した形跡のある長さの比をパーセント表示した。ゴム浸入率は通常70%以上必要である。
耐疲労性は、複数本のスチールコードをゴムシートに埋め込んだ複合体シートを用いて3点プーリー曲げ疲労試験機により疲労試験を行い、埋設したスチールコードがフレッティング摩耗、座屈等を経て破断するに至るまでの繰り返し回数計数したものである。そして、実験No.6の従来のクローズ撚り構造のものの耐疲労評価値を100として指数表示したものである。この値が高いほど耐疲労強度が高いことを表している。
また、剛性比は図7に示すように、三点曲げ試験機によりテストピース71のスパン(SP=20mm)において5mm押さえ込んだときの荷重Gを測定した値であり、スチールコードの短径軸方向のものについての上記荷重Gと長径軸方向のものについての上記荷重Gとの比(G/G)をパーセント表示したものである。この比が小さいほどこれをタイヤに適用したときのタイヤの円周方向の柔軟性が高く(剛性が低く)横方向の剛性が高い(横方向の柔軟性が低い)ことを意味する。
図8に示すように、5本のテストコード82を横一列に、100%モジュラスが35Kg/cmよりなるゴムシート83に埋め込んでテストピース81を作成し、これについて剛性試験を行った。上記ゴムシート83の寸法は、厚みT=4mm、幅W=15mm、長さL=100mmである。なお、短径軸方向の曲げ剛性は図8の(a)に示すようにテストコード82を横にして埋め込んだものの曲げ剛性であり、長径軸方向の曲げ剛性は同図(b)に示すように、テストコード82を縦にして埋め込んだものの曲げ剛性である。
取扱作業性は、スチールコード製造時、複合体シート成形時の作業の繁雑さならびにスチールコードの取扱作業性の評価であり、また製造時の加工の難易度も考慮して、実験No.6のスチールコードと比較して非常に劣るものを×、少し劣るものをΔ、差がないものを○として三段階評価したものである。
表1の結果に基づいて各スチールコードの評価を以下に述べる。
図2に示す断面形状の従来のスチールコード(実験No.6)は、本発明の実施例(実験No.1〜実験No.3)に比べてゴム浸入率が極めて劣り、そのため耐疲労性が悪く、柔軟性に欠け、しかもシートも厚くなる等の問題が生じる。図4に示す断面形状の、芯素線に略スパイラル状のくせを付けた従来のスチールコード(実験No.7)は、ゴム浸入率が80であり、本発明の実施例のゴム浸入率100に比してかなり低い。また剛性比は99であり、本発明の実施例の剛性比93〜95に比してかなり高い。
また、本願の実施例のスチールコードに比べ短径側のコード径がかなり大きい。この為、このようなコードを用いた場合、シート厚を薄くすることはできず、乗心地性を悪くする結果となる。
さらにまた、芯素線にスパイラル状のくせ付け加工を施す必要があるため、製造コストや設備コストが高くなり、取扱作業性もやや悪かった。
図5に示す断面形状の、芯素線に波状のくせ付けをしたスチールコード(実験No.8)は最大割込量が0.15dであって小さく、ゴム浸入率が60%であって低い。このものはスチールコード製造時およびゴムシート製造時の取扱作業性が悪く、特にスチールコードに付与する張力の適正な制御が難しい。
構造的には本発明の実施例と同じで最大割込量を0.17dとした比較例、すなわち実験No.4はスチールコードの安定性が悪く、ゴム浸入率は65%に止まり、取扱作業性も悪い。
最大割込量を0.58dとした同様の比較例、すなわち実験No.5のスチールコードは、本発明の実施例(実験No.1〜No.3)に比して耐疲労性が著しく低い。これはコードの最大割込量が大きすぎ、過度の圧縮加工による素線の圧痕、損傷が顕著であるためである。
以上の、従来例、比較例に比して、本発明の実施例(実験No.1〜No.3)はゴム浸入率が100%と極めて高く、耐疲労性は105〜108と高く、さらに、剛性比は93〜95と小さい。このために、これをタイヤに適用した場合、タイヤはその円周方向の柔軟性が高く、したがって、乗り心地がよく、また、横方向への剛性が高く、したがってコーナリング特性がよい。
また、取扱作業性は従来のものに比して良好である。
【0008】
【効 果】
本発明のスチールコードはコード長手方向の略全域にわたってコード内部に空洞部を有さず、ゴム浸入性が安定して高い。また、ゴムに埋め込んでシートにした際のシート厚を薄くできるのでタイヤ重量を小さく抑えることができ、自動車の燃費を向上できる。
また、タイヤの円周方向(回転方向)の剛性を低くできるので乗り心地性を向上でき、また、タイヤ横方向への剛性を高くできるのでコーナリング性能を高めることができる。
さらに本発明のスチールコードは長手方向の撚りの安定性が格段に優れているので、上記のとおりのゴム浸入が極めて良好である外、スチールコードの取扱作業性が極めて良好である。
さらに、真直ぐな素線を芯素線としてスチールコードを撚り合わせるものであるから、従来のバンチャー型、チューブラー型のいずれの撚線機でも製造でき、撚り不良を生じることはなく(芯素線に予めくせ付けをした図4、図5の従来のものにおいては撚り不良を生じることが製造上の問題である)、さらに、側素線の撚りピッチを芯素線のくせのピッチに合わせるためのピッチ調整が必要でないので、それだけ側素線のピッチ調整が簡単であり、取扱いも容易であり、さらに芯素線に予めくせ付けを施す必要はない。したがって、図4、図5の従来例に比して製造コストを著しく低減することができる。
【図面の簡単な説明】
【図1】本発明のスチールコードの断面図である。
【図2】芯素線の回りに6本の側素線を互いに密着させて撚り合わせた従来のスチールコードの断面図である。
【図3】線径の太い芯素線の回りに密着して撚り合わせた側素線相互の間に間隙を形成した従来のスチールコードの断面図である。
【図4】芯素線に予め小さな半径のスパイラル状くせを施し、これに側素線を密着して撚り合わせた従来のスチールコードの断面図である。
【図5】芯素線に予め小さな振幅の波状くせ付けを施し、これに側素線を密着して撚り合わせた従来のスチールコードの断面図である。
【図6】従来の偏平オープン撚りスチールコードの断面図である。
【図7】剛性試験機の概略図である。
【図8】(a)短径軸方向にスチールコードを埋め込んだ試験片の斜視図であり、(b)長径軸方向にスチールコードを埋め込んだ試験片の斜視図である。
【図9】本発明の実施例のスチールコード(1+6構造)の1撚りピッチにおける2mmきざみの断面拡大写真の複写図である。
[0001]
[Industrial applications]
TECHNICAL FIELD The present invention relates to a steel cord for reinforcing rubber products used as a rubber product reinforcing material for automobile tires, conveyor belts, etc., which improves the filling property of rubber into steel cord internal cavities and repeats steel cords. The fatigue strength against a bending load can be improved, thereby significantly improving the durability of a rubber product reinforced by a steel cord.
[0002]
[Prior art]
Steel cords for reinforcing rubber products are hardly twisted with so-called closed twisted cords, in which 5 to 7 strands are tightly twisted and adhered to each other, and so-called open twisted cords, in which strands are loosely twisted together. It is roughly divided into a wire group and another wire group tightly twisted.
FIG. 2 shows an example of a closed twist cord. The steel cord 21 is formed by twisting six side wires 21b in close contact with each other around a core wire 21a. In this steel cord, a hollow portion D exists around a core strand 21a, and since the side strands 21b are in close contact with each other, the steel cord 21 is sandwiched between two rubber sheets and compressed. When the composite sheet is formed, the rubber material does not penetrate into the cavity D, but becomes a composite in which the steel cord is simply wrapped by the rubber sheet, and the rubber material completely enters the cavity D of the steel cord and The sheet and steel cord are not integrated into a complete composite. In the case where this material is incorporated into the tire of an automobile, the rubber material and the steel cord are not sufficiently adhered to each other, which may cause the rubber material to separate from the steel cord and cause a so-called separation phenomenon when the vehicle is running. When the moisture in the rubber material or the moisture penetrating from the cut of the tire reaches the hollow portion D of the steel cord 21, the moisture propagates through the hollow portion D and immediately propagates in the longitudinal direction of the steel cord 21, Corrosion of the steel cord results in a significant decrease in its mechanical strength.
In order to solve this problem, various steel cord structures have been proposed in which a rubber material easily penetrates into the above-mentioned cavity as much as possible. For example, as shown in FIG. 3, the wire diameter of the core element wire 32 is increased, and a gap C is formed between the side element wires 33 which are tightly twisted around the core element wire, as shown in FIG. As shown in FIG. 5, a core wire 42 is provided with a small spiral shape in advance, and a side wire 43 is closely adhered to the core wire and twisted (for example, JP-A-6-191218). An example of such an arrangement is that the core element wire 52 is previously subjected to a wavy shaping of a small amplitude, and the side element wire 53 is closely attached and twisted (for example, JP-A-6-191217).
. Further, a so-called open-twisted steel cord (for example, JP-A-57-43866) in which wires are excessively formed and loosely twisted while providing a gap between the wires (for example, JP-A-57-43866), A so-called flat open-twisted steel cord in which an open-twisted steel cord is crushed flat with a roller to have an elliptical cross-sectional shape (Japanese Patent Laid-Open No. 2-133687) is also one example.
In the structure of the conventional steel cord 31 shown in FIG. 3, the rubber material sufficiently penetrates into the gap between the core strand 32 and the side strand 33, and as a result, a cavity is not formed. Does not propagate, but the diameter of the core element wire 32 is large, so that the diameter of the steel cord 31 is large, and therefore the thickness of the rubber sheet is large. When this is used in an automobile, the diameter of the steel cord 31 is increased, so that the flexibility of the steel cord against bending in the circumferential direction of the tire is poor, and the riding comfort is impaired.
Furthermore, since the core element wire 32 is always in contact with the side element element 33, fretting wear occurs, which results in a high fatigue value and low durability of the steel cord.
Further, in the steel cord 41 shown in FIG. 4 in which the core element wire 42 is spirally curled, the fatigue value is improved since the side element element 43 is not always in contact with the core element element 42, Since the shape is a substantially perfect circular shape, the rigidity of the steel cord against bending is the same in any direction, and a predetermined cornering performance of the tire is ensured (a predetermined lateral rigidity of the tire can be ensured). If the diameter of the steel cord is selected as described above), the rigidity of the tire against bending in the circumferential direction is too high, and the ride quality is deteriorated.
In addition, the steel cord 41 has a larger cord diameter than the close-twisted steel cord 21 as shown in FIG. 2, and the sheet after calendering (rubber coating step) becomes thicker. The required number of steel cords cannot be embedded in the sheet, and the sheet strength is low. Therefore, when this is used for a tire, it is necessary to increase the number of stacked sheets, and as a result, the weight of the tire increases.
The steel cord 51 shown in FIG. 5 in which the core element wire 52 is corrugated is given a substantially track-type (so-called athletic field track) space drawn by the locus of movement of the core element wire 52 (the dotted line in the figure). Since the side strands 53 do not easily enter the (enclosed space), the degree of freedom of the core strands 52 is large to some extent. For this reason, the core element wire 52 is easily moved by an external force generated by a process in which the steel cord is sandwiched between the upper and lower rubber sheets by pressing, vulcanizing and integrating the steel cord, and the stability of the steel cord is reduced. Therefore, handling workability at the time of manufacturing a steel cord or a rubber sheet is deteriorated. Further, since the steel cords 41 and 51 are subjected to a spiral or corrugated crimping process on the core wire, the manufacturing cost is increased accordingly.
Further, in the steel cords 41 and 51, it is necessary to set the twist pitch of the side strands corresponding to the spiral or wavy habit pitch (otherwise, the twisted shape is broken). The adjustment work of the machine is not easy, and there is a problem in handling workability.
In the flat open steel cord 61 shown in FIG. 6, a gap between the wires is required so that the rubber material adheres to the entire circumference of each wire 62 and sufficiently penetrates into the steel cord. It is necessary to make the interval sufficient for the rubber material to enter, that is, 0.02 mm or more. However, if a sufficient gap is provided between the strands as described above, the twisted structure tends to be unstable during the production of the steel cord, causing the strands to be offset or twisted unevenly in the longitudinal direction of the steel cord. Problem. This wire has a relatively large degree of freedom for each wire, so when a steel cord is embedded in a rubber sheet and vulcanized and pressed, the gap created by the external force is reduced by external force, or the gap is shifted due to wire movement. This makes it difficult for the rubber material to sufficiently penetrate into the cord. In this case, buckling is likely to occur due to repeated bending stress, and the life of the steel cord and thus the rubber product is shortened. Further, since the flat open steel cord 61 has a large elongation under a low load, it is difficult to handle in a rubber sheet manufacturing process.
[0003]
[Problems to be solved by the invention]
The present invention forms a required gap between the side strands of a substantially elliptical steel cord having a core strand having a thickness equivalent to that of a large number of side strands, without subjecting the core strands to crimping in advance. The object is to devise the structure so that a predetermined gap is secured and the rubber easily and reliably enters the inside of the steel cord even when the steel cord is sandwiched between rubber sheets and pressed and vulcanized. is there.
[0004]
[Means for Solving the Problems]
The measures taken to solve the above-mentioned problems are constituted by the following elements (a) to (d).
(1) A steel cord having a 1 + 6 structure in which six side strands are arranged around one core strand and twisted,
(B) An open structure in which side wires are twisted around a straight core wire to form a flat open structure in which the cross-sectional shape of the cord is substantially the same as the cord longitudinal direction,
(C) a core element wire is partially cut between two adjacent side element wires during the pressing process;
(D) The maximum amount of interruption of the above-mentioned core strand in one twist pitch of the cord is set to 30% or more and 50% or less of the core strand diameter.
[0005]
[Operation]
The operation will be described with reference to FIG.
The straight core wire 2 is included in the six twisted side wires 3 and the steel cord 1 is crushed into an almost elliptical shape by compression, so that the core wire 2 is formed of the upper and lower side wires. The wire is strongly pressed in between, and is interposed between adjacent side wires to be combined with the side wires. The interrupt has a small portion and a large (maximum interrupt) portion in one twist pitch of the code (see the interrupt state in FIG. 1), and the increase and decrease of interrupts are periodically repeated at one twist pitch interval of the code. The amount of interruption H (see FIG. 1) interrupted between the adjacent side wires 3 and 4 is the amount by which the outer periphery of the core wire 2 protrudes from the common tangent L of the side wires 3 and 4 (shown in FIG. 1). it is a distance of the tangent L 1 of the common tangent line L and Shinmotosen 2). The amount of interruption H periodically fluctuates between the maximum and the minimum along the steel cord, and the magnitude of the maximum value mainly depends on the compression of the steel cord 1 when the steel cord 1 is crushed into a substantially elliptical shape by compression. It is adjusted according to the magnitude of the force, the magnitude of the twist pitch of the steel cord, and the magnitude of the molding rate of the side strands.
When the steel cord is twisted, the straight core strand becomes the core, so that the twisting structure is stabilized, and it is possible to prevent the side strands from being offset and the side strands from being non-uniformly twisted.
Also, in the state of being formed into a crushed elliptical shape, the core element wire is tightly combined with the side element element, so that the degree of freedom of the side element element is reduced, so that the steel cord is sandwiched between the upper and lower rubber sheets. When pressurizing and vulcanizing, the gap between the side strands hardly fluctuates, and a predetermined gap is maintained. Therefore, the rubber easily penetrates into the steel cord from this gap, and the rubber is sufficiently filled in the steel cord.
When the maximum interrupt amount is small, the above-mentioned effects and effects are reduced. Conversely, when the maximum interrupt amount is large, the above-mentioned effects and effects are large. And damage, resulting in reduced fatigue strength of the steel cord.
When the maximum interruption amount Hmax is less than 0.3 d with respect to the core wire diameter d, the above-described action of the core wire is small, and therefore, the degree of freedom of the side wire is increased, so that the practical use is not practical. Little effect is expected. Conversely, if the maximum interruption amount Hmax exceeds 0.5 d with respect to the core element wire diameter d, the above-mentioned indentation and the decrease in fatigue strength due to damage become remarkable, which is not practically desirable.
Of course, it is practically possible to make the maximum interrupt amount Hmax larger than 0.5 d by applying a special surface treatment to the strands to prevent the above-mentioned indentation and damage. Even if it is larger than 0.5d, the above operation and effect do not increase so much.
The smaller the number of the side strands, the gentler the bend of the core strand, and the above-mentioned action and effect are reduced. Conversely, if the number of the side strands is large, the core strands are sharply bent, so that indentations and damages generated on the strands during press working are increased, and as a result, the fatigue strength of the steel cord is reduced. Therefore, even if the number of side strands is five or seven, the operation and effect of the present invention are not at all generated, but a steel cord having six side strands is most practical.
[0006]
Embodiment
The twist pitch of the steel cord is 6 to 20 mm.
If it is less than 6 mm, the wire is liable to be broken due to extreme processing, and the number of twists per unit length of the steel cord is increased, and the productivity is reduced. In addition, since the habit pitch of the core strand is smaller than the twist pitch of the side strands, if it is less than 6 mm, it is physically difficult to insert the core strand greatly between adjacent side strands.
On the other hand, when the twist pitch of the steel cord is 20 mm or more, the flexibility of the steel cord is reduced and flare is likely to occur, which is not practical.
The diameter of the core element wire is set to 0.2 mm to 0.4 mm.
If the strand is too thin, the strength of the strand will be insufficient, and if it is too thick, the flexibility of the steel cord will be insufficient and the fatigue value will be low. This is even more remarkable in the steel cord of the present invention having an elliptical cross section, and if it exceeds 0.4 mm, it is not practical.
[0007]
【Example】
Next, an embodiment will be described with reference to FIG.
This steel cord 1 is a substantially circular shape having a twist pitch of 16 mm and six side strands formed around one straight core strand 2 having a strand diameter of 0.35 mm and an average cord diameter of 1.07 mm. This is formed into a substantially elliptical shape having a major axis of 1.36 mm and a minor axis of 0.99 mm by a rolling roller. Due to the pressing by the rolling rollers, the core element is plastically deformed and cut between adjacent side elements. FIG. 9 shows enlarged photographs (1 to 8) of enlarged photographs in which each section of the steel cord embedded in resin and cut at intervals of 2 mm in the longitudinal direction of the steel cord is taken. In FIG. 9, the maximum interrupt amount in this embodiment can be measured by measuring the interrupt amount at the maximum interrupt amount (the maximum at one twist pitch of the cord). The third copy has the largest interrupt amount.
In order to confirm the characteristics of the steel cord of the present invention, several steel cords of the present invention (0.32d, 0.43d, 0.48d) with the maximum interrupt amount appropriately changed and several conventional steel cords were compared. Comparative tests were performed with two comparative examples (maximum interruption amounts of 0.17d and 0.58d), and the infiltration rate, rigidity ratio, fatigue resistance and handling workability of rubber were quantitatively evaluated. The evaluation results are as shown in Table 1 below.
[Table 1]
The test conditions and evaluation method for this test are as follows.
The rubber infiltration rate is as follows: each cord is embedded in rubber with a tensile load of 5 kg applied, and after vulcanization, the cord is taken out of the rubber, the cord is disassembled, and a certain length of the strand is observed. The ratio of the length of evidence of contact with the rubber to the observed length was expressed as a percentage. The rubber penetration rate is usually required to be 70% or more.
For fatigue resistance, a three-point pulley bending fatigue tester is used to perform a fatigue test using a composite sheet in which multiple steel cords are embedded in a rubber sheet, and the embedded steel cord breaks through fretting wear, buckling, etc. The number of times of repetition up to the end is counted. Experiment No. The index of the fatigue resistance of the conventional closed-twisted structure of No. 6 is expressed as an index with 100 as the index. The higher the value, the higher the fatigue resistance.
Further, as shown in FIG. 7, the rigidity ratio is a value obtained by measuring a load G when the test piece 71 is held down by 5 mm in a span (SP = 20 mm) of the test piece 71 using a three-point bending tester. The ratio (G / G 1 ) between the load G for the sample and the load G 1 for the major axis direction is expressed as a percentage. The smaller the ratio, the higher the circumferential flexibility of the tire when applied to the tire (lower rigidity) and the higher the lateral rigidity (lower lateral flexibility).
As shown in FIG. 8, a test piece 81 was prepared by embedding five test cords 82 in a horizontal row in a rubber sheet 83 having a 100% modulus of 35 kg / cm 2, and subjected to a rigidity test. The dimensions of the rubber sheet 83 are thickness T = 4 mm, width W = 15 mm, and length L = 100 mm. The bending stiffness in the minor axis direction is the bending stiffness of the test code 82 embedded horizontally as shown in FIG. 8A, and the bending stiffness in the major axis direction is as shown in FIG. 8B. In addition, the bending rigidity of the test code 82 embedded vertically is shown.
The handling operability is an evaluation of the complexity of the work during the production of the steel cord and the forming of the composite sheet and the handling operability of the steel cord. As compared with the steel cord of No. 6, a very poor one was evaluated as x, a slightly inferior one was evaluated as Δ, and the one with no difference was evaluated as three ranks.
The evaluation of each steel cord based on the results in Table 1 will be described below.
The conventional steel cord having the cross-sectional shape shown in FIG. 2 (Experiment No. 6) has an extremely inferior rubber penetration rate as compared with the examples of the present invention (Experiment Nos. 1 to 3), and therefore has poor fatigue resistance. However, there are problems such as poor flexibility, lack of flexibility, and a thicker sheet. A conventional steel cord (Experiment No. 7) having a cross-sectional shape shown in FIG. 4 and having a substantially spiral core wire attached to the core wire has a rubber penetration rate of 80, and the rubber penetration rate of the embodiment of the present invention is 100. Considerably lower than The stiffness ratio is 99, which is considerably higher than the stiffness ratio of 93 to 95 of the embodiment of the present invention.
Further, the cord diameter on the minor diameter side is considerably larger than that of the steel cord of the embodiment of the present application. For this reason, when such a cord is used, the seat thickness cannot be reduced, resulting in poor ride comfort.
Furthermore, since it is necessary to subject the core element wire to a spiral curving process, manufacturing costs and equipment costs are increased, and handling operability is somewhat poor.
The steel cord (Experiment No. 8) having a cross section shown in FIG. 5 in which a core element wire is corrugatedly shaped (Experiment No. 8) has a small maximum interruption amount of 0.15 d and a low rubber penetration rate of 60%. . This material has poor handling workability during the production of a steel cord and a rubber sheet, and it is particularly difficult to properly control the tension applied to the steel cord.
The structure is the same as that of the embodiment of the present invention, and is a comparative example in which the maximum interrupt amount is 0.17d, that is, the experiment No. In No. 4, the stability of the steel cord is poor, the rubber penetration rate is only 65%, and the handling workability is poor.
A similar comparative example in which the maximum amount of interruption was 0.58d, that is, Experiment No. The steel cord No. 5 has remarkably low fatigue resistance as compared with the examples of the present invention (Experiments No. 1 to No. 3). This is because the maximum interrupt amount of the cord is too large, and indentation and damage of the wire due to excessive compression processing are remarkable.
As compared with the above-mentioned conventional examples and comparative examples, the examples of the present invention (Experiments No. 1 to No. 3) have an extremely high rubber penetration rate of 100% and a high fatigue resistance of 105 to 108. The rigidity ratio is as small as 93 to 95. For this reason, when it is applied to a tire, the tire has high circumferential flexibility and therefore good riding comfort and high lateral rigidity and therefore good cornering characteristics.
Also, the handling workability is better than the conventional one.
[0008]
[Effect]
The steel cord of the present invention does not have a cavity inside the cord over substantially the entire area in the longitudinal direction of the cord, and has a stable and high rubber penetration property. Further, since the thickness of the sheet when embedded in rubber can be reduced, the tire weight can be reduced, and the fuel efficiency of the vehicle can be improved.
Further, since the rigidity in the circumferential direction (rotational direction) of the tire can be reduced, ride comfort can be improved, and the rigidity in the tire lateral direction can be increased, so that cornering performance can be improved.
Further, since the steel cord of the present invention is extremely excellent in the stability of twisting in the longitudinal direction, the rubber cord is very good as described above, and the workability of the steel cord is very good.
Furthermore, since a straight strand is used as the core strand and the steel cord is twisted, it can be manufactured using any conventional buncher type or tubular type stranding machine, and no twisting failure occurs (core strand) In the prior art shown in FIGS. 4 and 5 in which a twist is generated in advance, a twisting problem is a problem in manufacturing). In addition, in order to adjust the twist pitch of the side strands to the habit pitch of the core strands. Since the pitch adjustment is not necessary, the pitch adjustment of the side strands is simple, handling is easy, and there is no need to pre-curse the core strands. Therefore, the manufacturing cost can be significantly reduced as compared with the conventional example shown in FIGS.
[Brief description of the drawings]
FIG. 1 is a sectional view of a steel cord according to the present invention.
FIG. 2 is a cross-sectional view of a conventional steel cord in which six side strands are closely attached to each other and twisted around a core strand.
FIG. 3 is a cross-sectional view of a conventional steel cord in which a gap is formed between side strands which are tightly twisted around a core strand having a large diameter.
FIG. 4 is a cross-sectional view of a conventional steel cord in which a spiral wire having a small radius is applied to a core wire in advance, and a side wire is closely adhered to the core wire and twisted.
FIG. 5 is a cross-sectional view of a conventional steel cord in which a corrugated core having a small amplitude is applied to a core element wire in advance, and a side element wire is tightly attached thereto and twisted.
FIG. 6 is a sectional view of a conventional flat open twisted steel cord.
FIG. 7 is a schematic view of a rigidity tester.
8A is a perspective view of a test piece in which a steel cord is embedded in a minor axis direction, and FIG. 8B is a perspective view of a test piece in which a steel cord is embedded in a major axis direction.
FIG. 9 is an enlarged photograph of a cross-sectional enlarged photograph of a steel cord (1 + 6 structure) according to an embodiment of the present invention at a pitch of 2 mm at one twist pitch.

Claims (1)

多数の側素線と同等の太さの芯素線を有するほぼ楕円形状のゴム製品補強用スチールコードにおいて、
1本の芯素線の周囲に6本の側素線を配して撚り合わせた1+6構造のスチールコードとし、
真直ぐな芯素線の周囲に側素線を撚り合わせたオープン構造としたものを圧縮加工してコードの断面形状がコード長手方向に略同一向きの偏平オープン構造とし、
上記加圧加工時に隣接する2本の側素線の間に芯素線を部分的に割り込ませ、
コード1撚りピッチにおける上記の芯素線の割り込みの最大量を芯素線直径の30%以上50%以下とした上記ゴム製品補強用スチールコード。
In a steel cord for reinforcing rubber products having a substantially elliptical shape having a core strand of the same thickness as many side strands,
A steel cord of 1 + 6 structure, in which six side strands are arranged around one core strand and twisted,
The open structure in which the side wires are twisted around the straight core wire is compressed to form a flat open structure in which the cross-sectional shape of the cord is almost the same in the longitudinal direction of the cord.
At the time of the pressure processing, the core element wire is partially interrupted between two adjacent side element wires,
The steel cord for reinforcing rubber products as described above, wherein the maximum amount of interruption of the core strand at one twist pitch of the cord is 30% to 50% of the core strand diameter.
JP08705796A 1996-03-18 1996-03-18 Steel cord for reinforcing rubber products Expired - Lifetime JP3590690B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08705796A JP3590690B2 (en) 1996-03-18 1996-03-18 Steel cord for reinforcing rubber products

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08705796A JP3590690B2 (en) 1996-03-18 1996-03-18 Steel cord for reinforcing rubber products

Publications (2)

Publication Number Publication Date
JPH09256282A JPH09256282A (en) 1997-09-30
JP3590690B2 true JP3590690B2 (en) 2004-11-17

Family

ID=13904320

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08705796A Expired - Lifetime JP3590690B2 (en) 1996-03-18 1996-03-18 Steel cord for reinforcing rubber products

Country Status (1)

Country Link
JP (1) JP3590690B2 (en)

Also Published As

Publication number Publication date
JPH09256282A (en) 1997-09-30

Similar Documents

Publication Publication Date Title
JP5431848B2 (en) Steel cord for reinforcing rubber products and manufacturing method thereof
JP4633517B2 (en) Steel cord and tire
JPH0730714Y2 (en) Steel cord for reinforcing rubber products
JP3590690B2 (en) Steel cord for reinforcing rubber products
JP3887789B2 (en) Steel cord for tire reinforcement
JP3590696B2 (en) Steel cord for reinforcing rubber products
JP2564507Y2 (en) Steel cord for reinforcing rubber products
JP4050827B2 (en) Steel cord for rubber article reinforcement
JP4045025B2 (en) Steel cord for tire reinforcement
JPH10280289A (en) Steel cord for reinforcing rubber product and its production
JP2640285B2 (en) Steel cord for reinforcing rubber products
JP4248007B2 (en) Steel cord for tire reinforcement
JP2597836Y2 (en) Steel cord for reinforcing rubber products
JP4045030B2 (en) Steel cord for tire reinforcement
JPH04308287A (en) Steel cord for reinforcing rubber article
JP4091707B2 (en) Steel cord for tire reinforcement
JP4091694B2 (en) Steel cord for reinforcing rubber products
JP4106149B2 (en) Steel cord for tire reinforcement
JPH11200263A (en) Steel cord for reinforcing tire
JP4357015B2 (en) Steel cord for reinforcing rubber products
JP3484626B2 (en) Steel cord and tire radial tire for tire reinforcement
JP2597835Y2 (en) Rubber product reinforcement
JP2837551B2 (en) Steel cord for reinforcing tire belt and method of manufacturing the same
KR100267283B1 (en) Steel cord twisted with wire having different flat surface angle periodically
JP3511132B2 (en) Steel cord for tire reinforcement

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040805

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040817

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040823

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070827

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080827

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090827

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100827

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110827

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120827

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130827

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term