JP4248007B2 - Steel cord for tire reinforcement - Google Patents
Steel cord for tire reinforcement Download PDFInfo
- Publication number
- JP4248007B2 JP4248007B2 JP09038799A JP9038799A JP4248007B2 JP 4248007 B2 JP4248007 B2 JP 4248007B2 JP 09038799 A JP09038799 A JP 09038799A JP 9038799 A JP9038799 A JP 9038799A JP 4248007 B2 JP4248007 B2 JP 4248007B2
- Authority
- JP
- Japan
- Prior art keywords
- steel cord
- steel
- rubber
- diameter
- pitch
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- D—TEXTILES; PAPER
- D07—ROPES; CABLES OTHER THAN ELECTRIC
- D07B—ROPES OR CABLES IN GENERAL
- D07B1/00—Constructional features of ropes or cables
- D07B1/06—Ropes or cables built-up from metal wires, e.g. of section wires around a hemp core
- D07B1/0606—Reinforcing cords for rubber or plastic articles
- D07B1/0646—Reinforcing cords for rubber or plastic articles comprising longitudinally preformed wires
- D07B1/0653—Reinforcing cords for rubber or plastic articles comprising longitudinally preformed wires in the core
-
- D—TEXTILES; PAPER
- D07—ROPES; CABLES OTHER THAN ELECTRIC
- D07B—ROPES OR CABLES IN GENERAL
- D07B2201/00—Ropes or cables
- D07B2201/20—Rope or cable components
- D07B2201/2015—Strands
- D07B2201/2016—Strands characterised by their cross-sectional shape
- D07B2201/2018—Strands characterised by their cross-sectional shape oval
Landscapes
- Ropes Or Cables (AREA)
- Tires In General (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、自動車用タイヤの補強材として使用されるスチ−ルコ−ドに関し、特に4本〜13本の素線を撚り合わせ、そのコ−ドの横断面が略楕円形状のスチ−ルコ−ドに関するものである。
【0002】
【従来の技術】
一般にこの種のスチ−ルコ−ドは、多本数が平行に引揃えられた状態でゴム材に被覆されて、自動車用タイヤの補強材として使用されている。そして、スチ−ルコ−ドに要求される条件としては、機械的強度が優れていることは勿論のこと、ゴム材との化学的、物理的な接着が良好であること、およびスチ−ルコ−ド内部へのゴム浸入性が良好であること等があげられる。すなわち、スチ−ルコ−ドがタイヤ補強材としての役割を充分に果たすためにゴム材との完全な複合体となることが必要である。
【0003】
とりわけ、トラック、バスなどの高重量の車両に用いられるタイヤにおいては、高強度でかつ柔軟性をもつスチ−ルコ−ドが求められており、その一つとして従来より1+n構成のスチ−ルコ−ドが使用されてきた。
【0004】
しかし、従来の1+n構成のスチ−ルコ−ドの横断面構造は図6に示すようにクロ−ズ撚り構造で、かつ各素線9が相互に完全に密着して隙間がないため、空洞部Sがコ−ド内部に散在している。従って、このスチ−ルコ−ド8を2枚のゴムシ−トに挟んで複合体シ−トを形成した場合、ゴム材が上記空洞部Sまで浸入せず、ゴム材との完全な複合体を形成できない。
【0005】
それゆえ、このゴムシ−トをタイヤに用いた場合、釘などの異物によりゴム被覆が一部分でも破れると、外部より浸入してきた水分が上記空洞部S内に伝播し、スチ−ルコ−ドが全面にわたり酸化を起こす。こうなると、ゴムとスチ−ルコ−ドの接着力が弱くなり、両者が剥離してしまい、スチ−ルコ−ドの補強材としての効果が非常に弱くなってしまう。
【0006】
この問題を解決するため、図7に示すように芯素線11にくせ付けを行ったスチ−ルコ−ド10が提案されている。
【0007】
【発明が解決しようとする課題】
図7のように芯素線11にスパイラル状のくせ付けを行った、1+n構成のスチ−ルコ−ド10は、断面形状が略真円の形状をしているため、スチ−ルコ−ドの剛性がどの方向に対しても同じである。従って、タイヤのコ−ナ−リング性能を上げるために剛性を高くすると、乗り心地まで悪くなるという問題がある。さらに、図7のスチ−ルコ−ドは、図6のようなクロ−ズ撚りのコ−ドに比べてコ−ド径が太くなり、カレンダ−(ゴム被覆工程)後のゴムシ−トが厚くなってしまい、加えてコ−ド径が太いためにゴムシ−トに所定本数のスチ−ルコ−ドを埋め込むことができず、シ−トの強力が弱くなる。従って、このゴムシ−トをタイヤに用いる場合、シ−トの重ね枚数を増やす必要が生じ、結果としてタイヤの重量が増加するという問題がある。さらにスチ−ルコ−ドの製造上の点からも図8のようにきれいに側素線12を空間に配置するようなスチ−ルコ−ドは無理で撚りが非常に不安定となる。
【0008】
本発明は、前記種々の従来のスチ−ルコ−ドの様々な問題点を解決するためになされたものであり、その課題は、補強材としてタイヤに用いた場合に、スチ−ルコ−ド内部へのゴム浸入性がよく、タイヤ回転方向の剛性を低くしながらタイヤ回転方向と直交する方向の剛性を高めることができ、圧縮および曲げに対する疲労性が良好で、しかも製造及び取扱作業性の優れたスチ−ルコ−ドを提供することにある。
【0009】
【課題を解決するための手段】
上記目的を達成するために、本発明のタイヤ補強用スチ−ルコ−ドは、4本〜13本の素線を、1本をコア素線、残りの素線を側素線とし、同一方向に撚りピッチPで一度に撚り合わせたスチ−ルコ−ドであって、その横断面が長手方向に略同一向きで略楕円形状(長径W、短径T)であるタイヤ補強用スチ−ルコ−ドにおいて、側素線径d1 が0.15〜0.22mm、側素線径d2 が1.1d1 〜2.0d1 mm(但し、d2 ≧0.22mm)あり、かつコア素線が下記式(1)(2)を満足するくせピッチP1 とコ−ド短径方向のくせ外径Dの略スパイラル状のくせを有し、また前記コア素線が前記略楕円の長径軸を挟む両側に位置する側素線の間に略ピッチP1 間隔で出現し、しかも前記略楕円形状の偏平率(T/Wの百分比)が38%〜60%であることを特徴とする。
P1 =0.1P〜0.5P ・・(1)
T−D=0.03〜0.30 ・・(2)
P1 :くせピッチ(mm)
P :撚りピッチ(mm)
T :コ−ド短径(mm)
D :コ−ド短径方向のコア素線のくせ外径(mm)
【0010】
本発明のスチ−ルコ−ドは、横断面が長手方向に略同一向きで偏平率の大きい略楕円形状であるため、スチ−ルコ−ドの短径方向と長径方向で大きく剛性が異なる。また、カレンダ−後のスチ−ルコ−ドは、ゴムシ−トの中において長径部を左右にして長手方向に略平行に並ぶため、曲げ剛性が上下方向に低く左右方向に高い。従って、このゴムシ−トを用いてタイヤとなしたとき、タイヤの回転方向の剛性は低いので乗り心地がよく、タイヤ回転方向と直交する方向の剛性は高いのでコ−ナ−リング性能を高めることが出来る。
【0011】
また、本発明のスチ−ルコ−ドは横断面が略楕円形状をしているので、カレンダ−時はほとんど全てのスチ−ルコ−ドが長径部を左右にして長手方向に略平行に並ぶため、ゴムシ−ト厚はスチ−ルコ−ド短径部分に対応する厚みとなり、シ−トを薄くできる。そして、スチ−ルコ−ドの挿入本数を少なくできる。その結果タイヤの軽量化が進み、タイヤのコストダウン、自動車の燃費の改善が可能となった。さらに撚りの安定性の点においても、図7に示すようなスチ−ルコ−ドと比較して、撚りが安定しておりゴムシ−トに埋設した後でもほとんど同じ形状であり、製造上、取り扱い作業上も優れている。
【0012】
ところで、本発明のスチ−ルコ−ドにおいて、側素線径d1 を0.15〜0.22mm、コア素線径d2 を1.1d1 〜2.0d1 mm(但し、d2 ≧0.22mm)としたのは、側素線径d1 が0.15mm未満では、充分な強力が得られず、0.22mmを超えると、スチ−ルコ−ドの柔軟性が低下して疲労値が低下することによる。また、コア素線径d2 が側素線径d1 の1.1〜2.0倍で、かつ0.22mm以上としたのは、0.22mm未満では、スチ−ルコ−ドの低荷重伸びが大きくなり、以下の理由から、ゴム加硫後に偏平率が低下して本発明の効果が期待できないことによる。また、側素線径d1 の2.0倍を超えるとスチ−ルコ−ドの柔軟性が失われ、疲労値が低くなることによる。本発明のスチ−ルコ−ドは、柔軟性に富み、かつ低荷重時の伸びが小さく、ゴムに埋め込んでも偏平率が埋め込む前とほとんど変わらないスチ−ルコ−ドである。
【0013】
ここで、低荷重伸びが大きいスチ−ルコ−ドは加硫後に偏平率が小さくなる(断面形状が丸くなる)理由を説明する。
カレンダ−工程において、スチ−ルコ−ドをゴムシ−トに挟む際、スチ−ルコ−ドには1kg程度の低張力がかけられるが、低荷重伸びが大きいスチ−ルコ−ドは、この張力で伸びて断面積が小さくなるように形状が変形した状態で挟まれる。その後の加硫処理でゴム材は加熱されて流動的になるので、ゴム中でこの形状は元に戻る(スプリングバック)。この時のスプリングバック量が短径側が大きいため、断面形状が丸くなるように形状が変化すると考えられる。
これに対し、低荷重伸びが小さいスチ−ルコ−ドは、張力に対する耐力が強いので、変形することなくシ−トで挟まれる。したがって、このシ−トを加硫してもスプリングバックは発生せず、よって加硫前の形状がそのまま残ると考えられる。
本発明のスチ−ルコ−ドは、コア素線径を太くして、低荷重伸びを小さく抑えたコ−ドであるので、ゴムに埋め込んでも埋め込む前と偏平率は変わらない。
【0014】
スチ−ルコ−ドの撚りピッチは6mm〜28mmが好ましい。というのは、6mm未満とすると、極度に曲げ加工量が多くなるため断線が発生しやすくなり、またスチ−ルコ−ドの長さ当たりの撚り回数が多くなり、生産性が落ちるからである。さらに、本発明においては、コア素線のくせピッチが撚りピッチよりさらに小さいため、撚りピッチ6mm未満は適当ではない。一方、スチ−ルコ−ドの撚りピッチが28mmを越えると、スチ−ルコ−ドの柔軟性が失われるので疲労値が低くなり、また撚りが不安定となりフレア−も発生しやすくなり、実用的でない。
【0015】
このスチ−ルコ−ドの撚りピッチをPとしたとき、くせを有するコア素線のくせピッチP1 を0.1P〜0.5Pとしたのは、P1 が0.1P未満であると、素線が極度の塑性変形を受け、断線が多発するとともに生産性が悪くなり、一方、0.5Pを越えると、コア素線としての効果が果たせず、ゴムシ−ト成形時のゴムのフロ−による引張力、あるいはコ−ドに負荷されるしごき力によって素線間の隙間が減少し、ゴム浸入のための充分な隙間が素線間に生じなくなるからである。また、0.5Pを越えるとスチ−ルコ−ドの圧延が充分に出来ず、スチ−ルコ−ド横断面の短径(T)が大きくなり、ゴムシ−ト厚が小さく出来ない。
【0016】
スチ−ルコ−ドの横断面の略楕円形の短径をTとしたとき、くせを有するコア素線の前記短径方向のくせ外径Dを、T−D=0.03〜0.30の式を満足する範囲としたのは、0.03より小さい加工は実際上困難であり、また素線間に充分ゴム浸入を行うためにも0.03以上の方がよいからである。また0.30を越えると偏平の効果が少なくなり、ゴムシ−ト厚を小さくすることが出来ないことによる。よって、製造上、作用効果上この範囲が最も適している。
【0017】
スチ−ルコ−ドの横断面における略楕円形状の偏平率(短径Tと長径Wとの比、T/Wの百分比)を38%〜60%としたのは、38%未満とすると、撚りが不安定となると同時に各素線は長径端部での曲げ加工がきつくなり、取り扱いの作業性が悪く耐疲労性に劣ることによる。また、60%を越える形状となっても撚りは不安定となり、また真円に近づくので本発明のスチ−ルコ−ドの効果は期待できなくなる。
【0018】
本発明においては、くせを有するコア素線を前記略楕円形状の両端には出現させずに、かつまたコア素線を側素線の内側に完全に配置するという構造をとらず、長径軸を挟む両側では、コア素線を側素線の間に略ピッチP1 間隔で出現させ配置するようにし、結果的には一見してほぼ単層撚りのような構造にまで、スチ−ルコ−ドを偏平加工することにより本発明のスチ−ルコ−ドを完成することが出来た。そのため従来よりも撚りが安定し、かつ素線間に適当なる隙間を保ち、大きな偏平率のスチ−ルコ−ドが得られた。
【0019】
本発明のスチ−ルコ−ドは、一本の素線にあらかじめ設定したくせを付けてコア素線とし、その周囲に側素線を撚り合わせた後、表面がフラットなロ−ラ−間を通過させ、かなり強い圧縮加工を施すことにより製造可能である。従来はこのような方法では、スチ−ルコ−ドの撚りがつぶれてしまって、コ−ドとして欠陥品ではないかと思われていたが、スチ−ルコ−ドを構成する素線それぞれに適当な張力をかけて、強い圧縮加工を施せば簡単に製造が可能であることも解った。
【0020】
本発明のスチ−ルコ−ドはチュ−ブラタイプの撚線機でも製造できるが、バンチャ−タイプの撚線機で製造する方が、効率が良く実用的である。バンチャ−タイプの撚線機を用いた場合、素線に捻りが入るため、あらかじめ付けたくせとスチ−ルコ−ドでのくせとが異なるのでその点を考慮しておく必要がある。
【0021】
上記構成のスチ−ルコ−ドを用いて、2枚のゴムシ−ト間に挟んで加圧加硫すると、各素線間にゴムが容易に浸入し、ゴム厚も薄くできる上、曲げ剛性も上下方向より左右方向が極端に高くなる。このときのスチ−ルコ−ド埋設方向は、シ−ト水平面に対してスチ−ルコ−ド長径部を左右方向とし、各スチ−ルコ−ドは長手方向に略平行に並んでいる。
【0022】
【発明の実施の形態】
以下、本発明の実施の形態を図面を参照して説明する。
【0023】
図1〜図3は本発明の各種実施の形態であるスチ−ルコ−ドの横断面を示す概略図で、図1に示すスチ−ルコ−ド1は、略スパイラル状のくせを有する1本のコア素線2と、コア素線2より線径が小さい4本の側素線3とから構成されている。
図2に示すスチ−ルコ−ド1は、同じく1本のコア素線2と8本の側素線3とから構成され、図3に示すスチ−ルコ−ド1は、同じく1本のコア素線2と12本の側素線3とから構成されている。
【0024】
図1〜図3に示した全てのスチ−ルコ−ド1で、側素線3の径d1 が0.15〜0.22mmで、コア素線2の径d2 が、側素線3の径d1 の1.1倍から2.0倍である。但し、コア素線2の径d2 は、0.22mm以上である。そして、スチ−ルコ−ド1の短径Tとコア素線2に施した略スパイラル状の小さなくせの短径方向のくせ外径Dとは、T−D=0.03〜0.30の関係を満たしている。
また、コア素線2に施すスパイラル状くせのピッチは、撚りピッチの0.1倍から0.5倍で、このスパイラル状くせのピッチ間隔で、コア素線2が長径軸を挟む両側に位置する側素線3の間に出現する。
さらに、偏平率(T/W)は、38〜60%である。
【0025】
【実施例】
本発明のスチ−ルコ−ドの特性を評価するために、素線本数N、撚りピッチP、側素線径d1 、コア素線径d2 、コア素線のくせのピッチP1 、外径D、スチ−ルコ−ド横断面の楕円形状の短径T、長径Wを本発明の範囲内でそれぞれ変化させたスチ−ルコ−ドを実施例1〜5とし、それらのうちのいずれかの構成要素の数値が本発明の範囲を外れるスチ−ルコ−ドを比較例1〜5とし、図6に示すような横断面形状を有するスチ−ルコ−ドを従来例1とし、図7に示すような横断面形状を有するスチ−ルコ−ドを従来例2とし、各スチ−ルコ−ドについて、ゴム加硫後の偏平率の変化、ゴム浸入率、耐疲労性、剛性比および取扱作業性について評価したところ、表1に示すような結果を得た。
【0026】
【表1】
【0027】
表1に示す各項目のテスト条件、評価方法は次の通りである。
【0028】
偏平率の変化:カレンダ−工程前のスチ−ルコ−ド(生コ−ド)の偏平率Aと、ゴム加硫後の偏平率Bを、B/Aで比較した。この値が1より大きいものはゴム加硫後に断面形状が丸に近くなるように変化したことを示す。なお、加硫後の偏平率Bは、ゴムから取り出したサンプルを樹脂に埋め込み、投影機で以て長径w・短径tを測定して求めた。
【0029】
ゴム浸入率:各スチ−ルコ−ドに5kgの引張加重をかけた状態でゴム中に埋め込み、加硫した後、スチ−ルコ−ドをゴム中から取り出し、そのスチ−ルコ−ドを分解して素線の一定長さを観察し、観察した長さに対してゴムと接触した形跡のある長さの比を%表示した。表中その値の大きい方がゴム浸入率が良いことを示している。
【0030】
耐疲労性:複数本のスチ−ルコ−ドをゴムシ−トに埋め込んだ複合体シ−トを用いて3点プ−リ−曲げ疲労試験機により試験し、埋設したスチ−ルコ−ドがフレッティング磨耗、座屈等を経て破断するに至るまでの繰り返し回数を求め、従来例2の撚り構造のスチ−ルコ−ドの値を100として指数表示した。表中その値が大きい方が耐疲労性に優れている。
【0031】
剛性比:図4(a)に示すように、5本のスチ−ルコ−ド4を、100%モジュラスが35kg/cm2 であるゴムシ−ト5に対して、スチ−ルコ−ドの横断面長径方向が横になるように一列に埋め込んだテストピ−ス6と、図4(b)に示すように、5本のスチ−ルコ−ド4を、同ゴムシ−ト5に対して、スチ−ルコ−ドの横断面長径方向が縦になるように並列して埋め込んだテストピ−ス7を製作し、図5に示すように、テストピ−ス6または7を、スパンSp=20mmとした3点曲げ試験機に上架して、「テストピ−ス6を5mm押さえ込んだときの加重G」/「テストピ−ス7を5mm押さえ込んだときの加重G」を剛性比とした。
すなわち、「スチ−ルコ−ドの短径軸方向の曲げ剛性」/スチ−ルコ−ドの長径軸方向の曲げ剛性」を剛性比とした。表中その値の小さい方が曲げ剛性に差があることを示している。なお、テストピ−ス6または7の厚みは4mm、幅は15mm、長さは100mmである。
【0032】
取扱作業性:作業性良好なものを〇、作業性不良のものを×、その中間程度のものを△とした。
【0033】
表1より以下の点が明らかである。
【0034】
比較例1は、コア素線径d2 が本発明の下限より小さく、他は本発明の範囲内のスチ−ルコ−ドである。このスチ−ルコ−ドはコア素線の剛性が小さく、ゴム加硫後にスチ−ルコ−ドの断面が円に近くなり(B/A)、剛性比が劣る。
【0035】
比較例2は、比較例1とは逆に、コア素線径d2 が本発明の上限より大きいスチ−ルコ−ドである。このスチ−ルコ−ドは、コア素線の剛性が大きすぎ、柔軟性が劣るので耐疲労性が低い。また取扱作業性にもやや劣る。
【0036】
比較例3は、コア素線径d2 が比較例1と同様小さく、コアのくせピッチP1 も本発明の範囲を外れたスチ−ルコ−ドである。このスチ−ルコ−ドは隙間が小さく、ゴム浸入性に劣り、またゴム加硫後に断面が円に近くなり(B/A)、剛性比が低い。
【0037】
比較例4は、コア素線径d2 は本発明の範囲に入っているが、コア素線のくせピッチP1 およびT−Dの値が本発明の上限より大きく、コ−ド横断面の略楕円形状の偏平率Aが本発明の上限より大きいスチ−ルコ−ドである。このスチ−ルコ−ドは、素線間の隙間が小さく、ゴム浸入性に劣り、剛性も劣る。
【0038】
比較例5は、コア素線径d2 、コアのくせピッチP1 ともに本発明の範囲に入っているが、T−Dの値は比較例4よりさらに大きく、本発明の上限を外れており、偏平率Aも上限よりさらに大きいスチ−ルコ−ドである。このスチ−ルコ−ドは比較例4よりもさらにゴム浸入性に劣り、耐疲労性、剛性比、取扱作業性の全てが良くない。
【0039】
従来例1のスチ−ルコ−ドは、ゴムがほとんど浸入していない。
【0040】
従来例2のスチ−ルコ−ドは、横断面が楕円形状ではなくほぼ真円形状である。このためゴムシ−トでスチ−ルコ−ドを挟んだときゴムシ−トの厚みを薄くすることが出来ない。また実施例1〜5のスチ−ルコ−ドに比べて、ゴム浸入、耐疲労性、剛性比、取扱作業性において劣っている。
【0041】
実施例1〜5のスチ−ルコ−ドは、上記のような欠点がなく、全てにおいて優れたスチ−ルコ−ドである。
【0042】
【発明の効果】
本発明のタイヤ補強用スチ−ルコ−ドは、上記のとおり構成されているので、つぎの効果を奏する。
▲1▼スチ−ルコ−ド長手方向のほぼ全域にわたって空洞部がなく、かつ横断面形状の短径が極めて小さいため(いわゆる薄いため)スチ−ルコ−ド内部へのゴム浸入がよい。
▲2▼低荷重伸びが小さいので、ゴムに埋め込んでも偏平率が変化することがない。
▲3▼ゴムシ−ト厚を極端に薄くできるので、タイヤ重量を小さく抑えることができ、タイヤのコストダウン、自動車の燃費向上が可能となる。
▲4▼タイヤ回転方向の剛性を低くできるので、乗り心地を向上でき、一方、タイヤの回転方向と直交する方向の剛性を高くできるので、コ−ナ−リング性能を高めることができる。
▲5▼小さいくせを有するコア素線が、横断面の略楕円形状の長径両端部に出現せず、ほぼ中央部に位置し、かつ長径軸を挟む両側に位置する側素線の間に略ピッチP1 間隔で出現しているので、スチ−ルコ−ドとしての形状が非常に安定しており、かつ内部へのゴム浸入が非常によくなる。
▲6▼芯素線というような状態での素線が存在せず、全ての素線で単層撚りのような構造となるため、耐疲労性が良くなる。
▲7▼従来のチュ−ブラ−型、バンチャ−型のいずれの撚線機でも製造でき、撚り不良等のトラブルもないため、取扱作業性が優れている。
【図面の簡単な説明】
【図1】本発明のスチ−ルコ−ドの実施の形態を示す概略断面図である。
【図2】本発明のスチ−ルコ−ドの別の実施の形態を示す概略断面図である。
【図3】本発明のスチ−ルコ−ドのさらに別の実施の形態を示す概略断面図である。
【図4】3点曲げ試験に用いたテストピ−スを示し、(a)は短径方向の曲げ剛性測定用のテストピ−スの概略図、(b)は長径方向の曲げ剛性測定用のテストピ−スの概略図である。
【図5】3点曲げ試験方法を示す説明図である。
【図6】従来のスチ−ルコ−ドの例を示す概略断面図である。
【図7】従来のスチールコードの別の例を示す概略断面図である。
【符号の説明】
1、4、8 スチールコード
2、11 芯素線
3、9、12 側素線
5 ゴムシ−ト
6、7 テストピ−ス
d1 側素線径
d2 芯素線径
D コア素線のくせ外径
W スチ−ルコ−ド横断面の長径
T スチ−ルコ−ド横断面の短径
S 空洞部[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a steel cord used as a reinforcing material for automobile tires, and in particular, four to thirteen strands are twisted together, and the cord has a substantially elliptical cross section. Is related to
[0002]
[Prior art]
In general, this type of steel cord is coated with a rubber material in a state in which a large number of steel cords are aligned in parallel, and is used as a reinforcing material for automobile tires. The conditions required for the steel code include not only excellent mechanical strength but also good chemical and physical adhesion to the rubber material, and the steel code. For example, rubber penetration into the inside of the door is good. That is, the steel cord needs to be a complete composite with the rubber material in order to sufficiently fulfill the role as a tire reinforcing material.
[0003]
In particular, steel cords having high strength and flexibility are required for tires used in heavy vehicles such as trucks and buses, and one of them is a steel cord having a 1 + n structure as a conventional one. Has been used.
[0004]
However, the cross-sectional structure of the conventional steel cord having the 1 + n configuration is a closed strand structure as shown in FIG. 6, and the
[0005]
Therefore, when this rubber sheet is used for a tire, if even a part of the rubber coating is broken by a foreign object such as a nail, moisture that has entered from the outside propagates into the cavity S, and the steel cord is entirely covered. Causes oxidation over time. If it becomes like this, the adhesive force of rubber | gum and a steel cord will become weak, both will peel, and the effect as a reinforcing material of a steel cord will become very weak.
[0006]
In order to solve this problem, a
[0007]
[Problems to be solved by the invention]
The
[0008]
The present invention has been made to solve the various problems of the various conventional steel codes, and the problem is that when used as a reinforcing material in a tire, the interior of the steel code is obtained. The rubber can easily penetrate into the tire, the rigidity in the direction perpendicular to the tire rotation direction can be increased while the rigidity in the tire rotation direction is lowered, the fatigue resistance against compression and bending is good, and the manufacturing and handling workability is excellent. Another object is to provide a steel code.
[0009]
[Means for Solving the Problems]
In order to achieve the above object, the steel reinforcing steel cord of the present invention has four to thirteen strands, one core strand and the remaining strands as side strands, in the same direction. A steel cord that is twisted at a time with a twist pitch P and has a transverse cross section that is substantially in the same direction in the longitudinal direction and is substantially elliptical (longer diameter W, shorter diameter T). The side element wire diameter d 1 is 0.15 to 0.22 mm, the side element wire diameter d 2 is 1.1 d 1 to 2.0 d 1 mm (d 2 ≧ 0.22 mm), and the core element The wire has a substantially spiral-shaped beak having a bend pitch P 1 satisfying the following formulas (1) and (2) and a bevel outer diameter D in the direction of the minor axis of the code, and the core wire is a major axis of the substantially ellipse. found at substantially the pitch P 1 spacing between the side strands positioned on both sides of the shaft, yet aspect ratio of the substantially elliptical shape (percentage of T / W) 38 Characterized in that it is a 60%.
P 1 = 0.1 P to 0.5 P (1)
TD = 0.03 to 0.30 (2)
P 1 : habit pitch (mm)
P: Twisted pitch (mm)
T: Code short diameter (mm)
D: Outer diameter of the core wire in the minor axis direction of the cord (mm)
[0010]
The steel cord of the present invention has a substantially elliptical shape in which the transverse section is substantially the same in the longitudinal direction and the flatness ratio is large, so that the rigidity is greatly different between the minor axis direction and the major axis direction of the steel cord. Further, since the steel cord after the calender is lined up substantially parallel to the longitudinal direction with the long diameter portion left and right in the rubber sheet, the bending rigidity is low in the vertical direction and high in the left and right direction. Therefore, when this rubber sheet is used to make a tire, the rigidity in the tire rotation direction is low, so the ride comfort is good, and the rigidity in the direction orthogonal to the tire rotation direction is high, so that the cornering performance is improved. I can do it.
[0011]
In addition, since the steel cord of the present invention has a substantially elliptical cross section, almost all of the steel cords are arranged substantially in parallel in the longitudinal direction with the long diameter portion on the left and right at the time of calendar. The rubber sheet thickness is a thickness corresponding to the steel cord minor axis portion, and the sheet can be thinned. And the number of steel codes inserted can be reduced. As a result, tires have become lighter, and tire costs can be reduced and automobile fuel consumption can be improved. Furthermore, in terms of twist stability, the twist is stable and almost the same after embedding in a rubber sheet as compared to a steel cord as shown in FIG. The work is also excellent.
[0012]
By the way, in the steel cord of the present invention, the side wire diameter d 1 is 0.15 to 0.22 mm, and the core wire diameter d 2 is 1.1 d 1 to 2.0 d 1 mm (provided that d 2 ≧ 0.22 mm), when the side wire diameter d 1 is less than 0.15 mm, sufficient strength cannot be obtained, and when it exceeds 0.22 mm, the flexibility of the steel cord decreases and fatigue occurs. Due to the drop in value. Also, in 1.1 to 2.0 times the core wire diameter d 2 is the side wire diameter d 1, and was not less than 0.22mm, in less than 0.22mm, steel - Turkey - low load de The elongation increases, and the flatness decreases after rubber vulcanization for the following reasons, and the effect of the present invention cannot be expected. If it exceeds 2.0 times the side wire diameter d 1 steel - Turkey - de flexibility is lost, due to the fatigue value is low. The steel cord of the present invention is a steel cord which is rich in flexibility, has a small elongation at low load, and is almost the same as before flattening even when embedded in rubber.
[0013]
Here, the reason why the steel cord having a large low load elongation has a small flatness after vulcanization (the cross-sectional shape becomes round) will be described.
In the calendering process, when the steel cord is sandwiched between the rubber sheets, a low tension of about 1 kg is applied to the steel cord, but the steel cord with a large low load elongation is applied with this tension. It is sandwiched in a state where the shape is deformed so that the cross-sectional area is reduced by extension. Since the rubber material is heated and fluidized by the subsequent vulcanization treatment, the shape of the rubber material returns to its original state (spring back). Since the amount of springback at this time is large on the short axis side, it is considered that the shape changes so that the cross-sectional shape becomes round.
On the other hand, a steel cord having a low low load elongation has a high resistance to tension, and is sandwiched between sheets without deformation. Therefore, even if this sheet is vulcanized, no springback occurs, and it is considered that the shape before vulcanization remains as it is.
Since the steel cord of the present invention is a cord in which the core wire diameter is increased and the low load elongation is suppressed, the flatness does not change even before embedding in rubber.
[0014]
The twist pitch of the steel cord is preferably 6 mm to 28 mm. This is because if the thickness is less than 6 mm, the amount of bending work becomes extremely large, so that disconnection is likely to occur, and the number of twists per length of the steel cord increases, resulting in a decrease in productivity. Furthermore, in the present invention, since the comb pitch of the core strand is further smaller than the twist pitch, a twist pitch of less than 6 mm is not appropriate. On the other hand, if the twist pitch of the steel cord exceeds 28 mm, the flexibility of the steel cord is lost, so the fatigue value becomes low, and the twist becomes unstable and flare is likely to occur. Not.
[0015]
When the twist pitch of this steel cord is P, the core pitch P 1 of the core wire having a crack is 0.1 P to 0.5 P. When P 1 is less than 0.1 P, The strands are subject to extreme plastic deformation, resulting in frequent disconnections and poor productivity. On the other hand, if the thickness exceeds 0.5 P, the effect as a core strand cannot be achieved, and the flow of rubber during rubber sheet molding This is because the gap between the strands is reduced by the pulling force due to or the squeezing force applied to the cord, and a sufficient gap for rubber penetration does not occur between the strands. On the other hand, if it exceeds 0.5 P, the steel cord cannot be sufficiently rolled, the short diameter (T) of the steel cord cross section becomes large, and the rubber sheet thickness cannot be reduced.
[0016]
When the minor axis of the substantially elliptical cross section of the steel cord is T, the outer diameter D in the minor axis direction of the core wire having a defect is defined as TD = 0.03 to 0.30. The reason why the above formula is satisfied is that processing smaller than 0.03 is practically difficult, and 0.03 or more is better for sufficient rubber penetration between the strands. On the other hand, if it exceeds 0.30, the flattening effect is reduced and the rubber sheet thickness cannot be reduced. Therefore, this range is most suitable in terms of manufacturing and operational effects.
[0017]
When the flatness of the substantially elliptical shape in the cross section of the steel cord (ratio of minor axis T to major axis W, percentage of T / W) is 38% to 60%, At the same time, each wire becomes hard to bend at the end of the long diameter, resulting in poor handling and poor fatigue resistance. Further, even if the shape exceeds 60%, the twist becomes unstable and approaches a perfect circle, so that the effect of the steel code of the present invention cannot be expected.
[0018]
In the present invention, the core wire without a warp does not appear at both ends of the substantially elliptical shape, and the core wire is not arranged completely inside the side wire, and the major axis is in the both sides, until the structure as a core element wire to arrange to appear at substantially the pitch P 1 spacing between the side strands, resulting almost monolayer at first glance to twist, steel - Turkey - de The steel cord of the present invention was completed by flattening. For this reason, the steel cord has a higher flatness than that of the prior art, has a more stable twist and maintains an appropriate gap between the strands.
[0019]
In the steel cord of the present invention, a single strand is pre-set to a core strand, the side strands are twisted around it, and then between the rollers with flat surfaces. It can be manufactured by passing it through and applying a fairly strong compression process. Conventionally, in such a method, the twist of the steel cord was crushed, and it was thought that it was a defective product as a cord, but it was suitable for each strand constituting the steel cord. It was also found that it can be easily manufactured by applying a strong compression process under tension.
[0020]
The steel cord of the present invention can be manufactured with a tuber type twisting machine, but it is more efficient and practical to manufacture with a buncher type twisting machine. When a buncher-type twisting machine is used, the strands are twisted, so that the bends attached in advance are different from the beads in the steel cord, and this must be taken into consideration.
[0021]
Using the steel cord of the above configuration, when sandwiched between two rubber sheets and pressure vulcanized, the rubber can easily penetrate between the strands, the thickness of the rubber can be reduced, and the bending rigidity can be reduced. The horizontal direction is extremely higher than the vertical direction. The steel code burying direction at this time is such that the long diameter portion of the steel cord is in the left-right direction with respect to the sheet horizontal plane, and the steel cords are arranged substantially parallel to the longitudinal direction.
[0022]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0023]
1 to 3 are schematic views showing cross sections of a steel code according to various embodiments of the present invention. The steel code 1 shown in FIG. 1 is a single one having a substantially spiral shape.
The steel code 1 shown in FIG. 2 is similarly composed of one
[0024]
In all the steel cords 1 shown in FIGS. 1 to 3, the
Further, the pitch of the spiral bevel applied to the
Further, the flatness ratio (T / W) is 38 to 60%.
[0025]
【Example】
In order to evaluate the characteristics of the steel cord of the present invention, the number N of strands, the twist pitch P, the side strand diameter d 1 , the core strand diameter d 2 , the core strand spider pitch P 1 , the outer The steel cords in which the diameter D, the elliptical minor axis T, and the major axis W of the steel cord cross-section were changed within the scope of the present invention were designated as Examples 1 to 5, and any one of them. The steel cords whose numerical values are outside the scope of the present invention are referred to as Comparative Examples 1 to 5, the steel cord having a cross-sectional shape as shown in FIG. The steel cord having the cross-sectional shape shown in the figure is the conventional example 2, and for each steel cord, the change in flatness after rubber vulcanization, rubber penetration rate, fatigue resistance, rigidity ratio and handling work As a result, the results shown in Table 1 were obtained.
[0026]
[Table 1]
[0027]
The test conditions and evaluation methods for each item shown in Table 1 are as follows.
[0028]
Change in flatness: The flatness A of the steel code (raw code) before the calendar process and the flatness B after rubber vulcanization were compared by B / A. When this value is greater than 1, it indicates that the cross-sectional shape has changed to be close to a circle after rubber vulcanization. The flatness ratio B after vulcanization was obtained by embedding a sample taken out of rubber in a resin and measuring the major axis w and minor axis t with a projector.
[0029]
Rubber penetration rate: Each steel cord was embedded in rubber under a tensile load of 5 kg, vulcanized, and then the steel cord was taken out from the rubber and the steel cord was disassembled. A certain length of the wire was observed, and the ratio of the length of the trace that was in contact with the rubber to the observed length was displayed in%. The larger value in the table indicates that the rubber penetration rate is better.
[0030]
Fatigue resistance: Using a composite sheet in which a plurality of steel cords are embedded in a rubber sheet, a three-point pulley bending fatigue tester was used to test the embedded steel cord. The number of repetitions until rupture through ting wear, buckling, etc. was obtained, and the value of the steel cord of the twisted structure of Conventional Example 2 was taken as 100 and indicated as an index. The higher the value in the table, the better the fatigue resistance.
[0031]
Stiffness ratio: As shown in FIG. 4 (a), the cross-section of the steel code 4 with respect to the
That is, “the bending rigidity of the steel cord in the minor axis direction” / the bending rigidity of the steel cord in the major axis direction was defined as the rigidity ratio. The smaller value in the table indicates that there is a difference in bending rigidity. The
[0032]
Handling operability: Good workability is indicated by ◯, poor workability by x, and intermediate grade is indicated by △.
[0033]
From Table 1, the following points are clear.
[0034]
Comparative Example 1, the core wire diameter d 2 is smaller than the lower limit of the present invention, other steel within the scope of the present invention - a de - Turkey. In this steel cord, the core wire has low rigidity, and after rubber vulcanization, the cross section of the steel cord becomes close to a circle (B / A) and the rigidity ratio is inferior.
[0035]
Contrary to Comparative Example 1, Comparative Example 2 is a steel code in which the core wire diameter d 2 is larger than the upper limit of the present invention. This steel cord has low fatigue resistance because the rigidity of the core wire is too large and the flexibility is poor. In addition, the handling workability is slightly inferior.
[0036]
In Comparative Example 3, the core wire diameter d 2 is as small as in Comparative Example 1, and the core pitch P 1 is also a steel code outside the scope of the present invention. This steel cord has a small gap, is inferior in rubber penetration, has a cross-section close to a circle (B / A) after rubber vulcanization, and has a low rigidity ratio.
[0037]
In Comparative Example 4, the core wire diameter d 2 is within the range of the present invention, but the values of the core strands' cut pitches P 1 and TD are larger than the upper limit of the present invention, and the code cross section This is a steel code having a substantially elliptical flatness ratio A larger than the upper limit of the present invention. This steel cord has a small gap between the strands, is inferior in rubber penetration, and inferior in rigidity.
[0038]
In Comparative Example 5, both the core wire diameter d 2 and the core pitch P 1 are within the range of the present invention, but the value of TD is larger than that of Comparative Example 4, which is outside the upper limit of the present invention. The flatness ratio A is also a steel code that is larger than the upper limit. This steel cord is inferior to the rubber penetration property as compared with Comparative Example 4, and is not good in all of fatigue resistance, rigidity ratio and handling workability.
[0039]
In the steel cord of Conventional Example 1, rubber hardly penetrates.
[0040]
The steel cord of Conventional Example 2 has a substantially circular shape in cross section instead of an elliptical shape. For this reason, the thickness of the rubber sheet cannot be reduced when the steel cord is sandwiched between the rubber sheets. Moreover, compared with the steel cord of Examples 1-5, it is inferior in rubber penetration, fatigue resistance, rigidity ratio, and handling workability.
[0041]
The steel codes of Examples 1 to 5 do not have the above-mentioned drawbacks and are all excellent steel codes.
[0042]
【The invention's effect】
Since the steel reinforcing steel cord according to the present invention is configured as described above, the following effects can be obtained.
(1) Since there is no hollow portion over almost the entire length of the steel cord and the minor axis of the cross-sectional shape is extremely small (so-called thin), rubber penetration into the steel cord is good.
(2) Since the low load elongation is small, the flatness does not change even when embedded in rubber.
(3) Since the rubber sheet thickness can be made extremely thin, the tire weight can be kept small, the tire cost can be reduced, and the fuel efficiency of the automobile can be improved.
(4) Since the rigidity in the tire rotation direction can be lowered, the riding comfort can be improved, and on the other hand, the rigidity in the direction orthogonal to the tire rotation direction can be increased, so that the cornering performance can be improved.
(5) The core wire having a small habit does not appear on both ends of the major axis of the substantially elliptical shape in the cross section, but is located substantially between the side strands located on both sides of the major axis and located substantially in the center. since found at a pitch P 1 interval, steel - Turkey - is extremely stable shape as de, and rubber penetration into the inside is very well.
{Circle around (6)} No strands in the state of core strands are present, and all strands have a single-layer twisted structure, so fatigue resistance is improved.
(7) It can be manufactured by any conventional twister type and buncher type twisting machines, and there is no trouble such as twisting failure, so that the handling workability is excellent.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view showing an embodiment of a steel cord of the present invention.
FIG. 2 is a schematic cross-sectional view showing another embodiment of a steel cord of the present invention.
FIG. 3 is a schematic sectional view showing still another embodiment of the steel cord of the present invention.
4A and 4B show test pieces used in a three-point bending test, where FIG. 4A is a schematic diagram of a test piece for measuring bending stiffness in the minor axis direction, and FIG. 4B is a test piece for measuring bending stiffness in the major axis direction. FIG.
FIG. 5 is an explanatory diagram showing a three-point bending test method.
FIG. 6 is a schematic cross-sectional view showing an example of a conventional steel code.
FIG. 7 is a schematic cross-sectional view showing another example of a conventional steel cord.
[Explanation of symbols]
1, 4, 8
Claims (1)
P1 =0.1P〜0.5P ・・(1)
T−D=0.03〜0.30 ・・(2)
P1 :くせピッチ(mm)
P :撚りピッチ(mm)
T :コ−ド短径(mm)
D:コ−ド短径方向のコア素線のくせ外径(mm)A steel cord having 4 to 13 strands, one core strand and the remaining strands being side strands, twisted in the same direction at a twist pitch P at the same time. In a steel reinforcing steel cord having substantially the same surface in the longitudinal direction and a substantially elliptical shape (major axis W, minor axis T), the side strand diameter d 1 is 0.15 to 0.22 mm, and the core strand The diameter d 2 is 1.1d 1 to 2.0d 1 mm (where d 2 ≧ 0.22 mm), and the core strand satisfies the following formulas (1) and (2) and the pitch P 1 and the core The core strand has a substantially spiral shape with a comb outer diameter D in the minor axis direction, and the core strand appears at a pitch P 1 interval between the side strands located on both sides of the major axis of the substantially ellipse. In addition, the steel cord for reinforcing a tire is characterized in that the oblateness of the substantially elliptical shape (percentage of T / W) is 38% to 60%.
P 1 = 0.1 P to 0.5 P (1)
TD = 0.03 to 0.30 (2)
P 1 : habit pitch (mm)
P: Twisted pitch (mm)
T: Code short diameter (mm)
D: Outer diameter of core wire in the minor axis direction of the cord (mm)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP09038799A JP4248007B2 (en) | 1999-03-31 | 1999-03-31 | Steel cord for tire reinforcement |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP09038799A JP4248007B2 (en) | 1999-03-31 | 1999-03-31 | Steel cord for tire reinforcement |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2000280708A JP2000280708A (en) | 2000-10-10 |
JP4248007B2 true JP4248007B2 (en) | 2009-04-02 |
Family
ID=13997178
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP09038799A Expired - Lifetime JP4248007B2 (en) | 1999-03-31 | 1999-03-31 | Steel cord for tire reinforcement |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4248007B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20220307197A1 (en) * | 2020-08-26 | 2022-09-29 | Sumitomo Electric Tochigi Co., Ltd. | Steel cord and tire |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5219275B2 (en) | 2006-08-31 | 2013-06-26 | 株式会社ブリヂストン | Steel cord |
-
1999
- 1999-03-31 JP JP09038799A patent/JP4248007B2/en not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20220307197A1 (en) * | 2020-08-26 | 2022-09-29 | Sumitomo Electric Tochigi Co., Ltd. | Steel cord and tire |
Also Published As
Publication number | Publication date |
---|---|
JP2000280708A (en) | 2000-10-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2006507414A (en) | Flat helically wound tire cord | |
JP5431848B2 (en) | Steel cord for reinforcing rubber products and manufacturing method thereof | |
JP4633517B2 (en) | Steel cord and tire | |
JP4045025B2 (en) | Steel cord for tire reinforcement | |
JPH08325962A (en) | Steel cord for tire reinforcement | |
JP4248007B2 (en) | Steel cord for tire reinforcement | |
JP4045030B2 (en) | Steel cord for tire reinforcement | |
JP3093390B2 (en) | Steel cord for reinforcing rubber articles and method for producing the same | |
JP4091707B2 (en) | Steel cord for tire reinforcement | |
JP2640285B2 (en) | Steel cord for reinforcing rubber products | |
JPH10280289A (en) | Steel cord for reinforcing rubber product and its production | |
JPH0719393U (en) | Steel cord for reinforcing rubber products | |
JPH11200263A (en) | Steel cord for reinforcing tire | |
JPH04308287A (en) | Steel cord for reinforcing rubber article | |
JP3576706B2 (en) | Steel cord for rubber article reinforcement | |
JP4259652B2 (en) | Steel cord for tire reinforcement | |
JP4646769B2 (en) | Steel cord for rubber reinforcement and manufacturing method thereof | |
JPH1088488A (en) | Steel cord for reinforcing rubber and radial tire | |
JP3484626B2 (en) | Steel cord and tire radial tire for tire reinforcement | |
JP2597836Y2 (en) | Steel cord for reinforcing rubber products | |
JP5264094B2 (en) | Steel cord for reinforcing rubber products and manufacturing method thereof | |
JP4106149B2 (en) | Steel cord for tire reinforcement | |
JP3590690B2 (en) | Steel cord for reinforcing rubber products | |
JP2569185Y2 (en) | Steel cord for reinforcing rubber products | |
JP4646596B2 (en) | Manufacturing method of steel cord for reinforcing rubber products |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A625 | Written request for application examination (by other person) |
Free format text: JAPANESE INTERMEDIATE CODE: A625 Effective date: 20060209 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20081222 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090105 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090110 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120123 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130123 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140123 Year of fee payment: 5 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |