JP3589131B2 - Intake air amount control device for variable valve type internal combustion engine - Google Patents

Intake air amount control device for variable valve type internal combustion engine Download PDF

Info

Publication number
JP3589131B2
JP3589131B2 JP34537599A JP34537599A JP3589131B2 JP 3589131 B2 JP3589131 B2 JP 3589131B2 JP 34537599 A JP34537599 A JP 34537599A JP 34537599 A JP34537599 A JP 34537599A JP 3589131 B2 JP3589131 B2 JP 3589131B2
Authority
JP
Japan
Prior art keywords
air amount
intake
valve
variable valve
internal combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP34537599A
Other languages
Japanese (ja)
Other versions
JP2001159354A (en
Inventor
勝博 荒井
初雄 永石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP34537599A priority Critical patent/JP3589131B2/en
Priority to EP00126306A priority patent/EP1104845B1/en
Priority to DE60033908T priority patent/DE60033908T2/en
Priority to US09/727,787 priority patent/US6513490B2/en
Publication of JP2001159354A publication Critical patent/JP2001159354A/en
Application granted granted Critical
Publication of JP3589131B2 publication Critical patent/JP3589131B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Valve Device For Special Equipments (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、可変動弁機構により吸入空気量を制御する可変動弁式内燃機関の吸入空気量制御装置において、特に、アイドル運転時における安定性を向上する技術に関する。
【0002】
【従来の技術】
従来から、ポンプロスの低減による燃費向上を目的として、例えば、特開平10−37727号公報に開示されるように、吸・排気弁の開閉時期を任意に制御可能な可変動弁機構が知られている。可変動弁機構を備えた内燃機関では、吸気弁の閉時期を変化させることにより吸入空気量を制御して、実質的にノンスロットル運転を行うことができる。
【0003】
【発明が解決しようとする課題】
ところで、可変動弁機構を備えた内燃機関では、吸気弁の閉時期により吸入空気量を制御していることから、従来のようなスロットル弁により吸入空気量を制御するものに比べて、吸入空気量の応答性が早くなる特性がある。このため、ガクガク感等が感じられて運転性が低下するおそれがあり、かかる不具合を解消する観点から、可変動弁機構の制御信号に対して応答性を低下させるなまし等の処理を行わなければならない。しかし、可変動弁機構により制御される吸入空気量には、所定のアイドル回転速度を維持するための補助空気量も含まれているため、高応答性が必要である補助空気量も応答性が低下し、アイドル運転時の安定性が低下してしまうおそれがあった。
【0004】
そこで、本発明は以上のような従来の問題点に鑑み、補助空気量の応答性の低下を防止して、アイドル運転時における安定性を向上した可変動弁式内燃機関の吸入空気量制御装置を提供することを目的とする。
【0005】
【課題を解決するための手段】
このため、請求項1記載の発明では、図1に示すように、吸気弁Aの開閉時期を任意に制御可能な可変動弁手段Bと、ドライバ要求に基づいて主空気量を演算する主空気量演算手段Cと、機関要求に基づいて補助空気量を演算する補助空気量演算手段Dと、前記主空気量に対して応答性遅れ処理を行う応答性遅れ処理手段Eと、前記応答性遅れ処理が行われた主空気量に前記補助空気量を加算した目標空気量を演算する目標空気量演算手段Fと、前記目標空気量に基づいて前記可変動弁手段Bにより吸気弁Aの開閉時期を制御して吸入空気量を制御する吸入空気量制御手段Gと、を含んで可変動弁式内燃機関の吸入空気量制御装置を構成したことを特徴とする。
【0006】
かかる構成によれば、応答性遅れ処理手段Eでは、主空気量に対してのみ応答性遅れ処理が行われる。そして、目標空気量演算手段Fにより、応答性遅れ処理が行われた主空気量と補助空気量とを加算した目標空気量が演算され、吸入空気量制御手段Gにより、目標空気量に基づいて吸入空気量の制御が行われる。即ち、応答性を低下させたくない補助空気量に対しては応答性遅れ処理が行われないため、例えば、補機負荷の印加により補助空気量がステップ的に増大しても、迅速に対応可能となる。
【0007】
請求項2記載の発明では、前記応答性遅れ処理手段は、前記主空気量に対して内燃機関の吸気マニホルド1次遅れ相当のなまし処理を行うことを特徴とする。
【0008】
【発明の効果】
以上説明したように、請求項1記載の発明によれば、補助空気量に対して応答性遅れ処理が行われないので、例えば、補機負荷の印加により補助空気量がステップ的に増大しても、その増加量に迅速に対応でき、アイドル運転の安定性を向上することができる。
【0009】
請求項2記載の発明によれば、ドライバが要求する主空気量に対しては、吸気マニホルド1次遅れ相当のなまし処理が行われるので、アクセル開度の変化に対応して過敏に吸入空気量が増減することが防止され、運転領域全体に亘り滑らかな運転特性を得ることができる。
【0010】
【発明の実施の形態】
以下、添付された図面を参照して本発明を詳述する。
図2は、本発明の一実施形態を示すシステム図である。
【0011】
内燃機関1のシリンダヘッド2には、燃焼室3を望むように、点火プラグ4及び電磁駆動弁5,6(可変動弁手段)が配設される。各吸気ポート7には、機関運転状態に応じて燃料を噴射する燃料噴射弁8が配設される。吸気ポート7に接続された吸気通路9には、燃焼室3に吸入される吸入空気量Qを検出するエアフローメータ10、及び、電制スロットル弁11が配設される。
【0012】
電制スロットル弁11には、そのスロットル開度TVOを検出するスロットルセンサ12が付設される。また、クランクプーリ13には、基準クランク角で基準角度信号Refを出力すると共に、単位クランク角ごとに単位角度信号Posを出力するクランク角センサ14が配設される。この他には、アクセル開度(アクセルペダルの踏み込み量)APOを検出するアクセルペダルセンサ15、機関本体温度を代表する冷却水温度Twを検出する水温センサ16、及び、各種補機の作動中にONとなる各種補機スイッチ17が配設される。ここで、各種補機スイッチ17としては、例えば、パワーステアリングスイッチ,エアコンディショナスイッチ,電気負荷スイッチ,ラジエータファンスイッチ及びブロアファンスイッチ等がある。
【0013】
エアフローメータ10,スロットルセンサ12,クランク角センサ14,アクセルペダルセンサ15,水温センサ16及び各種補機スイッチ17の出力信号は、夫々、マイクロコンピュータを内蔵したコントロールユニット18に入力される。そして、コントロールユニット18は、クランク角センサ14からの信号に基づいて、機関回転速度Neの算出及び気筒判別(どの気筒が上死点にあるかの判定)を行うと共に、各センサからの信号に基づいて、点火プラグ4,電磁駆動弁5,6,燃料噴射弁8及び電制スロットル弁11の制御を行う。
【0014】
なお、コントロールユニット18は、主空気量演算手段,補助空気量演算手段,応答性遅れ処理手段,目標空気量演算手段及び吸入空気量制御手段をソフトウエアにより実現する。
【0015】
次に、電磁駆動弁5,6の構成を図3に基づいて説明する。
吸・排気弁たる弁体20の軸部21には、プレート状の可動子22が取り付けられる。可動子22の上下には、非作動時に弁体20が中立位置に弾性支持されるように、スプリング23,24が配設される。また、可動子22の上下には、閉弁用電磁石25及び開弁用電磁石26が夫々配設される。
【0016】
そして、弁体20を開弁させるには、閉弁用電磁石25への通電を停止した後、開弁用電磁石26に通電して、可動子22の下面をスプリング24の付勢力に抗して開弁用電磁石26に吸着させ、弁体20をシート部から離間させる。一方、弁体20を閉弁させるには、開弁用電磁石26への通電を停止した後、閉弁用電磁石25に通電して、可動子22の上面をスプリング23の付勢力に抗して閉弁用電磁石25に吸着させ、弁体20をシート部に着座させる。このような動作を周期的に繰り返すことで、内燃機関の動弁装置としての機能が発揮される。
【0017】
また、この内燃機関では、ポンプロスの低減による燃費向上を目的として、電磁駆動弁5,6により吸・排気弁の開閉時期、特に、吸気弁の閉時期(IVC)を制御(早閉じ制御)することにより、吸入空気量を制御して実質的にノンスロットル運転を行う。この場合、電制スロットル弁11は、所定の運転条件にて吸気通路内に目標負圧を得る目的で使用される。
【0018】
具体的には、吸気弁の開時期(IVO)は、排気上死点(TDC)付近の略一定時期とし、吸気弁の閉時期(IVC)は、ドライバ要求トルクと機関要求トルクとからなる目標トルク相当の目標空気量に応じて、スロットル開度TVOを考慮して制御される。一方、排気弁の開時期(EVO)及び閉時期(EVC)は、最も熱効率の良い時期となるように制御される。
【0019】
次に、可変動弁式内燃機関の吸入空気量の制御内容について説明する。
制御ブロックの構成は、図4に示すように、主空気量演算部30と、補助空気量演算部31と、応答性遅れ処理部32と、目標空気量演算部33と、IVC演算部34と、を含んで構成される。
【0020】
主空気量演算部30は、主空気量演算手段として機能し、アクセル開度APO及び機関回転速度Neに基づいて、ドライバが要求するトルク相当の主空気量を演算する。
【0021】
補助空気量演算部31は、補助空気量演算手段として機能し、冷却水温度Twに基づくフリクション分、補機負荷印加状態に基づく補機負荷分及びアイドル回転速度制御分等からなるアイドル要求トルク相当の補助空気量を演算する。ここで、アイドル回転速度制御分は、アイドル運転条件にて、実際の機関回転速度Neが目標アイドル回転速度になるようにフィードバック制御により増減する空気量である。
【0022】
応答性遅れ処理部32は、応答性遅れ処理手段として機能し、主空気量演算部30により演算された主空気量に対して、機関運転性悪化を防止するための応答遅れ処理を行う。即ち、電磁駆動弁5では、吸気弁の開閉時期の制御により吸入空気量が応答性良く増減するので、ガクガク感等を防止する観点から、従来のスロットル弁による吸入空気量の制御と同等となるように、例えば、次式により吸気マニホルド1次遅れ相当のいわゆるなまし処理を行う。
【0023】
補正後の主空気量=Qt’×(1−F)+Qt ×F
ここで、Qt は主空気量演算部30で最新に演算された主空気量、Qt’は現在の補正後の主空気量、Fは加重平均重み付け定数(0<F<1)を示す。
【0024】
このような補正を行うことにより、アクセル開度APOの変化に対応して過敏に吸入空気量が増減することが防止され、従来のスロットル弁による吸入空気量制御と同様に、運転領域全域に亘り滑らかな運転特性を得ることができる。
【0025】
目標空気量演算部33は、応答性遅れ処理部32により応答性遅れ処理が行われた主空気量に、補助空気量演算部31により演算された補助空気量を加算して目標空気量を演算する。
【0026】
IVC演算部34は、目標空気量演算部33により演算された目標空気量に基づいて、吸気弁の閉時期を演算する。そして、演算結果に基づいて、電磁駆動弁5を制御する。なお、これら一連の処理が、吸入空気量制御手段に相当する。
【0027】
図5は、吸入空気量の制御を示すフローチャートである。なお、詳細な制御内容は、図4の制御ブロックの説明と重複するので、ここでは、その概要についてのみ説明する。
【0028】
補助空気量演算部31により補助空気量を演算すると共に(S1)、主空気量演算部30により主空気量を演算する(S2)。そして、主空気量に対して応答性遅れ処理部32により応答性遅れ処理を行い(S3)、目標空気量演算部33により応答性遅れ処理が行われた主空気量に補助空気量が加算され目標空気量が演算される(S4)。その後、IVC演算部34により吸気弁の閉時期が演算され(S5)、演算結果に基づいて電磁駆動弁5が制御される(S6)。
【0029】
このようにすれば、応答性を低下させたくない補助空気量に対しては応答遅れ処理が行われず、補助空気量と応答遅れ処理が行われた主空気量とを加算した目標空気量に基づいて、電磁駆動弁5が制御される。この効果を、アイドル運転中にエアコンディショナ等の補機の負荷が印加したときを例として、図6を参照しつつ説明する。目標空気量全体に対して応答性遅れ処理を行うと、吸入空気量は特性Aのように増加し、補機負荷分に相当する補助空気量を迅速に増加することができない。しかし、本実施形態によれば、吸入空気量は特性Bのように増加するので、補機負荷分に相当する補助空気量が迅速に増加し、アイドル運転の安定性が維持される。
【0030】
電制スロットル弁11は、目標空気量(主空気量+補助空気量)及び目標負圧に基づいて、目標負圧を実現するようにその開度を制御するが、この場合の目標空気量は、応答性遅れ処理前の主空気量と補助空気量とを加算して求める。スロットル弁による空気量の制御は、応答遅れを生じるからである。
【0031】
なお、吸気弁の開閉時期は、本実施形態のような電磁駆動弁5だけでなく、何らかの手段により制御できる構成であればよい。
【図面の簡単な説明】
【図1】本発明の構成を示す機能ブロック図
【図2】本発明の一実施形態を示すシステム図
【図3】電磁駆動弁の基本構造図
【図4】制御ブロックの構成図
【図5】吸入空気量の制御フローチャート
【図6】補機負荷が印加したときの吸入空気量の変化を示す線図
【符号の説明】
1 内燃機関
5 電磁駆動弁
11 電制スロットル弁
14 クランク角センサ
15 アクセルペダルセンサ
16 水温センサ
17 各種補機スイッチ
18 コントロールユニット
30 主空気量演算部
31 補助空気量演算部
32 応答性遅れ処理部
33 目標空気量演算部
34 IVC演算部
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an intake air amount control device for a variable valve internal combustion engine that controls an intake air amount by a variable valve mechanism, and particularly to a technique for improving stability during idling operation.
[0002]
[Prior art]
Conventionally, for the purpose of improving fuel efficiency by reducing pump loss, for example, as disclosed in Japanese Patent Application Laid-Open No. 10-37727, there has been known a variable valve mechanism capable of arbitrarily controlling the opening and closing timing of intake and exhaust valves. I have. In an internal combustion engine equipped with a variable valve operating mechanism, the intake air amount is controlled by changing the closing timing of the intake valve, so that substantially non-throttle operation can be performed.
[0003]
[Problems to be solved by the invention]
By the way, in an internal combustion engine equipped with a variable valve operating mechanism, the intake air amount is controlled by the closing timing of the intake valve. There is a characteristic that the response of the amount is quick. For this reason, there is a possibility that the driving performance may be reduced due to a feeling of rattling or the like, and from the viewpoint of solving such a problem, it is necessary to perform a process such as smoothing the response to the control signal of the variable valve mechanism. Must. However, the amount of intake air controlled by the variable valve mechanism includes the amount of auxiliary air for maintaining a predetermined idle rotation speed. And the stability during idling may be reduced.
[0004]
Accordingly, the present invention has been made in view of the above-described conventional problems and, in view of the above-mentioned conventional problems, prevents a decrease in responsiveness of an auxiliary air amount, thereby improving the stability during idle operation of a variable valve type internal combustion engine. The purpose is to provide.
[0005]
[Means for Solving the Problems]
For this reason, according to the first aspect of the present invention, as shown in FIG. 1, the variable valve means B capable of arbitrarily controlling the opening / closing timing of the intake valve A and the main air for calculating the main air amount based on a driver request. the amount computing means C, a supplementary air quantity calculating means D for calculating the auxiliary air amount based on the engine requirements, and response lag processing unit E for performing the response delay processing to the main air amount, the response delay Target air amount calculating means F for calculating a target air amount obtained by adding the auxiliary air amount to the processed main air amount; and opening / closing timing of the intake valve A by the variable valve means B based on the target air amount. And an intake air amount control device G for controlling the intake air amount by controlling the intake air amount control device of the variable valve type internal combustion engine.
[0006]
According to such a configuration, the response delay processing means E performs the response delay processing only on the main air amount. Then, the target air amount calculating means F calculates a target air amount obtained by adding the main air amount and the auxiliary air amount subjected to the response delay processing, and the intake air amount controlling means G calculates the target air amount based on the target air amount. Control of the intake air amount is performed. That is, since the response delay processing is not performed on the auxiliary air amount for which the response is not desired to be reduced, even if the auxiliary air amount increases stepwise due to the application of the auxiliary equipment load, for example, it is possible to quickly respond. It becomes.
[0007]
The invention according to claim 2 is characterized in that the response delay processing means performs a smoothing process corresponding to a first-order intake manifold delay of the internal combustion engine on the main air amount .
[0008]
【The invention's effect】
As described above, according to the first aspect of the present invention, since the response delay processing is not performed on the auxiliary air amount, for example, the auxiliary air amount increases stepwise by application of the auxiliary load. However, it is possible to quickly respond to the increased amount and improve the stability of the idling operation.
[0009]
According to the second aspect of the present invention, the smoothing process corresponding to the intake manifold first-order lag is performed on the main air amount requested by the driver, so that the intake air is sensitively changed according to the change in the accelerator opening. The amount is prevented from increasing or decreasing, and smooth operating characteristics can be obtained over the entire operating region.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.
FIG. 2 is a system diagram showing one embodiment of the present invention.
[0011]
The ignition plug 4 and the electromagnetically driven valves 5 and 6 (variable valve operating means) are arranged in the cylinder head 2 of the internal combustion engine 1 so as to view the combustion chamber 3. Each intake port 7 is provided with a fuel injection valve 8 that injects fuel according to the engine operating state. An intake passage 9 connected to the intake port 7 is provided with an air flow meter 10 for detecting an intake air amount Q taken into the combustion chamber 3 and an electronically controlled throttle valve 11.
[0012]
The electronically controlled throttle valve 11 is provided with a throttle sensor 12 for detecting the throttle opening TVO. The crank pulley 13 is provided with a crank angle sensor 14 that outputs a reference angle signal Ref at a reference crank angle and outputs a unit angle signal Pos for each unit crank angle. In addition, an accelerator pedal sensor 15 for detecting an accelerator opening (accelerator pedal depression amount) APO, a water temperature sensor 16 for detecting a cooling water temperature Tw representing the engine body temperature, and a state where various auxiliary machines are operating. Various accessory switches 17 that are turned on are provided. Here, examples of the various accessory switches 17 include a power steering switch, an air conditioner switch, an electric load switch, a radiator fan switch, and a blower fan switch.
[0013]
Output signals of the air flow meter 10, the throttle sensor 12, the crank angle sensor 14, the accelerator pedal sensor 15, the water temperature sensor 16, and the various auxiliary switches 17 are respectively input to a control unit 18 having a built-in microcomputer. The control unit 18 calculates the engine speed Ne and determines the cylinder (determines which cylinder is at the top dead center) based on the signal from the crank angle sensor 14, and converts the signal from each sensor into a signal. Based on this, control of the ignition plug 4, the electromagnetically driven valves 5, 6, the fuel injection valve 8, and the electronically controlled throttle valve 11 is performed.
[0014]
The control unit 18 realizes main air amount calculation means, auxiliary air amount calculation means, response delay processing means, target air amount calculation means, and intake air amount control means by software.
[0015]
Next, the configuration of the electromagnetically driven valves 5 and 6 will be described with reference to FIG.
A plate-shaped movable element 22 is attached to a shaft portion 21 of a valve body 20 serving as an intake / exhaust valve. Springs 23 and 24 are disposed above and below the mover 22 such that the valve body 20 is elastically supported at the neutral position when not in operation. A valve closing electromagnet 25 and a valve opening electromagnet 26 are provided above and below the mover 22, respectively.
[0016]
Then, in order to open the valve body 20, after the energization of the valve-closing electromagnet 25 is stopped, the valve-opening electromagnet 26 is energized, and the lower surface of the movable element 22 is pressed against the urging force of the spring 24. The valve body 20 is attracted to the valve opening electromagnet 26 to separate the valve body 20 from the seat portion. On the other hand, in order to close the valve element 20, after the energization of the valve-opening electromagnet 26 is stopped, the valve closing electromagnet 25 is energized, and the upper surface of the movable element 22 is pressed against the urging force of the spring 23. The valve body 20 is seated on the seat portion by being attracted to the valve closing electromagnet 25. By repeating such operations periodically, a function as a valve train of the internal combustion engine is exhibited.
[0017]
Further, in this internal combustion engine, the opening and closing timing of the intake and exhaust valves, particularly the closing timing (IVC) of the intake valve, is controlled (early closing control) by the electromagnetically driven valves 5 and 6 for the purpose of improving fuel efficiency by reducing pump loss. Thus, the intake air amount is controlled to perform the substantially non-throttle operation. In this case, the electronically controlled throttle valve 11 is used for obtaining a target negative pressure in the intake passage under predetermined operating conditions.
[0018]
Specifically, the opening timing (IVO) of the intake valve is set to a substantially constant timing near the top dead center (TDC) of the exhaust gas, and the closing timing (IVC) of the intake valve is set to the target torque including the driver required torque and the engine required torque. Control is performed in consideration of the throttle opening TVO in accordance with the target air amount corresponding to the torque. On the other hand, the opening timing (EVO) and closing timing (EVC) of the exhaust valve are controlled so as to be the timing having the highest thermal efficiency.
[0019]
Next, control of the intake air amount of the variable valve type internal combustion engine will be described.
As shown in FIG. 4, the configuration of the control block includes a main air amount calculation unit 30, an auxiliary air amount calculation unit 31, a response delay processing unit 32, a target air amount calculation unit 33, and an IVC calculation unit 34. .
[0020]
The main air amount calculation unit 30 functions as main air amount calculation means, and calculates a main air amount corresponding to a torque required by the driver based on the accelerator opening APO and the engine rotation speed Ne.
[0021]
The auxiliary air amount calculation unit 31 functions as an auxiliary air amount calculation unit, and is equivalent to an idle required torque including a friction component based on the cooling water temperature Tw, an auxiliary load component based on the auxiliary load application state, an idle rotation speed control component, and the like. Is calculated. Here, the idle rotation speed control amount is an air amount that is increased or decreased by feedback control so that the actual engine rotation speed Ne becomes the target idle rotation speed under the idle operation condition.
[0022]
The response delay processing unit 32 functions as a response delay processing unit, and performs a response delay process on the main air amount calculated by the main air amount calculation unit 30 to prevent deterioration in engine operability. That is, in the electromagnetically driven valve 5, since the intake air amount increases / decreases with good responsiveness by controlling the opening / closing timing of the intake valve, it is the same as the conventional control of the intake air amount by the throttle valve from the viewpoint of preventing the rattle or the like. As described above, for example, a so-called smoothing process corresponding to the first-order intake manifold delay is performed by the following equation.
[0023]
Main air amount after correction = Qt ′ × (1−F) + Qt × F
Here, Qt is the main air amount calculated latest by the main air amount calculation unit 30, Qt 'is the current corrected main air amount, and F is a weighted average weighting constant (0 <F <1).
[0024]
By performing such a correction, the intake air amount is prevented from being excessively increased or decreased in response to a change in the accelerator opening APO, and, similarly to the conventional intake air amount control using a throttle valve, over the entire operation range. Smooth operation characteristics can be obtained.
[0025]
The target air amount calculation unit 33 calculates the target air amount by adding the auxiliary air amount calculated by the auxiliary air amount calculation unit 31 to the main air amount subjected to the response delay processing by the response delay processing unit 32. I do.
[0026]
The IVC calculator 34 calculates the closing timing of the intake valve based on the target air amount calculated by the target air amount calculator 33. Then, the electromagnetically driven valve 5 is controlled based on the calculation result. These series of processes correspond to intake air amount control means.
[0027]
FIG. 5 is a flowchart showing the control of the intake air amount. Since the detailed control contents are the same as those of the control block shown in FIG. 4, only the outline will be described here.
[0028]
The auxiliary air amount calculator 31 calculates the auxiliary air amount (S1), and the main air amount calculator 30 calculates the main air amount (S2). Then, the response delay processing unit 32 performs a response delay process on the main air amount (S3), and the auxiliary air amount is added to the main air amount subjected to the response delay process by the target air amount calculation unit 33. A target air amount is calculated (S4). Thereafter, the closing timing of the intake valve is calculated by the IVC calculation unit 34 (S5), and the electromagnetically driven valve 5 is controlled based on the calculation result (S6).
[0029]
With this configuration, the response delay processing is not performed on the auxiliary air amount whose response is not desired to be reduced, and the auxiliary air amount and the main air amount on which the response delay processing has been performed are based on the target air amount. Thus, the electromagnetically driven valve 5 is controlled. This effect will be described with reference to FIG. 6 as an example when a load of an auxiliary device such as an air conditioner is applied during the idling operation. When the response delay processing is performed on the entire target air amount, the intake air amount increases as indicated by the characteristic A, and the auxiliary air amount corresponding to the load of the auxiliary equipment cannot be rapidly increased. However, according to the present embodiment, since the intake air amount increases as indicated by the characteristic B, the auxiliary air amount corresponding to the auxiliary equipment load increases quickly, and the stability of the idling operation is maintained.
[0030]
The electronically controlled throttle valve 11 controls the opening degree based on the target air amount (main air amount + auxiliary air amount) and the target negative pressure so as to realize the target negative pressure. In this case, the target air amount is , The main air amount and the auxiliary air amount before the response delay processing are added. This is because control of the air amount by the throttle valve causes a response delay.
[0031]
The opening / closing timing of the intake valve is not limited to the electromagnetically driven valve 5 as in this embodiment, but may be any configuration that can be controlled by some means.
[Brief description of the drawings]
FIG. 1 is a functional block diagram showing a configuration of the present invention. FIG. 2 is a system diagram showing an embodiment of the present invention. FIG. 3 is a basic structural diagram of an electromagnetically driven valve. FIG. FIG. 6 is a flowchart showing a change in the amount of intake air when an auxiliary load is applied.
REFERENCE SIGNS LIST 1 internal combustion engine 5 electromagnetically driven valve 11 electrically controlled throttle valve 14 crank angle sensor 15 accelerator pedal sensor 16 water temperature sensor 17 various auxiliary switches 18 control unit 30 main air amount calculation unit 31 auxiliary air amount calculation unit 32 response delay processing unit 33 Target air amount calculation unit 34 IVC calculation unit

Claims (2)

吸気弁の開閉時期を任意に制御可能な可変動弁手段と、
ドライバ要求に基づいて主空気量を演算する主空気量演算手段と、
機関要求に基づいて補助空気量を演算する補助空気量演算手段と、
前記主空気量に対して応答性遅れ処理を行う応答性遅れ処理手段と、
前記応答性遅れ処理が行われた主空気量に前記補助空気量を加算した目標空気量を演算する目標空気量演算手段と、
前記目標空気量に基づいて前記可変動弁手段により吸気弁の開閉時期を制御して吸入空気量を制御する吸入空気量制御手段と、
を含んで構成されたことを特徴とする可変動弁式内燃機関の吸入空気量制御装置。
Variable valve operating means capable of arbitrarily controlling the opening and closing timing of the intake valve;
Main air amount calculating means for calculating a main air amount based on a driver request;
Auxiliary air amount calculating means for calculating an auxiliary air amount based on an engine request;
Responsiveness delay processing means for performing responsiveness delay processing on the main air amount ,
Target air amount calculating means for calculating a target air amount obtained by adding the auxiliary air amount to the main air amount subjected to the response delay processing ,
Intake air amount control means for controlling the opening and closing timing of the intake valve by the variable valve means based on the target air amount to control the intake air amount;
An intake air amount control device for a variable valve type internal combustion engine, comprising:
前記応答性遅れ処理手段は、前記主空気量に対して内燃機関の吸気マニホルド1次遅れ相当のなまし処理を行うことを特徴とする請求項1記載の可変動弁式内燃機関の吸入空気量制御装置。The response delay processing means, the intake air amount of the variable valve type internal combustion engine according to claim 1, wherein the performing the smoothing process of the intake manifold 1-order lag corresponds an internal combustion engine with respect to the main air amount Control device.
JP34537599A 1999-12-02 1999-12-03 Intake air amount control device for variable valve type internal combustion engine Expired - Fee Related JP3589131B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP34537599A JP3589131B2 (en) 1999-12-03 1999-12-03 Intake air amount control device for variable valve type internal combustion engine
EP00126306A EP1104845B1 (en) 1999-12-02 2000-12-01 Unthrottled intake air control for internal combustion engine
DE60033908T DE60033908T2 (en) 1999-12-02 2000-12-01 Unthrottled air intake control for internal combustion engine
US09/727,787 US6513490B2 (en) 1999-12-02 2000-12-04 Unthrottled intake air control with partial delay for requested engine response performance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34537599A JP3589131B2 (en) 1999-12-03 1999-12-03 Intake air amount control device for variable valve type internal combustion engine

Publications (2)

Publication Number Publication Date
JP2001159354A JP2001159354A (en) 2001-06-12
JP3589131B2 true JP3589131B2 (en) 2004-11-17

Family

ID=18376181

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34537599A Expired - Fee Related JP3589131B2 (en) 1999-12-02 1999-12-03 Intake air amount control device for variable valve type internal combustion engine

Country Status (1)

Country Link
JP (1) JP3589131B2 (en)

Also Published As

Publication number Publication date
JP2001159354A (en) 2001-06-12

Similar Documents

Publication Publication Date Title
US5765528A (en) Idle speed control system for automotive internal combustion engine
US6328007B1 (en) Internal cylinder intake-air quantity calculating apparatus and method for variable valve open/closure timing controlled engine
US6397814B1 (en) Apparatus and method for controlling intake air quantity for internal combustion engine
KR100284795B1 (en) Idle speed control device of the engine
JP2913980B2 (en) Engine idle control system with intake and exhaust valve stop mechanism
JP3637825B2 (en) Control device for variable valve engine
RU2628009C2 (en) Ice control device and control method
EP1126148B1 (en) Method for controlling catalytic converter heat losses during coasting shutoff
JP3627601B2 (en) Engine intake air amount control device
JP4055422B2 (en) Engine torque control device
JP3601386B2 (en) Engine intake air control system
JP3564520B2 (en) Engine idle speed control device
JP2001159386A (en) Ignition timing control device for variable valve system engine
JP3589131B2 (en) Intake air amount control device for variable valve type internal combustion engine
US20080071464A1 (en) Control apparatus and control method for internal combustion engine
JP3724312B2 (en) Control device for variable valve engine
JP3601254B2 (en) Engine idle speed control device
JP2001159329A (en) Control device for adjustable valve engine
JP2007263051A (en) Intake air volume control system of internal-combustion engine
JP3915367B2 (en) Control device for variable valve engine
JP2004100575A (en) Control unit of internal combustion engine
JP2002317681A (en) Control device of internal combustion engine
JP3812111B2 (en) Control device for internal combustion engine
JP3758448B2 (en) Control device for variable valve engine
JP3675265B2 (en) Intake air amount control device for variable valve type internal combustion engine

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040427

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040622

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040727

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040809

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080827

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080827

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090827

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090827

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100827

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110827

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120827

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120827

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130827

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees