JP3588128B2 - Coal / water mixture and its production method - Google Patents

Coal / water mixture and its production method Download PDF

Info

Publication number
JP3588128B2
JP3588128B2 JP25952792A JP25952792A JP3588128B2 JP 3588128 B2 JP3588128 B2 JP 3588128B2 JP 25952792 A JP25952792 A JP 25952792A JP 25952792 A JP25952792 A JP 25952792A JP 3588128 B2 JP3588128 B2 JP 3588128B2
Authority
JP
Japan
Prior art keywords
coal
particles
cwp
particle size
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP25952792A
Other languages
Japanese (ja)
Other versions
JPH06108069A (en
Inventor
博 武▲崎▼
義則 大谷
昭雄 植田
進 吉岡
公大 野中
謙示 東川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP25952792A priority Critical patent/JP3588128B2/en
Publication of JPH06108069A publication Critical patent/JPH06108069A/en
Application granted granted Critical
Publication of JP3588128B2 publication Critical patent/JP3588128B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Liquid Carbonaceous Fuels (AREA)

Description

【0001】
【産業上の利用分野】
本発明は石炭・水混合物に関し、特に加圧した流動層で石炭などの固体燃料を燃焼し、発生したスチームによって蒸気タービンを駆動し、さらに、高圧、高温の燃焼ガスでガスタービンを駆動して高効率で電力を得る加圧流動層ボイラ複合発電プラントの燃焼炉に供給する石炭と水の混合物とその製造方法に関する。
【0002】
【従来の技術】
加圧流動層ボイラは発生するスチームおよび高圧の燃焼ガスからエネルギーを得ることができるので高効率の発電が可能である。ただし、固体である石炭粒子を加圧状態の燃焼炉内に連続的に安定して供給することが課題の一つである。従来、流動層燃焼炉への石炭の供給方法として、石炭粒子と水を混合してペースト状の流体(以下、Coal−Water Paste;以下CWPと略す)とし該CWPをポンプで昇圧および圧送して噴霧ノズルから供給する湿式供給方式(例えば特開昭62−155433号)がある。該CWP供給方式は、乾式供給方式、例えばロックホッパ昇圧した後に空気輸送する方式に比べ、乾燥などの前処理が不要で低コストである。
【0003】
しかしながら、湿式供給方式では発電効率を高レベルに維持する上で石炭に添加する水の量をできるだけ少なくすることが必要である。しかも製造コスト低減のために石炭粒子を分散させる薬剤を添加しない。このため重油の代替燃料として開発された高濃度石炭・水スラリに比べてCWPは粘度が高く流動性が極めて乏しい。
【0004】
一般に、前記高濃度石炭・水スラリの低水分化には混合物を構成する石炭粒子の粒度構成が重要となることが知られている。例えば、特開昭56−501568号公報には低水分化に最適な粒度構成が開示されている。また、最適な粒度構成に調整する方法として例えば特開昭62−30190号公報記載の方法がある。しかしながら、高濃度石炭・水スラリの製造では石炭粒子を分散させる薬剤が添加され、石炭粒子が十分に分散した状態にある。
なお、高濃度石炭・水スラリは最大径が0.6mmで重量平均径が0.02mmであるのに対し、加圧流動層燃焼炉に用いられるCWPは最大径が6mmで重量平均径は1〜2mmと粒度が粗く構成され、石炭粒子の粒度範囲も高濃度石炭・水スラリとは大きく異なる。
【0005】
【発明が解決しようとする課題】
上述のように従来技術では薬剤が石炭表面を水に濡れ易い性質に変えるため、石炭粒子の凝集がほとんどない分散状態で粒度分布の調整がなされる。これに対して、加圧流動層燃焼炉に供給するCWPは薬剤を添加せず高粘度の状態で製造されるため、水に濡れにくい性質(疎水性)を有する石炭粒子は必然的に著しい凝集状態にある。このため、従来技術の高濃度石炭・水スラリに最適とされる粒度構成をCWPの製造に適用しても、石炭粒子同士が凝集して見かけ上、粗大粒子として挙動する。したがって、前記高濃度石炭・水スラリの粒度構成では水分量を最小にすることができなかった。本発明の目的は、低水分のCWPを低い撹拌動力で製造し燃焼炉に安定して供給できる低コストな石炭・水混合流動層燃焼炉用燃料とその製造方法を提供することにある。
【0006】
【課題を解決するための手段】
本発明者らは石炭・水混合流動層燃焼炉用燃料として用いるCWPの製造方法について鋭意研究を重ねた結果、次の構成を採用することで上記本発明の目的を達成できた。すなわち、粒径0.02mm以下の石炭粒子が全石炭量の10〜20重量%、粒径1mm以上が全石炭量の50〜70重量%、粒径0.02〜1mmが全石炭量の10〜40重量%の粒度構成となるように石炭と水を混合・撹拌して得られる石炭・水混合流動層燃焼炉用燃料である。ここで、石炭と水を混合した石炭・水混合物は、重量平均径が1.0〜2.0mmの範囲にある石炭の粗粒子群に、重量平均径が0.03〜0.07mmの範囲にある石炭の微粒子群を水とともに混合・撹拌して得ることができる。
【0007】
発明の石炭・水混合流動層燃焼炉用燃料は加圧流動層燃焼炉用の燃料等として用いることができるが、これに限定されることなく、一般の常圧流動層燃焼炉用燃料としても用いることができる。
【0008】
燃焼炉用の燃料としてCWPを使用するには、CWPが低水分量であることと同時に石炭粒子が沈降分離しにくいことが必要要件である。石炭粒子の粒度構成はこの2つの要件と密接に関係する。すなわち、CWPとして最適な粒度構成は、水分量を最小にし、沈降分離を起こしにくい粒度条件によって決めることができる。
【0009】
石炭の粒径0.02mm以下の粒子の重量割合が10〜20重量%の範囲では、CWPの水分量が最小となり、かつ分離もしにくい。石炭の粒径0.02mm以下の微粒子が10重量%より少ない場合、CWPは沈降分離を起こしやすく、安定にポンプ輸送ができない。また、0.02mm以下の微粒子が20重量%より多い場合、粘度が上昇して流動性を保つために水分量を多くする必要がある。
【0010】
また、粒径1mm以上の粒子の重量割合が50〜70重量%の範囲ではCWP中の水分量が最小となり、かつ分離もしにくい。粒径1mm以上の粗粒子が50重量%より少ない場合にはCWPは沈降分離を起こしやすく、粒径1mm以上の粗粒子が70重量%より多い場合には水分量が多くなる。
さらに、石炭粒子の重量平均径が小さい場合には、粘度を一定にするために水分量が増加する。低水分化に効果のある重量平均径は1〜2mmである。また、重量平均径が0.03mm以下となるように微粉砕する場合には粉砕動力が急激に増大し、重量平均径が0.07mm以上の粗めの微粒子群を使用するとCWPが分離しやすくなる。
【0011】
【作用】
一般に、固液混合物中の固体の濃度を増加させるには、すなわち液体量を減少させるには、固体粒子が最密充填するように粒度構成を調整する。前述のように、CWPの製造では石炭粒子を分散する薬剤の添加がなく、かつ高粘性のため粒子の凝集が著しい。そのため、粒子の最密充填に関与するのは単一粒子よりむしろ凝集した粒子群である。本発明によれば凝集した粒子群として最密充填が実現するので、低水分のCWPを製造することができる。
【0012】
また、通常の粉砕操作によって得られる粉砕物の粒度はほぼ一定の範囲に抑えることができるので、本発明のように石炭の粗粒子群と微粒子群を混合すれば所望の粒度構成の調整を精度よく行うことができる。
一方、CWPは水分の極めて少ない状態で混合・撹拌して製造されるので、微粒子は特に凝集しやすく、微粒子の塊状物が生成し、均質に混合するに必要な動力が大きくなる。そこで、微粒子群を予め水と混ぜると微粒子の塊状物ができず、低動力で均質なCWPが得られる。
【0013】
【実施例】
本発明の実施例を図面とともに説明する。
図1は石炭粒子の分散状態(図1(a))および凝集状態(図1(b))を示した図である。
CWPの製造では石炭粒子を分散する薬剤の添加がなく、かつ高粘性のため粒子の凝集が著しい。その結果、見かけ上、粒度構成が変わったように挙動するので、CWPに特有な粒度構成に調整する必要がある。
【0014】
図2は、CWP中の石炭粒度に対するふるい下重量割合を示したいわゆる粒度分布曲線図である。
A炭(恒湿水分=3%、燃料比=1.8)のCWPの粒度分布を、A炭を用いて製造した高濃度石炭・水スラリの粒度分布と比較して示した。A炭のCWPでは、粒径0.02mm以下が12重量%で、1mm以上は40重量%である。図に示されるように高濃度石炭・水スラリの重量平均径D50が0.015mmであるのに対し、CWPの場合1.5mmで粒度は非常に粗い。A炭CWPは、D50=1.5mmの粗粒子群とD50=0.03mmの微粒子群を重量比で8:2の割合で混合撹拌して製造した。
発電効率を高レベルに維持するためCWP中の水分量は22重量%とするので粘度は10Pa・sとなり従来の高濃度石炭・水スラリの10倍と非常に高い。
【0015】
加圧流動層燃焼炉用の燃料としてCWPを使用するには、CWPが低水分量であることと同時に石炭粒子が沈降分離しにくいことが必要要件である。石炭粒子の粒度構成はこの2つの要件と密接に関係する。すなわち、CWPとして最適な粒度構成は、水分量を最小にし、沈降分離を起こしにくい粒度条件によって決めることができる。
【0016】
図3はA炭、B炭(恒湿水分=7%、燃料比=1.0)、C炭(恒湿水分=1.5%、燃料比=2.8)の3炭種について粒径0.02mm以下の粒子の重量割合を変えた場合のCWP中の水分量および棒貫入深さの変化を示した図である。ただし、1mm以上の粒子の重量割合を一定とした。図中の曲線A、B、CはそれぞれA炭、B炭、C炭の水分量を示し、曲線D、E、FはそれぞれA炭、B炭、C炭の棒貫入深さを示す。
棒貫入深さが大きいことは沈降分離をしにくい性状であることを示し、棒貫入深さが小さいのはCWPから石炭が分離してハードパック量が増加していることを示す。
【0017】
これらの3炭種について検討すると、図3の横軸に示す粒径0.02mm以下の粒子の重量割合が10〜20重量%の範囲では、図3の曲線A、B、Cで示すように水分量が最小となり、かつ図3の曲線D、E、Fで示すように分離もしにくい範囲にあることが分かる。粒径0.02mm以下の微粒子が10重量%より少ない場合、CWPは沈降分離を起こしやすく、安定にポンプ輸送ができない。また、0.02mm以下の微粒子が20重量%より多い場合、粘度が上昇して流動性を保つために水分量が多くなる。
【0018】
図4は上記の3炭種について、粒径0.02mm以下の粒子の重量割合を一定にした条件で粒径1mm以上の粒子の重量割合を変化させた場合のCWP中の水分量および棒貫入深さの変化を示した図である。図中の曲線G、H、IはそれぞれA炭、B炭、C炭の水分量、曲線J、K、LはA炭、B炭、C炭の棒貫入深さを示す。
図4の横軸に示す粒径1mm以上の粒子の重量割合が50〜70重量%の範囲では図4の曲線G、H、Iで示すように水分量が最小となり、かつ図4の曲線J、K、Lで示すように分離もしにくい範囲にあることが分かる。粒径1mm以上の粗粒子が50重量%より少ない場合にはCWPは沈降分離を起こしやすく、粒径1mm以上の粗粒子が70重量%より多い場合には水分量が多くなる。
【0019】
図5は、粘度10Pa・sで一定とした条件でA炭CWPの水分と重量平均径D50の関係を示した図である。重量平均径D50が小さい場合には、粘度を一定にするために水分量が増加する。できる限り低水分化するためのD50の条件はD50=1〜2mmであることが分かる。
粘度が同じ条件では粒度が細かいほど水分量が多くなることは容易に分かる。しかし、必要以上に粒度を粗くしても低水分化の効果はなく、粗大粒子が多くなりすぎて配管内での閉塞などの問題を生ずる。重量平均径D50が1.0〜2.0mmの範囲にある場合、上記の要件が満たされる。
【0020】
図6にA炭について粗粒子群に混ぜる微粒子群の重量平均径D50を変えた場合の棒貫入深さと粉砕動力の変化を示した図である。図中の曲線Mは棒貫入深さとの関係を、曲線Nは粉砕動力との関係を示したものである。
図6の横軸で示したD50が0.03mm以下となるように微粉砕する場合には曲線Nで示した粉砕動力が急激に増大する。また、重量平均径D50が0.07mm以上の粗めの微粒子群を使用するとCWPが分離しやすくなる。
【0021】
次に本発明の粒度構成を調整する具体的な方法の一実施例を詳細に説明する。
図7は本実施例を示す図であり、加圧流動層燃焼炉101は圧力容器104内に収納されており、その底部に空気分散板105が設けられ、その上に流動媒体粒子102が充填されている。加圧空気106は圧力容器104内に供給された後燃焼用空気107として、空気分散板105を通って加圧流動層燃焼炉101内に供給され流動媒体粒子102を流動化して流動層109を形成する。加圧流動層燃焼炉101はCWP供給導管16を通してポンプ15からCWP14が圧送され、CWP噴霧ノズル17から流動層109内に供給されて燃焼される。燃焼ガスは炉上部から排出されサイクロン103でダストを除去した後、導管108を通ってガスタービン(図示を省略)に導入される。
【0022】
一方、バンカ1内の原炭は粉砕機2に供給され、粉砕機2で所定の粒度まで粉砕された後、粗大粒子はふるい3で除去される。粗大粒子除去後の粗粒子群は分配器5に供給され、該粗粒子群の一部が導管6を経てCWP調整タンク9へ連続的に投入され、残りが導管7から粉砕機8へ供給され、所定の粒度まで粉砕され微粒子群となる。CWP調整タンク9内には導管6からの粗粒子群、粉砕機8からの微粒子群の他に脱硫剤として石灰石12と、CWPを製造するに必要な水13が添加され、電動機11によって回転される撹拌機翼10によって混合、撹拌され流動性のあるCWP14となる。
【0023】
粉砕機2は最大径が約50mmの原炭を粒径6mm以下の粒度まで粉砕できるように条件設定される。原炭の粉砕は、所定の粒度まで粉砕できる粉砕機であればどのような種類のものでも良い。ふるい3の目開きについては、CWPの石炭粒子の最大径が6mmとなるように決定した。分配器5は粉砕炭を所定の割合で分配する機能を有するもので、石炭性状に応じて設定されている。
上記の装置において、脱硫剤としては最大径3mm程度のドロマイトあるいは石灰石粒子が用いられる。CWP調製タンク9および撹拌機翼10については模式的に示したもので本発明を限定したものではない。
【0024】
一般の粉砕機で原炭を粉砕する場合、粉砕物の粒度構成は原炭性状、粉砕機種および粉砕の諸条件によって種々変化する。しかしながら、原炭の一段粉砕では微粒分が不足し、上記の最適粒度構成が得られない。そこで微粒子群を別系統にて製造し粗粒子群と混ぜる方法により粒度調整が可能となる。粗粒子群は粒度構成の基軸となるため、低水分化、安定輸送を達成できる重量平均径D50が1.0〜2.0mmの範囲が望ましい。
一方、微粒子群は必要以上に細かく粉砕すると多大な粉砕動力が必要となる。微粒子群の重量平均径D50が0.03〜0.07mmの範囲であれば粉砕動力を低く抑えられ、かつ粗粒子群と混合することによって最適な粒度構成を得ることができる。
【0025】
微粒子群を混合する際、そのまま水に混ぜると微粒子同士が凝集し、均質に混合するに必要な撹拌動力が大きくなる。図8はこの点を考慮したCWP製造のためのフローの一例である。
バンカ1内の原炭は粉砕機2に供給され、粉砕機2で所定の粒度まで粉砕された後、粗大粒子はふるい3で除去される。粗大粒子除去後の粗粒子群は分配器5に供給され、該粗粒子群の一部が導管6を経てCWP調製タンク9へ連続的に投入される。また、粗粒子群の残りが導管7から粉砕機8へ供給され、所定の粒度まで粉砕され微粒子群となる。該微粒子群をCWP調製タンク23内に連続的に投入し、電動機18によって回転する撹拌翼19により水20と混合・撹拌され微粒スラリを形成させる。CWP調製タンク9内へ供給する微粒子がスラリ状であるのでポンプ21により安定に定量供給できる。
予め水に馴染ませると微粒子同士の凝集は緩和されるので微粒子群の混合比率を低減できる特徴がある。
【0026】
CWP調整タンク9内では粗粒子群と微粒子群の他に脱硫剤として石灰石12と、水13が添加され、電動機11によって回転される撹拌機翼10によって混合、撹拌され流動性のあるCWP14が製造され、図7のフローと同様に加圧流動層燃焼炉101に供給される。
【0027】
【発明の効果】
以上説明したごとく本発明によればCWPをより少ない水分量で安定して供給でき、製造動力がかからないでCWPが製造できる。
【図面の簡単な説明】
【図1】本発明の実施例の石炭粒子の分散、凝集状態を示す図である。
【図2】本発明の実施例のCWP中の石炭粒径に対するふるい下重量割合を示す図である。
【図3】本発明の実施例の0.02mm以下の粒子の重量割合に対するCWP中の水分量と棒貫入深さを示す図である。
【図4】本発明の実施例の1mm以上の粒子の重量割合に対するCWP中の水分量と棒貫入深さを示す図である。
【図5】本発明の実施例のCWPの水分と重量平均径D50の関係を示した図である。
【図6】本発明の実施例の粗粒子群に混ぜる微粒子群の重量平均径D50を変えた場合の棒貫入深さと粉砕動力の変化を示した図である。
【図7】本発明の実施例を示す系統図である。
【図8】本発明の他の実施例を示す系統図である。
【符号の説明】
1…バンカ、2、8…粉砕機、3…ふるい、9…CWP調整タンク、
101…加圧流動層燃焼炉、104…圧力容器
[0001]
[Industrial applications]
The present invention relates to a coal / water mixture, in particular, burning a solid fuel such as coal in a pressurized fluidized bed, driving a steam turbine with generated steam, and further driving a gas turbine with high-pressure, high-temperature combustion gas. The present invention relates to a mixture of coal and water supplied to a combustion furnace of a pressurized fluidized-bed boiler combined cycle power plant that obtains electric power with high efficiency and a method for producing the same.
[0002]
[Prior art]
The pressurized fluidized-bed boiler can obtain energy from generated steam and high-pressure combustion gas, so that high-efficiency power generation is possible. However, one of the problems is to continuously and stably supply solid coal particles into a pressurized combustion furnace. BACKGROUND ART Conventionally, as a method of supplying coal to a fluidized bed combustion furnace, coal particles and water are mixed to form a paste-like fluid (hereinafter referred to as Coal-Water Paste; hereinafter abbreviated as CWP), and the CWP is pressurized and pumped by a pump. There is a wet supply method (for example, Japanese Patent Application Laid-Open No. 62-155433) in which the liquid is supplied from a spray nozzle. The CWP supply method requires no pretreatment such as drying and is lower in cost than a dry supply method, for example, a method in which the pressure is increased by a lock hopper and then pneumatically conveyed.
[0003]
However, in the wet feed system, it is necessary to minimize the amount of water added to coal in order to maintain the power generation efficiency at a high level. Moreover, no agent for dispersing the coal particles is added to reduce the production cost. For this reason, CWP has a higher viscosity and extremely poor fluidity than high-concentration coal / water slurry developed as an alternative fuel to heavy oil.
[0004]
In general, it is known that the particle size of coal particles constituting a mixture is important for reducing the water content of the high-concentration coal / water slurry. For example, Japanese Patent Application Laid-Open No. 56-501568 discloses a particle size structure that is optimal for reducing water content. As a method for adjusting the particle size to the optimum one, for example, there is a method described in JP-A-62-30190. However, in the production of high-concentration coal / water slurry, an agent for dispersing coal particles is added, and the coal particles are in a sufficiently dispersed state.
The high-concentration coal / water slurry has a maximum diameter of 0.6 mm and a weight average diameter of 0.02 mm, whereas the CWP used in the pressurized fluidized bed combustion furnace has a maximum diameter of 6 mm and a weight average diameter of 1 mm. The particle size range is roughly 2 mm, and the particle size range of the coal particles is significantly different from that of the high-concentration coal / water slurry.
[0005]
[Problems to be solved by the invention]
As described above, in the prior art, since the chemical changes the surface of the coal into a property that is easily wetted by water, the particle size distribution is adjusted in a dispersed state in which coal particles hardly aggregate. On the other hand, CWP supplied to the pressurized fluidized bed combustion furnace is manufactured in a state of high viscosity without adding a chemical, so that coal particles having a property of being hardly wetted by water (hydrophobicity) inevitably have a significant agglomeration. In state. For this reason, even if the particle size configuration optimized for the conventional high-concentration coal / water slurry is applied to the production of CWP, the coal particles aggregate and behave as apparently coarse particles. Therefore, the water content could not be minimized in the high-concentration coal / water slurry particle size configuration. An object of the present invention is to provide a low-cost coal / water mixed fluidized bed combustion furnace fuel capable of producing low-moisture CWP with low stirring power and stably supplying it to the combustion furnace, and a method for producing the same.
[0006]
[Means for Solving the Problems]
The present inventors have conducted intensive studies on a method for producing CWP used as a fuel for a coal / water mixed fluidized bed combustion furnace, and as a result, the above object of the present invention has been achieved by employing the following configuration. That is, coal particles having a particle size of 0.02 mm or less are 10 to 20% by weight of the total coal amount, particle sizes of 1 mm or more are 50 to 70% by weight of the total coal amount, and particle sizes 0.02 to 1 mm are 10 to 20% by weight of the total coal amount. This is a coal / water mixed fluidized bed combustion furnace fuel obtained by mixing and stirring coal and water so as to have a particle size configuration of の 40% by weight. Here, the coal / water mixture obtained by mixing coal and water has a weight average diameter in a range of 0.03 to 0.07 mm in a coarse particle group of coal having a weight average diameter in a range of 1.0 to 2.0 mm. Can be obtained by mixing and stirring the fine particles of coal in water with water.
[0007]
The fuel for a coal-water mixed fluidized-bed combustion furnace of the present invention can be used as a fuel for a pressurized fluidized-bed combustion furnace or the like, but is not limited thereto. Can also be used.
[0008]
In order to use CWP as a fuel for a combustion furnace, it is a necessary requirement that the CWP has a low water content and that coal particles are hardly settled and separated. The size composition of the coal particles is closely related to these two requirements. In other words, the optimum particle size composition for CWP can be determined by the particle size condition that minimizes the amount of water and hardly causes sedimentation and separation.
[0009]
When the weight ratio of the particles having a particle size of 0.02 mm or less of the coal is in the range of 10 to 20% by weight, the water content of CWP is minimized, and separation is difficult. When the amount of the fine particles having a particle size of 0.02 mm or less is less than 10% by weight, CWP tends to cause sedimentation and separation, and cannot be pumped stably. When the amount of the fine particles having a particle size of 0.02 mm or less is more than 20% by weight, it is necessary to increase the water content in order to increase the viscosity and maintain the fluidity.
[0010]
Further, when the weight ratio of the particles having a particle diameter of 1 mm or more is in the range of 50 to 70% by weight, the amount of water in the CWP is minimized, and separation is difficult. When the amount of coarse particles having a particle diameter of 1 mm or more is less than 50% by weight, CWP tends to cause sedimentation and separation, and when the amount of coarse particles having a particle diameter of 1 mm or more is more than 70% by weight, the water content increases.
Furthermore, when the weight average diameter of the coal particles is small, the amount of water increases to keep the viscosity constant. The weight average diameter effective for lowering the water content is 1 to 2 mm. In addition, when finely pulverizing so that the weight average diameter is 0.03 mm or less, the pulverizing power increases sharply, and when coarse particles having a weight average diameter of 0.07 mm or more are used, CWP is easily separated. Become.
[0011]
[Action]
Generally, to increase the concentration of solids in a solid-liquid mixture, ie, reduce the amount of liquid, the particle size configuration is adjusted so that the solid particles are closest packed. As described above, in the production of CWP, there is no addition of an agent for dispersing coal particles, and the aggregation of the particles is remarkable due to high viscosity. Therefore, it is the aggregated particles rather than the single particles that are involved in close packing of the particles. According to the present invention, close packing is realized as an aggregated particle group, so that CWP with low moisture content can be produced.
[0012]
Further, since the particle size of the pulverized product obtained by the ordinary pulverization operation can be suppressed to a substantially constant range, if the coarse particles and the fine particles of coal are mixed as in the present invention, the adjustment of the desired particle size configuration can be performed with high accuracy. Can do well.
On the other hand, since CWP is produced by mixing and stirring in a state of extremely low water content, the fine particles are particularly easily aggregated, a lump of fine particles is generated, and the power required for homogeneous mixing is increased. Therefore, if the fine particle group is mixed with water in advance, a lump of fine particles cannot be formed, and a low power and uniform CWP can be obtained.
[0013]
【Example】
An embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is a diagram showing a dispersed state (FIG. 1A) and an agglomerated state (FIG. 1B) of coal particles.
In the production of CWP, there is no addition of an agent for dispersing coal particles, and the particles are remarkably aggregated due to high viscosity. As a result, apparently, it behaves as if the granularity configuration has changed, so it is necessary to adjust the granularity configuration to be specific to CWP.
[0014]
FIG. 2 is a so-called particle size distribution curve diagram showing the weight ratio under the sieve to the particle size of coal in CWP.
The particle size distribution of CWP of coal A (constant moisture = 3%, fuel ratio = 1.8) is shown in comparison with the particle size distribution of high concentration coal / water slurry manufactured using coal A. In the case of CWP of coal A, the particle size of 0.02 mm or less is 12% by weight, and the particle size of 1 mm or more is 40% by weight. Weight average diameter D 50 of the high-concentration coal-water slurry while a 0.015mm As shown, the particle size at 1.5mm when the CWP is very coarse. Charcoal A CWP was produced by mixing and stirring coarse particles of D 50 = 1.5 mm and fine particles of D 50 = 0.03 mm at a weight ratio of 8: 2.
In order to maintain the power generation efficiency at a high level, the water content in CWP is set to 22% by weight, so that the viscosity is 10 Pa · s, which is very high, 10 times that of the conventional high concentration coal / water slurry.
[0015]
In order to use CWP as a fuel for a pressurized fluidized bed combustion furnace, it is a necessary requirement that the CWP has a low water content and that coal particles hardly settle and separate. The size composition of the coal particles is closely related to these two requirements. In other words, the optimum particle size composition for CWP can be determined by the particle size condition that minimizes the amount of water and hardly causes sedimentation and separation.
[0016]
Fig. 3 shows the particle size of three types of coal A, coal B (constant moisture = 7%, fuel ratio = 1.0) and coal C (constant moisture = 1.5%, fuel ratio = 2.8). FIG. 4 is a diagram showing changes in the amount of water in CWP and the rod penetration depth when the weight ratio of particles of 0.02 mm or less is changed. However, the weight ratio of particles of 1 mm or more was fixed. Curves A, B, and C in the figure show the water content of coals A, B, and C, respectively, and curves D, E, and F show the rod penetration depths of coals A, B, and C, respectively.
A large rod penetration depth indicates that the sedimentation and separation are difficult, and a small rod penetration depth indicates that the coal is separated from the CWP and the amount of hard pack is increased.
[0017]
Considering these three types of coal, when the weight ratio of the particles having a particle size of 0.02 mm or less shown in the horizontal axis of FIG. 3 is in the range of 10 to 20% by weight, as shown by the curves A, B, and C in FIG. It can be seen that the water content is at a minimum and is in a range where separation is difficult as shown by curves D, E and F in FIG. When the amount of the fine particles having a particle diameter of 0.02 mm or less is less than 10% by weight, CWP is liable to cause sedimentation and separation and cannot be pumped stably. If the content of fine particles of 0.02 mm or less is more than 20% by weight, the viscosity increases and the amount of water increases to maintain fluidity.
[0018]
FIG. 4 shows the water content and the rod penetration in the CWP when the weight ratio of the particles having a particle size of 1 mm or more was changed under the condition that the weight ratio of the particles having a particle size of 0.02 mm or less was kept constant for the above three types of coal. It is a figure showing change of depth. Curves G, H, and I in the figure show the water content of coals A, B, and C, respectively, and curves J, K, and L show the rod penetration depths of coals A, B, and C, respectively.
When the weight ratio of the particles having a particle diameter of 1 mm or more shown in the horizontal axis of FIG. 4 is in the range of 50 to 70% by weight, the water content becomes minimum as shown by the curves G, H, and I in FIG. , K, and L, it can be seen that they are in a range where separation is difficult. When the amount of coarse particles having a particle diameter of 1 mm or more is less than 50% by weight, CWP tends to cause sedimentation and separation, and when the amount of coarse particles having a particle diameter of 1 mm or more is more than 70% by weight, the water content increases.
[0019]
Figure 5 is a diagram showing the relationship between the moisture and the weight average diameter D 50 of the A charcoal CWP under the conditions as constant viscosity 10 Pa · s. When the weight average diameter D 50 is small, the water content is increased to a constant viscosity. Conditions of D 50 to low moisture as possible is found to be D 50 = 1 to 2 mm.
It is easily understood that the smaller the particle size, the higher the water content under the same viscosity condition. However, if the particle size is made larger than necessary, the effect of lowering the water content is not obtained, and the number of coarse particles becomes too large, causing problems such as blockage in the piping. If the weight average diameter D 50 is in the range of 1.0 to 2.0 mm, the above requirements are met.
[0020]
It is a view showing a change in rod penetration depth and grinding power consumption when changing a weight average diameter D 50 of the particles group mixing the coarse particle group for A charcoal in FIG. The curve M in the figure shows the relationship with the rod penetration depth, and the curve N shows the relationship with the grinding power.
Grinding power indicated by curve N rapidly increases when the D 50 shown in the horizontal axis in FIG. 6 pulverized so that less 0.03 mm. Further, CWP is easily separated when the weight average diameter D 50 using the group of fine particles of Me or coarse 0.07 mm.
[0021]
Next, one embodiment of a specific method for adjusting the particle size configuration of the present invention will be described in detail.
FIG. 7 is a view showing the present embodiment, in which a pressurized fluidized bed combustion furnace 101 is housed in a pressure vessel 104, an air dispersion plate 105 is provided at the bottom, and a fluid medium particle 102 is filled thereon. Have been. The pressurized air 106 is supplied into the pressure vessel 104 and then supplied as combustion air 107 through the air dispersion plate 105 into the pressurized fluidized bed combustion furnace 101 to fluidize the fluidized medium particles 102 to form the fluidized bed 109. Form. In the pressurized fluidized bed combustion furnace 101, CWP 14 is pumped from a pump 15 through a CWP supply conduit 16 and supplied from a CWP spray nozzle 17 into a fluidized bed 109 for combustion. After the combustion gas is exhausted from the upper part of the furnace and dust is removed by the cyclone 103, the combustion gas is introduced into a gas turbine (not shown) through a conduit 108.
[0022]
On the other hand, the raw coal in the bunker 1 is supplied to the crusher 2, crushed to a predetermined particle size by the crusher 2, and then coarse particles are removed by the sieve 3. The coarse particles after the removal of the coarse particles are supplied to the distributor 5, a part of the coarse particles is continuously supplied to the CWP adjusting tank 9 via the conduit 6, and the rest is supplied to the crusher 8 from the conduit 7. Are crushed to a predetermined particle size to form fine particles. In the CWP adjusting tank 9, limestone 12 as a desulfurizing agent and water 13 necessary for producing CWP are added in addition to the coarse particles from the conduit 6 and the fine particles from the pulverizer 8, and are rotated by the electric motor 11. The CWP 14 is mixed and stirred by the stirrer blade 10 and has fluidity.
[0023]
The conditions of the pulverizer 2 are set so that raw coal having a maximum diameter of about 50 mm can be pulverized to a particle size of 6 mm or less. The pulverization of raw coal may be of any type as long as it can be pulverized to a predetermined particle size. The size of the sieve 3 was determined so that the maximum diameter of the coal particles of CWP was 6 mm. The distributor 5 has a function of distributing the pulverized coal at a predetermined ratio, and is set according to the properties of the coal.
In the above apparatus, dolomite or limestone particles having a maximum diameter of about 3 mm are used as the desulfurizing agent. The CWP preparation tank 9 and the stirrer blade 10 are schematically shown and do not limit the present invention.
[0024]
When the raw coal is pulverized by a general pulverizer, the particle size composition of the pulverized material varies depending on the properties of the raw coal, the type of pulverization, and various conditions of pulverization. However, in the single-stage pulverization of raw coal, fine particles are insufficient, and the above-mentioned optimum particle size configuration cannot be obtained. Therefore, the particle size can be adjusted by a method in which the fine particles are manufactured in a separate system and mixed with the coarse particles. Coarse particle group to become a cornerstone of particle size configuration, low moisture reduction, weight average diameter D 50 of the stable transportation can be achieved in the range of 1.0~2.0mm is desirable.
On the other hand, when the fine particle group is pulverized more than necessary, a great amount of pulverizing power is required. Weight average diameter D 50 of the particles group is kept low grinding power be in the range of 0.03~0.07Mm, and it is possible to obtain an optimum particle size configuration by mixing coarse particles.
[0025]
At the time of mixing the fine particles, if the fine particles are directly mixed with water, the fine particles aggregate, and the stirring power required for homogeneous mixing is increased. FIG. 8 is an example of a flow for CWP production in consideration of this point.
The raw coal in the bunker 1 is supplied to a crusher 2, crushed to a predetermined particle size by the crusher 2, and coarse particles are removed by a sieve 3. The coarse particles after the removal of the coarse particles are supplied to the distributor 5, and a part of the coarse particles is continuously charged into the CWP preparation tank 9 via the conduit 6. Further, the remainder of the coarse particles is supplied from the conduit 7 to the crusher 8 and crushed to a predetermined particle size to form fine particles. The fine particles are continuously charged into the CWP preparation tank 23 and mixed and stirred with water 20 by a stirring blade 19 rotated by an electric motor 18 to form a fine slurry. Since the fine particles to be supplied into the CWP preparation tank 9 are in the form of a slurry, they can be stably supplied at a constant rate by the pump 21.
If the particles are preliminarily adjusted to water, the aggregation of the fine particles is reduced, so that the mixing ratio of the fine particles can be reduced.
[0026]
In the CWP adjustment tank 9, limestone 12 and water 13 are added as a desulfurizing agent in addition to the coarse particles and the fine particles, and are mixed and stirred by the stirrer blades 10 rotated by the electric motor 11 to produce a fluid CWP 14. Then, it is supplied to the pressurized fluidized bed combustion furnace 101 similarly to the flow of FIG.
[0027]
【The invention's effect】
As described above, according to the present invention, CWP can be stably supplied with a smaller amount of water, and CWP can be produced without requiring any production power.
[Brief description of the drawings]
FIG. 1 is a diagram showing a state of dispersion and agglomeration of coal particles according to an example of the present invention.
FIG. 2 is a diagram showing a weight ratio under a sieve with respect to a particle size of coal in CWP of an example of the present invention.
FIG. 3 is a graph showing the amount of water in CWP and the rod penetration depth with respect to the weight ratio of particles of 0.02 mm or less in Examples of the present invention.
FIG. 4 is a diagram showing the amount of water in CWP and the rod penetration depth with respect to the weight ratio of particles of 1 mm or more in Examples of the present invention.
5 is a diagram showing the relationship between the moisture and the weight average diameter D 50 of the CWP embodiment of the present invention.
6 is a view showing a change in rod penetration depth and grinding power consumption when changing a weight average diameter D 50 of the particles group mixing the coarse particles of the embodiments of the present invention.
FIG. 7 is a system diagram showing an embodiment of the present invention.
FIG. 8 is a system diagram showing another embodiment of the present invention.
[Explanation of symbols]
1 ... bunker, 2, 8 ... crusher, 3 ... sieve, 9 ... CWP adjustment tank,
101: pressurized fluidized bed combustion furnace; 104: pressure vessel

Claims (2)

粒径0.02mm以下の石炭粒子が全石炭量の10〜20重量%、粒径1mm以上が全石炭量の50〜70重量%、粒径0.02〜1mmが全石炭量の10〜40重量%の粒度構成となるように石炭と水を混合・撹拌して得られる石炭・水混合流動層燃焼炉用燃料。Coal particles having a particle size of 0.02 mm or less are 10 to 20% by weight of the total coal amount, particle sizes of 1 mm or more are 50 to 70% by weight of the total coal amount, and particle sizes 0.02 to 1 mm are 10 to 40% of the total coal amount. Fuel for a coal-water mixed fluidized bed combustion furnace obtained by mixing and stirring coal and water so as to have a particle size composition of weight%. 重量平均径が1.0〜2.0mmの範囲にある石炭の粗粒子群に、重量平均径が0.03〜0.07mmの範囲にある石炭の微粒子群水を混合・撹拌して得られる請求項1記載の石炭・水混合流動層燃焼炉用燃料。Coal fine particles having a weight average diameter in the range of 0.03 to 0.07 mm and water are mixed and stirred with coarse coal particles having a weight average diameter in the range of 1.0 to 2.0 mm. The fuel for a coal-water mixed fluidized bed combustion furnace according to claim 1, which is used.
JP25952792A 1992-09-29 1992-09-29 Coal / water mixture and its production method Expired - Lifetime JP3588128B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25952792A JP3588128B2 (en) 1992-09-29 1992-09-29 Coal / water mixture and its production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25952792A JP3588128B2 (en) 1992-09-29 1992-09-29 Coal / water mixture and its production method

Publications (2)

Publication Number Publication Date
JPH06108069A JPH06108069A (en) 1994-04-19
JP3588128B2 true JP3588128B2 (en) 2004-11-10

Family

ID=17335348

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25952792A Expired - Lifetime JP3588128B2 (en) 1992-09-29 1992-09-29 Coal / water mixture and its production method

Country Status (1)

Country Link
JP (1) JP3588128B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2611921B2 (en) * 1993-06-30 1997-05-21 川崎重工業株式会社 Method and apparatus for producing high-concentration coal / water paste
JPH1135950A (en) 1996-12-26 1999-02-09 Mitsubishi Heavy Ind Ltd Process for generation of electric power and power generation apparatus
CN114350420B (en) * 2022-01-17 2023-04-28 神华准格尔能源有限责任公司 Preparation method and application of low-cost coal slime-based coal water slurry

Also Published As

Publication number Publication date
JPH06108069A (en) 1994-04-19

Similar Documents

Publication Publication Date Title
FI76590B (en) FOERFARANDE FOER FRAMSTAELLNING AV SLAM AV ETT MALT KOLHALTIGT MATERIAL.
US4502868A (en) Coal-water slurries of low viscosity and method for their preparation
GB2029265A (en) Process for producing a suspension of coal in water
JP3588128B2 (en) Coal / water mixture and its production method
JPH0553198B2 (en)
CA1255905A (en) Process for producing a high concentration coal-water slurry
JPH0315957B2 (en)
AU656184B2 (en) Production method of high-concentration coal-water slurry
JP2625240B2 (en) Coal / water slurry production method
JP2622302B2 (en) Coal / water slurry production method
EP0157307B1 (en) Apparatus for preparing coal slurry of high concentration
JPS61271395A (en) Composite fuel
JPH0315958B2 (en)
JPS59149989A (en) Preparation of coal/water slurry
JPS6055090A (en) Equipment for producing coal/water slurry
JPS6317990A (en) Wet production of coal-water slurry in high concentration
JPH0254397B2 (en)
JPH0329116B2 (en)
JPS63296850A (en) Method for grinding high concentration coal aqueous slurry
JPH06108067A (en) Process and apparatus for producing coal/water paste
JPH0323116B2 (en)
JP2003049181A (en) Device for producing coal/water paste
JPS6157689A (en) Production of coal-water slurry
JPH0892576A (en) Production of cwp and apparatus therefor
JPS6198795A (en) Method for controlling size of coal granule

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040511

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040707

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040810

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040812

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070820

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080820

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090820

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100820

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100820

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110820

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110820

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110820

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110820

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120820

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120820

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120820

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120820

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130820

Year of fee payment: 9

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130820

Year of fee payment: 9