JPS59149989A - Preparation of coal/water slurry - Google Patents

Preparation of coal/water slurry

Info

Publication number
JPS59149989A
JPS59149989A JP2284783A JP2284783A JPS59149989A JP S59149989 A JPS59149989 A JP S59149989A JP 2284783 A JP2284783 A JP 2284783A JP 2284783 A JP2284783 A JP 2284783A JP S59149989 A JPS59149989 A JP S59149989A
Authority
JP
Japan
Prior art keywords
coal
particle size
water
slurry
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2284783A
Other languages
Japanese (ja)
Inventor
Hiroshi Miyadera
博 宮寺
Sadao Takahashi
高橋 貞夫
Shinji Tanaka
真二 田中
Tomohiko Miyamoto
知彦 宮本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2284783A priority Critical patent/JPS59149989A/en
Publication of JPS59149989A publication Critical patent/JPS59149989A/en
Pending legal-status Critical Current

Links

Landscapes

  • Liquid Carbonaceous Fuels (AREA)

Abstract

PURPOSE:To prepare coal/water slurry having high concn. of coal of a particle size suitable for fluid gasification and capable of being stably supplied without sedimentation, by adding and mixing water compounded with a thickening agent and a surfactant, with coal adjusted in particle size. CONSTITUTION:Coal 15 adjusted in particle size and consisting of 60-75wt% coarse coal of a particle size of about 0.25-1mm. and 40-25wt% fine coal of a particle size <= about 0.25mm., is formed by crushing and classifying coal 11 by using a rough crusher 101 and fine crusher 102. Water 20, a thickening agent 21 such as polyethylene oxide and a surfactant 22 such as sodium alkylbenzene- sulfonate are fed into a mixing tank 201 and mixed by agitation. The obtd. liquid medium 25 is fed along with said coal 15 adjusted in particle size to a mixing tank 202 and mixed/agitated to prepare coal/water slurry (marks 24 and 31 each represent a pump).

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、特に流動層石炭ガス化装置に用いるに好適な
石炭・水スラリーの製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a method for producing a coal-water slurry particularly suitable for use in a fluidized bed coal gasifier.

〔従来技術〕[Prior art]

石炭は固体で灰分を含有するため、ガス化、液化等によ
シ流体エネルギーへの変換技術が要請され、種々のプロ
セスが提案、開発されつつある。
Since coal is solid and contains ash, there is a need for technology to convert it into fluid energy through gasification, liquefaction, etc., and various processes are being proposed and developed.

特に、メタンに富むガスへの変換は天然ガス代替として
重要な技術である。この場合のガス化炉型式としては、
固定層、流動層、噴流層に大別されそれぞれ塊炭(敷部
以上)、粉炭(敷部以下)、微粉炭(0,1m以下)の
石炭を酸素含有ガスにより部分燃焼するものである。こ
のうち固定層は炉内温度が不均一で、特に石炭挿入部は
温度が低いため、タールの副生が多く、また噴流層はバ
ーナノズルによシ石炭とガス化剤を供給して1400C
以上の高温でガス化するため、COやH2の製造には適
しているが、メターンはほとんど生成せず高カロリーな
燃料ガスを得るには適さない。これに対し流動層は層内
伝熱圧すぐれているため、メタンを発生しやすい750
〜900Cの温度範囲に維持するのが容易であり、また
加圧下で操業することによシ、大容量化も可能である。
In particular, conversion to methane-rich gas is an important technology as a substitute for natural gas. In this case, the gasifier type is:
It is roughly divided into fixed bed, fluidized bed, and spouted bed, and each type of coal is lumped coal (above the bed), pulverized coal (below the bed), and pulverized coal (below 0.1 m) is partially combusted using oxygen-containing gas. Among these, in the fixed bed, the temperature inside the furnace is uneven, and the temperature in the coal insertion part is particularly low, so there is a lot of tar by-product, and in the spouted bed, coal and gasification agent are supplied to the burner nozzle.
Since it is gasified at such high temperatures, it is suitable for producing CO and H2, but it hardly produces methane and is not suitable for obtaining high-calorie fuel gas. On the other hand, a fluidized bed has excellent heat transfer pressure within the bed, so it is easy to generate methane750
It is easy to maintain the temperature in the range of ~900C, and large capacity is also possible by operating under pressure.

このような特徴を有する流動層ガス化炉では、炉内のガ
ス流によって粒子を気泡拡散状態に保つため、微小な粒
子は飛散しやすく、適当な粒径に分級した粒子を使用す
る必要がある。また、加圧ガス化炉への石炭の供給法は
ロックホッパタイプの乾式供給法が一般的であるが、ホ
ッパのIJ、n−手動力が大きい上、弁の切換操作にお
ける摩耗の問題・もあるためスラリー化して供給する方
法が望ましい。スラリー化する場倉、媒体に水を豊川す
るのが最も安価であるが、水は炉内で蒸発潜熱をうばう
ため、熱的損失をもたらす心配がある。そのような熱損
失を扁えるには水の量が少ないスラl7−1すなわち石
炭濃度の漉いスラリーを製造する必要がある。しかし、
石炭濃度が高くなると輸送が困難になり、特にタンクや
配管内での粒子の沈降による閉塞が起こりやすくなる。
In a fluidized bed gasifier with these characteristics, particles are kept in a bubble-diffused state by the gas flow inside the furnace, so small particles are easily scattered, so it is necessary to use particles that have been classified to an appropriate particle size. . In addition, the common dry method for supplying coal to a pressurized gasifier is a lock hopper type, but it requires a large amount of IJ, n-manual force for the hopper, and there are also problems with wear and tear during valve switching operations. Therefore, it is desirable to supply the material in the form of a slurry. It is cheapest to use water as a medium for slurrying, but since water absorbs the latent heat of evaporation inside the furnace, there is a risk of thermal loss. In order to reduce such heat loss, it is necessary to produce slurry 17-1 with a small amount of water, that is, a slurry with a coal concentration. but,
Higher coal concentrations make transport more difficult, especially in tanks and pipes, where they are more likely to become clogged by sedimentation of particles.

一般には石炭粒径を小さくして沈降の抑制を図っている
が、小さい粒径の石炭は流動層ガス化炉では飛散しやす
く、ガス化効率を上げられない欠点がある。また沈降を
防止するために水溶性重合体を存在させて水の粘度を上
げる方法も提案されているが、−粘度が上がりすぎてガ
ス化炉内に供給するためのノズルのように細い管内を通
すときには圧力損失が大きくなり、安定供給を阻害する
欠点がある。
Generally, coal particle size is reduced to suppress sedimentation, but coal with small particle size easily scatters in a fluidized bed gasifier, and has the disadvantage that gasification efficiency cannot be increased. In addition, a method has been proposed to increase the viscosity of water by adding a water-soluble polymer to prevent sedimentation. When passing through, the pressure loss becomes large, which has the disadvantage of hindering stable supply.

〔発明の目的〕[Purpose of the invention]

本発明は前記の欠点をなくし、流動層ガス化に適した粒
径の石炭を高濃度に含有し、しかも沈降、せずに安定に
供給で酉る石炭・水スラリーを得ることを目的とするも
のである。
The purpose of the present invention is to eliminate the above-mentioned drawbacks, and to obtain a coal/water slurry that contains a high concentration of coal with a particle size suitable for fluidized bed gasification, and that can be stably supplied without sedimentation. It is something.

〔発1″”〕            ヮ流体流体固体
の沈降速度U、は次式により表わされる。
[Episode 1''] ヮThe settling velocity U of the fluid-fluid solid is expressed by the following equation.

U、=g(ρ、−ρ)D−/18μ ただし、 g :重力加速度  (m/8”) ρP:固体粒子密度 (Kg/m”) ρ :流体密度   (Kf/m”) μ :流体粘度   (Kf/m−8)+p 、t :
 1.2〜1.4 b/cm”の石炭の水(ρ:1.9
 Kg 7cm” )中での沈降速度を小さくするには
ρ、−ρやり、を小さくするかμを大きくすればよい。
U, = g(ρ, -ρ)D-/18μ, where g: Gravitational acceleration (m/8”) ρP: Solid particle density (Kg/m”) ρ: Fluid density (Kf/m”) μ: Fluid Viscosity (Kf/m-8)+p, t:
1.2-1.4 b/cm” coal water (ρ: 1.9
In order to reduce the sedimentation velocity in 7cm"), it is sufficient to reduce ρ, -ρ, or to increase μ.

しかしρ、−ρは石炭と水の密度差でありこれを小さく
することは困難であり、D、を小さくすることも粉砕動
力が増すだけでなく、流動層ガス化炉に供給しても飛散
しやすいためガス化炉の運転制御が困難になり、ガス化
効率が低下するという本質的な問題をひきおこすことに
なる。
However, ρ and -ρ are the density differences between coal and water, and it is difficult to reduce them.Reducing D not only increases the crushing power, but also causes scattering when supplied to the fluidized bed gasifier. This makes it difficult to control the operation of the gasifier, which causes the essential problem of reduced gasification efficiency.

そこで、水の粘度μを上げることが最も実用的と考え、
−例として繊維素系グリコール酸ナトリウム(CMC)
を添加してμをlO〜lO’cpまで変化させ、石炭の
沈降に及ぼす影響について調べた。その結果、第1図に
示したように、増粘剤の繊維素系グリコール酸ナトリウ
ム添加量を増すと水の粘度は曲線1に示すごとく急速に
増大し、゛それにともなって石炭粒子(約0.92m+
φ)の沈降速度は曲線2に示すごとく急速に小さくなる
Therefore, we thought that it would be most practical to increase the viscosity μ of water.
- e.g. cellulose sodium glycolate (CMC)
was added to vary μ from lO to lO'cp, and the effect on coal sedimentation was investigated. As a result, as shown in FIG. .92m+
The sedimentation velocity of φ) decreases rapidly as shown in curve 2.

一方、粉砕された石炭は巾広い粒径分布を有するがその
粒径分布によって粒子の充填率が異なる。
On the other hand, pulverized coal has a wide particle size distribution, but the filling rate of particles differs depending on the particle size distribution.

一般的には比較的均一な粒径分布を有する粒子では空隙
率が大きく、その空隙を満たすのに必要なスラリー媒体
、すなわち水の量が多くなるため、石炭濃度の高いスラ
リーを得にくい欠点がある。
In general, particles with a relatively uniform particle size distribution have a large porosity, and the amount of slurry medium, i.e. water, required to fill the pores is large, making it difficult to obtain a slurry with a high coal concentration. be.

そのため粗い粒子と細かい粒子を適度に混合することが
、高濃度スラリー化(C4要である。しかし微細粒子は
ガス化炉内で飛散しやすいためその量をできるだけ少な
くすることが重要である。
Therefore, it is necessary to appropriately mix coarse particles and fine particles to form a highly concentrated slurry (C4). However, since fine particles are easily scattered in the gasifier, it is important to reduce their amount as much as possible.

そこで高濃度化に適した粒径分布を求めるため、粒径分
布とかさ密度の相関性を調べた。ガス化炉内で飛散する
粒子はガス化条件下におけるガス流速、ガス化炉形状、
空塔部の塔径や高さによっても異々るため、一義的に飛
散粒子径は決まらないが、例えばガス空塔速度30〜4
06H/wJでガス化していた時のガス化炉内には0.
25mg以下の粒子はほとんど一存していないので、こ
れら微粒子は容易に飛散すると考えられる。これ以上の
粗粒石炭もガス化反応や流動化による摩耗によって微粉
化して飛散すると考えられるが、これらは直ちに飛散す
る微粒子に比べれば炉内の滞留時間はかなり長い。この
ため0.25m以下及び0.42mm以下の微粒子とそ
れ以上の粗粒子(ここでは最大1鰭とした)の配合割合
を変えてかさ密度を調べた。
Therefore, in order to find a particle size distribution suitable for high concentration, we investigated the correlation between particle size distribution and bulk density. Particles scattered in the gasifier are determined by the gas flow rate under gasification conditions, the shape of the gasifier,
The scattered particle size cannot be determined uniquely because it varies depending on the tower diameter and height of the sky section, but for example, when the gas superficial velocity is 30 to 4
When gasifying at 0.06H/wJ, there was 0.0.
Since there are almost no particles smaller than 25 mg, it is thought that these fine particles are easily scattered. Coarse grains of coal larger than this are considered to be pulverized and scattered by abrasion due to gasification reactions and fluidization, but the residence time of these particles in the furnace is considerably longer than that of fine particles that are immediately scattered. For this reason, the bulk density was examined by changing the blending ratio of fine particles of 0.25 m or less and 0.42 mm or less and coarse particles of larger size (here, one fin at most).

第2図に示したように曲線3,4ともかさ密度は粗粒子
割合約67重量優の点で極大となシ、最も高濃度になり
やすい粒径分布といえる。なお、曲線3は微粒子は0.
25+m以下、粗粒子は0.25WI+1〜1.0門、
また曲線4は微粒子は0.42朋以下、粗粒子は0.4
2wrm〜1.Offとして配合したものである。ガス
流速によっては0.25mm以上の粒子も飛散するため
、0.42m+で区分してそれ以上(1miで)とそれ
以下の粒子の配合割合についても調べたが、やはり粗粒
子割合67重量%付近にかさ密度の極大値が存在する。
As shown in FIG. 2, the bulk density of both curves 3 and 4 reaches its maximum at a coarse particle ratio of approximately 67% by weight, which can be said to be the particle size distribution that tends to have the highest concentration. In addition, in curve 3, fine particles are 0.
25+m or less, coarse particles are 0.25WI+1 to 1.0 gates,
In addition, curve 4 shows that fine particles are 0.42 mm or less, and coarse particles are 0.4 mm.
2wrm~1. It was blended as Off. Depending on the gas flow rate, particles of 0.25 mm or larger are also scattered, so we divided them at 0.42 m+ and investigated the blending ratio of larger (at 1 mi) and smaller particles, but the coarse particle ratio was still around 67% by weight. There is a maximum value of bulk density.

他方、石炭と水を混合したスラリーの粘度は石炭濃度が
高くなるKつれて増大する。特に水に増。
On the other hand, the viscosity of a slurry of coal and water increases as the coal concentration increases. Especially in water.

粘剤を添加した場合には石炭の沈降性は抑制されるがス
ラリー粘度としては高くなル、ポンプ動力の増大をまね
き、輸送面から高濃度化の制約を受けることKなる。そ
こで、石炭の沈降性の面から水の粘度は下げず、またス
ラリー輸送性の面からスラリーとしての粘度は高くする
という観点に立ち界面活性剤を添加してその影響を調べ
た。第3図は高濃度化しゃすい粒径分布(0,25〜1
. Otrysの粗粒的70重量%、0.25■以下の
微粒約30重t%)の石炭の水スラリーを調整し、スラ
リー粘度に及はす増粘剤、界面活性剤の効果を調べたも
のである。曲線5は単に水と石炭を混合しただけで、石
炭濃度65重量%における見掛は粘度は400CPと比
較的低いが、スラリーの攪拌を止めるとすぐに′沈降し
上相は水のみとなる。これに対し、増粘剤を水に対して
0.2重量%添加した曲線6では、同じく石炭濃度65
重量%において粘度は850cpと高くなるが沈降性は
少なく安定したスラリーが得られる。さらに石炭に対し
0.7重量%の陰イオン性界面活性剤を添加したところ
、曲線7に示したように65重量%におけるスラリー粘
度は約600cPとなり、しかも増粘剤を添加した時に
比べ粒子の沈降はさらに起こシにくくなり、安定したス
ラリーが得られた。また石炭濃興を70重量%まで上げ
ても均一に攪拌することかで−き、単に水と混合した場
合に比べるとはるかに安定したスラリーが得られる。
When a viscous agent is added, the sedimentation of the coal is suppressed, but the viscosity of the slurry is not high, which leads to an increase in pump power, and there is a restriction on increasing the concentration from the viewpoint of transportation. Therefore, from the standpoint of not lowering the viscosity of water from the standpoint of coal settling properties, and increasing the viscosity of the slurry from the standpoint of slurry transportability, we added a surfactant and investigated its effects. Figure 3 shows the particle size distribution of highly concentrated particles (0.25 to 1
.. A water slurry of coal containing 70% by weight of Otrys coarse particles and approximately 30% by weight of fine particles of 0.25 mm or less was prepared, and the effects of thickeners and surfactants on slurry viscosity were investigated. It is. Curve 5 is simply a mixture of water and coal, and the apparent viscosity at a coal concentration of 65% by weight is relatively low at 400 CP, but as soon as stirring of the slurry is stopped, it settles and the upper phase becomes only water. On the other hand, in curve 6 where 0.2% by weight of thickener was added to water, the coal concentration was 65%.
Although the viscosity is as high as 850 cp in terms of weight percent, a stable slurry with little sedimentation can be obtained. Furthermore, when 0.7% by weight of an anionic surfactant was added to the coal, the slurry viscosity at 65% by weight was approximately 600 cP, as shown in curve 7, and the particles were smaller than when a thickener was added. Sedimentation became more difficult to occur and a stable slurry was obtained. Further, even if the coal concentration is increased to 70% by weight, it can be stirred uniformly, and a much more stable slurry can be obtained than when simply mixed with water.

〔発明の実施例〕    − 以下、本発明の一実施例を第4図によって説明する。第
4図は哀ラリ−の調製及び輸送系のフローを示す。石炭
11は粗粉砕機101、微粉砕機102により流動層ガ
ス化に適し、かつ高濃度化に適した粒径、例えば0.2
5〜1.0 m’67重量%、0、25 w以下33重
量%、になるように粉砕・分級されそれぞれライン12
−.14よシ石炭スラリー調製タンク202に投入する
。、一方、スラリー媒体の水20は媒体調製タンク20
1で増粘剤21を0.2〜1.0重量%(水基準)、界
面活性剤22を0.5〜2.1量チ(石炭基準)添加し
て均一に混合し、媒体輸送ポンプ24でスラリー調製タ
ンク202に送られる。スラリー調製タンク202では
石炭15と媒体液25の比率が60/40〜70/30
になるように混合される。
[Embodiment of the Invention] - An embodiment of the present invention will be described below with reference to FIG. FIG. 4 shows the flow of the preparation and transportation system for the larvae. The coal 11 is processed by a coarse pulverizer 101 and a fine pulverizer 102 to be suitable for fluidized bed gasification and to have a particle size suitable for high concentration, for example 0.2.
5~1.0 m' 67% by weight, 0, 25w or less 33% by weight, and each line 12
−. Step 14: Pour the coal slurry into the coal slurry preparation tank 202. , while water 20 as a slurry medium is stored in a medium preparation tank 20.
In Step 1, add 0.2 to 1.0% by weight of thickener 21 (based on water) and 0.5 to 2.1% by weight of surfactant 22 (based on coal), mix uniformly, and use a medium transport pump. At 24, the slurry is sent to the slurry preparation tank 202. In the slurry preparation tank 202, the ratio of coal 15 and medium liquid 25 is 60/40 to 70/30.
mixed so that

なお、増粘剤としては、ポリ(エチレンオキシド)、ポ
リ(アクリルアミド)、グアルゴム等の水溶性高分子化
合物を用いることができる。、また界面活性剤としては
、アルキルベンゼンスルフオン酸ナトリウムのような陰
イオン活性剤やハロゲン化アルキルトリメチルアンモニ
ウムのような陽イオン活性剤等が使用可能である。
Note that water-soluble polymer compounds such as poly(ethylene oxide), poly(acrylamide), guar rubber, etc. can be used as the thickener. As the surfactant, anionic surfactants such as sodium alkylbenzenesulfonate and cationic surfactants such as alkyltrimethylammonium halide can be used.

とうして調製された石炭・水スラリーをライン30より
スラリーポンプ31で吸い込み、ライン32から流動層
ガス化炉側に輸送する。
The thus prepared coal/water slurry is sucked in by a slurry pump 31 through a line 30 and transported through a line 32 to the fluidized bed gasifier side.

上記において、媒体液として、■のみの場合、■水に増
粘剤を添加した場合:■水に増粘剤と界面活性剤を添加
した場合、■水に界面活性剤を添加した場合のそれぞれ
に対してスラリーポンプ31の輸送性能を比較した結果
を下表に示す。
In the above, when the medium liquid is ■ only, ■ when a thickener is added to water: ■ when a thickener and a surfactant are added to water, ■ when a surfactant is added to water, respectively. The table below shows the results of a comparison of the transport performance of the slurry pump 31.

ここでは水スラリーの輸送量を30t/h、スラリーポ
ンプ31の吐出側ラインの配管内′径を6籠φとした。
Here, the transport rate of the water slurry was 30 t/h, and the inner diameter of the pipe on the discharge side line of the slurry pump 31 was 6 cages φ.

水圧何ら添加しない場合には、石1炭濃度54重量−が
限界で、石炭をそれ以上添加すると粒子の沈降による管
路の閉塞が顕著になシ、短時間で輸送不能となった。こ
れに対し、増粘剤を添加した時には、増粘剤量が0.2
 、 ’0.5 、0.9重量%においてそれぞれ石炭
濃度57重量%、60重辰チ。
When no water pressure was added, the concentration of coal per coal reached a limit of 54% by weight, and if more coal was added, the conduit became noticeably clogged due to sedimentation of particles, and transport became impossible in a short period of time. On the other hand, when a thickener is added, the amount of thickener is 0.2
, '0.5 and 0.9% by weight, the coal concentration was 57% by weight and 60% by weight, respectively.

60重量−のスラリーまで輸送可能であった。さらに、
増粘剤量0.5重19gにおいて、界面活性剤を石炭に
対して0.7重量%添加した場合には65重量%まで輸
送可能であった。なお、水に界面活性剤のみを添加した
場合の輸送限界は61重量%であった。
It was possible to transport slurry up to 60% by weight. moreover,
When the amount of thickener was 0.5 weight and 19 g, and 0.7% by weight of surfactant was added to coal, it was possible to transport up to 65% by weight. The transport limit when only the surfactant was added to water was 61% by weight.

スラリーの輸送性能はポンプの特性によっても変化する
ので輸送限界濃度の上記の値は絶対的なもので社ないが
、増粘剤と界面活性剤の併用によ−り高濃度の石炭・水
スラリーを輸送できることは上記実楕例からも明らかで
ある。
The transport performance of slurry also changes depending on the characteristics of the pump, so the above value of the transport limit concentration is not absolute. It is clear from the above practical example that it is possible to transport.

なお、0.25〜1.0間の粒径範囲の石炭のみを用い
てスラリー化した場合には、増粘剤と界面活性剤を併用
してもその輸送限界は石炭濃度6・0重量%であり、0
.25m+以下の微粉を33重量%含有させることによ
シ石炭濃度の高いスラリーを輸送することができる。
In addition, when slurry is made using only coal with a particle size range of 0.25 to 1.0, the transport limit is 6.0% by weight of coal even if a thickener and surfactant are used together. and 0
.. By containing 33% by weight of fine powder of 25m+ or less, slurry with a high coal concentration can be transported.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、沈降せずに安定した高濃度石炭・、水
スラリーが得られ、例えば流動層ガス化炉に供給しても
、水による炉内温度の低下や粒子の飛散等のガス化反応
に好ましくない現象を大巾に低減することができる。
According to the present invention, a stable high-concentration coal/water slurry can be obtained without sedimentation, and even when supplied to a fluidized bed gasifier, for example, the water will cause a drop in the furnace temperature and the gasification will cause particles to scatter. Phenomena unfavorable to the reaction can be greatly reduced.

【図面の簡単な説明】 第1図は増粘剤の添加量と水の粘度及び石炭粒子の沈降
速度を示す図、第2図は石炭の粗粒子と微粒子の配合割
合とそのかさ密度の関係を示す図、第3図はスラリー粘
度に及ぼす媒体の影響を示す図、第4図は本発明の一実
施例を説明する系統図である。 101・・・石炭の粗粉砕機、102・・・石炭の微粉
砕機、201・・・スラリー媒体調製タンク、202・
・・スラリー調製タンク、’ 24 、、、媒体輸送ポ
ンプ、番1口 1@粘斉暫奈力O量(奮1〃) 第20
[Brief explanation of the drawings] Figure 1 shows the relationship between the amount of thickener added, the viscosity of water, and the sedimentation rate of coal particles, and Figure 2 shows the relationship between the blending ratio of coarse particles and fine coal particles and their bulk density. FIG. 3 is a diagram showing the influence of the medium on slurry viscosity, and FIG. 4 is a system diagram explaining one embodiment of the present invention. 101...Coal coarse pulverizer, 102...Coal fine pulverizer, 201...Slurry medium preparation tank, 202...
...Slurry preparation tank, ' 24,,, medium transport pump, No. 1 port 1 @ viscous quantity (1〃) No. 20

Claims (1)

【特許請求の範囲】 1、石炭の粒径を調整し、との粒径を調整された石炭に
水と増粘剤と界面活性剤を添加するとともに混合してな
ることを/i徴とする石炭・水スラリーの製造方法。 2、粗粒石炭を60〜75重量%、微粒石炭を25〜4
0重量%に調整したことを特徴とする特許請求の範囲第
1項記載の石炭・水スラリーの製造方法。
[Claims] 1. The particle size of coal is adjusted, and water, a thickener, and a surfactant are added and mixed to the coal whose particle size has been adjusted, and the /i feature is obtained. Method for producing coal/water slurry. 2. 60-75% by weight of coarse coal, 25-4% of fine coal
The method for producing a coal/water slurry according to claim 1, wherein the slurry is adjusted to 0% by weight.
JP2284783A 1983-02-16 1983-02-16 Preparation of coal/water slurry Pending JPS59149989A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2284783A JPS59149989A (en) 1983-02-16 1983-02-16 Preparation of coal/water slurry

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2284783A JPS59149989A (en) 1983-02-16 1983-02-16 Preparation of coal/water slurry

Publications (1)

Publication Number Publication Date
JPS59149989A true JPS59149989A (en) 1984-08-28

Family

ID=12094100

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2284783A Pending JPS59149989A (en) 1983-02-16 1983-02-16 Preparation of coal/water slurry

Country Status (1)

Country Link
JP (1) JPS59149989A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59157183A (en) * 1983-02-25 1984-09-06 Babcock Hitachi Kk Coal-water slurry
CN104927935A (en) * 2015-06-16 2015-09-23 上海海乔化工有限公司 Additive used for coal water slurry

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59157183A (en) * 1983-02-25 1984-09-06 Babcock Hitachi Kk Coal-water slurry
JPH036959B2 (en) * 1983-02-25 1991-01-31 Babcock Hitachi Kk
CN104927935A (en) * 2015-06-16 2015-09-23 上海海乔化工有限公司 Additive used for coal water slurry
CN104927935B (en) * 2015-06-16 2016-08-31 上海海乔化工有限公司 A kind of additive for water-coal-slurry

Similar Documents

Publication Publication Date Title
US3996026A (en) Process for feeding a high solids content solid fuel-water slurry to a gasifier
CA1073676A (en) Fuel composition and method of manufacture
JPH0237391B2 (en)
CN103298918B (en) The gasification system of the manufacture method of low-grade coal slurry, the manufacturing installation of low-grade coal slurry and low grade coal
US4251230A (en) Coal suspensions in organic liquids
US4089657A (en) Stabilized suspension of carbon in hydrocarbon fuel and method of preparation
US4090853A (en) Colloil product and method
JPS59149989A (en) Preparation of coal/water slurry
US5045087A (en) Stabilized suspensions of carbon or carbonaceous fuel particles in water
JP2571133B2 (en) Partial oxidation of low calorific value petroleum hazardous waste.
US4417902A (en) Process for making and composition of low viscosity coal-water slurries
US4599089A (en) Coal-water dispersion
US4747548A (en) Process for producing a high concentration coal-water slurry
JPH0315957B2 (en)
CN103965982B (en) System and method for preparing coal water slurry
JP3588128B2 (en) Coal / water mixture and its production method
JPS609077B2 (en) Fuel composition and method for producing the same
CN106479575B (en) System and method for preparation of feedstock
CN103282469B (en) The gasification system of the manufacture method of low-grade coal slurry, the manufacturing installation of low-grade coal slurry and low grade coal
JPS62590A (en) Dispersant for water slurry of high-concentration finely divided carbonaceous powder
JPS58172120A (en) Feeding of coal
Ra et al. Influence of surfactants and experimental variables on the viscosity characteristics of coal water mixtures
JPS62225592A (en) Production of solid pitch aqueous slurry by two-stage pulverization
KR101917475B1 (en) Blended fuel and slurry of coal, powered cokes, and water having improved heating value
JPS5849791A (en) Gasification of coal