JPS59157183A - Coal-water slurry - Google Patents

Coal-water slurry

Info

Publication number
JPS59157183A
JPS59157183A JP2955083A JP2955083A JPS59157183A JP S59157183 A JPS59157183 A JP S59157183A JP 2955083 A JP2955083 A JP 2955083A JP 2955083 A JP2955083 A JP 2955083A JP S59157183 A JPS59157183 A JP S59157183A
Authority
JP
Japan
Prior art keywords
coal
slurry
particle size
viscosity
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2955083A
Other languages
Japanese (ja)
Other versions
JPH036959B2 (en
Inventor
Hirobumi Yoshikawa
博文 吉川
Yasuyuki Nishimura
泰行 西村
Tadaaki Mizoguchi
忠昭 溝口
Kazunori Shoji
正路 一紀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP2955083A priority Critical patent/JPS59157183A/en
Publication of JPS59157183A publication Critical patent/JPS59157183A/en
Publication of JPH036959B2 publication Critical patent/JPH036959B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To provide a coal-water slurry having high coal concentration, low viscosity and high stability, by selecting the weight ratio of each fraction of coal with respect to the particle diameter of the coal particle to fall within a specific range. CONSTITUTION:The objective coal-water slurry is obtained by dispersing coal particles in water in a manner to make the weight ratio of each coal fraction with respect to the diameter to satisfy the formulas I -VI wherein DL represents the maximum diameter of the coal particle. Preferably, the slurry contains coal particles wherein the particle size distribution of coal having diameter of >=1mu is represented by the formula VII [U(D) is the accumulated wt% of the fractions passed through the sieves; DL is 46-420mu; q is 0.25-0.50].

Description

【発明の詳細な説明】 本発明は石炭−水スラリに係り、特に高石炭濃度で低粘
度かつ安定性の良い石炭−水スラリに関するものである
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a coal-water slurry, and particularly to a coal-water slurry having a high coal concentration, low viscosity, and good stability.

最近、火力発電所を中心に、石油に代シ石炭の利用が活
発になっている。しかし、固体燃料である石炭はハンド
リングが困難であシ、そのため輸送費が多くかかり、石
炭目体の価格にも大きな影響を及ぼしている。そこで、
石炭をスラリ化し渡体とL7て取扱えるようにする技術
の開発が盛んに行なわれている。その1つに、重油と石
炭との混合物であるCOM(Coal and Oil
 MixtlLre )が知られている。しかし、との
COMは、重油と石炭との璽ガを比が約1=1′であシ
、完全な脱石油燃料とはいえず、1だ価格の点でも石油
と大差がなく、メリットが少なかった。また、メタノー
ルと石炭との混合物であるメタコールも価格が高く、実
用段階には至っていない。
Recently, coal has been increasingly used as a substitute for oil, mainly in thermal power plants. However, coal, which is a solid fuel, is difficult to handle and therefore requires high transportation costs, which has a large impact on the price of coal. Therefore,
Techniques are being actively developed to turn coal into a slurry so that it can be handled as a transfer body and L7. One of them is COM (Coal and Oil), which is a mixture of heavy oil and coal.
MixtlLre) is known. However, in COM, the ratio of heavy oil to coal is approximately 1 = 1', so it cannot be said to be a completely oil-free fuel, and the price is not much different from oil, so there are no merits. There weren't many. Furthermore, methacol, which is a mixture of methanol and coal, is expensive and has not yet reached the practical stage.

これに対し、石炭と水との混合物であるCWM(Coa
l and Water Mixtu、re )は価格
の点でも十分実用的であり、最近注目を集めている。し
かしCWMを燃焼する際の問題点としてCWM中の水分
があげられる。CWM中の水分の割合は、燃焼効率の点
からいっても、当然低い方が良く、直接燃焼を行なう場
合、水分が30チ以下が好ましいといわれている。とこ
ろが、水分が低いとCWMの粘度が高くなシ、パイプラ
イン等で輸送する際の圧力損失も犬きくなシ問題である
On the other hand, CWM (Coa) is a mixture of coal and water.
and Water Mixtu, re) is quite practical in terms of price and has been attracting attention recently. However, one of the problems when burning CWM is the moisture in the CWM. Naturally, from the viewpoint of combustion efficiency, the lower the water content in CWM, the better, and when direct combustion is performed, it is said that a water content of 30 inches or less is preferable. However, if the moisture content is low, the viscosity of CWM is high, and pressure loss during transportation via pipelines is also a serious problem.

また、CWMを央ばに使用する場合、その貯蔵も問題と
なる。CW B、4を一般的なタンクに貯蔵する場合に
は、安定性に優れて(へる必要があるが、C’vV M
は石炭粒子と水から構成されているため、石炭粒子の沈
降を極力抑えるには粒径を小さくすることが好ましい。
Furthermore, when CWM is used centrally, its storage becomes a problem. When storing CW B, 4 in a general tank, it has excellent stability (although it needs to be reduced, C'vV M
is composed of coal particles and water, so it is preferable to reduce the particle size in order to suppress sedimentation of the coal particles as much as possible.

ところが、単に粒径な小さくすると粘度が上昇し、前述
のように圧力損失が高くなる。
However, simply reducing the particle size increases the viscosity and increases the pressure loss as described above.

これらの欠点をなくすため、石炭粒子の粒径分布をW’
q Mすることによって、高石炭濃度でも低粘度で、か
つ安定性の良いCWMを製造しようとする試みが行なわ
れてきた。しかし、石炭粒子は完全な球形でに1なく、
その測定方法もふるいによる方法、アントリアゼンピペ
ットに代表される沈降法、S E P、i写真よシ形状
を解析し代表径を計算する方法など柱々の方法があり、
測定法によシ粒径の定義も異なってくる。そのため、粒
径分布を制Ul シようとする場合の誤差の原因となり
、よシ高石炭υ度で、低粘度かつ安定性の良いCWMを
製造することが困難になる。
In order to eliminate these drawbacks, the particle size distribution of coal particles is changed to W'
Attempts have been made to produce CWM with low viscosity and good stability even at high coal concentrations by qM. However, coal particles are not completely spherical;
There are many methods for measuring this, including the method using a sieve, the sedimentation method represented by an antriazene pipette, SEP, and the method of analyzing the shape of the i-photograph and calculating the representative diameter.
The definition of particle size also differs depending on the measurement method. This causes errors when trying to control the particle size distribution, making it difficult to produce CWM with high coal viscosity, low viscosity, and good stability.

本発明の目的は、上記した従来技術の欠点をなくシ、高
石炭温度で1.低粘度かつ安定性の良い石炭−水スラリ
な提供することにある。
The object of the present invention is to eliminate the above-mentioned drawbacks of the prior art, and to achieve 1. The purpose is to provide a coal-water slurry with low viscosity and good stability.

本発1(、jjは、水中に石炭粒子を分散させた石炭−
Aクスラリにおいて、石炭粒子の最大粒径をDLとした
場合、+記の粒径についての石炭の各フラクションの重
量割合が次のような範囲にあることを特F1(DTJ/
4〜DL  )=29〜50wt%F2 (DL/42
〜DL/4 ) −20〜25 uzt %Fs(DT
、/”〜DL/4” ) ” 12〜15Wtチ” (
DL/ ”′DL/ 4” ) =’  6〜l Q 
wt%Fs (DL/4s−DL/4’ ) =  3
〜l 2 tut %F6(DTJ/45〜 o )=
 2〜13wtチ本発明において、上記フラクションは
代表的に6フラクシヨンに分けられているが、これら番
適宜統合または細分して3〜15(好ましくは5〜8フ
ラクシヨン)にすることができる。
This invention 1 (, jj is coal with coal particles dispersed in water -
In A-class slurry, when the maximum particle size of coal particles is DL, it is determined that the weight ratio of each fraction of coal for the particle size indicated by + is in the following range.
4~DL)=29~50wt%F2 (DL/42
~DL/4) -20~25 uzt %Fs(DT
, /”~DL/4”) “12~15Wtchi” (
DL/ ``'DL/ 4'') =' 6~l Q
wt%Fs (DL/4s-DL/4') = 3
~l2tut%F6(DTJ/45~o)=
In the present invention, the above fractions are typically divided into 6 fractions, but these numbers can be combined or subdivided into 3 to 15 (preferably 5 to 8 fractions) as appropriate.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

石炭をミルで湿式または乾式粉砕し、その一部″を採取
して粒径分布を測定する。粒径分布の測穴に際しては、
微細粒子のi量がスラリの粘度や安定性に及薄す影響が
大きいと考え、最大粒径をり。
Coal is wet- or dry-pulverized in a mill, and a portion of it is sampled to measure the particle size distribution.When measuring the particle size distribution,
Considering that the amount of fine particles has a large effect on the viscosity and stability of the slurry, the maximum particle size was determined.

とじた時、次の6つのフラクションに分けて、それに最
も近い適正なフルイ(例えばJIS規格のフルイ及び粒
径がよくコントロールされたミリ系アフィルター)を使
用してふるい分け、そのフラクションの粒子のu景をも
I−j定した。
When closed, divide it into the following six fractions and sieve them using the closest appropriate sieve (for example, a JIS standard sieve or a millimeter filter with well-controlled particle size) to determine the u The scenery was also determined as I-j.

(1)Ft:粒径DL / 4 以上り、以下1、(2
)Fm:粒径■/42 以上Db /4未満、(3)F
m:粒径り、/、i3  以上DL /42未満、(4
) F4:岐径DL/4’  以上DL /43未満、
(5) Fs :粒径DL/4s  以上DL/44未
満、(5)’Fa□:粒径DL/45  未満。
(1) Ft: Particle size DL / 4 or more, below 1, (2
) Fm: particle size ■/42 or more Db less than /4, (3) F
m: particle size, /, i3 or more, DL less than /42, (4
) F4: Branch diameter DL/4' or more, less than DL/43,
(5) Fs: Particle size DL/4s or more and less than DL/44, (5)'Fa□: Particle size less than DL/45.

本発明者らは、上記17+、、 F、の割合が穏々<7
) 9.’iとなるように、il這または2ね以上の石
炭または石炭スラリを混合し、必要に応じて水を添加し
て水分L12輩を行ない、その時の粘度と安定性を検討
した。ただ、シ、最大粒径Dflば犬き−ぎるとi、’
、3貌時の未燃分が多く人9小さ過ぎるとスラリ粘度が
高くなるため、46μrjL〜420μi・五とした。
The present inventors have determined that the ratio of 17+, F, is moderate <7
) 9. The viscosity and stability were examined by mixing 1 or more coals or coal slurry and adding water as necessary to make the moisture L12. However, if the maximum particle size Dfl is the maximum particle size Dfl, then it is
If the temperature is too small, the slurry viscosity will increase, so it was set to 46μrjL to 420μi·5.

その結果、上記フラクションFl−F6が次の範囲にお
゛るとき、石炭スラリの粘LLが低く、かつ安定化する
ととがわ嘉った。
As a result, it was found that when the fraction Fl-F6 was within the following range, the viscosity LL of the coal slurry was low and stable.

Fl:2’9〜5 Q LJtチ Fm”、20〜25 wt係 Fs:’12〜l 5 wt袋 F、:   6〜10wt% F、=3〜12 wtチ F6 :  2〜13 tjJt ’14さらにある1
つの炭種を選び、フラクションの割合を色々かえて粘度
に及ばず影響を検討し、比較的低粘度を示す時の7ラク
シヨンの割合を累積分布に変換したところ、ある傾向が
あることを見出した。第1図は、A炭(瀝青炭、灰分9
.5チ)の三鎚のスラリ1.2.3について、石炭濃度
70襲で1,000C,p以下になった時の累積粒径分
布を示したものでちるが(ただし、Dp=297μmで
あり、スラリ粘度は内筒回転式の粘度計で、せんbr速
M 9 Q rgC−”で5分゛間回転した時の値であ
る)11粒径1μmル以1の部分がほぼ直線になってい
ることがわかる。すなわち、粒径りと累積ふるい下重廿
百分率U (D)との間には(1)式の関係があること
がわかった。
Fl: 2'9~5 Q LJt Chi Fm", 20~25 wt Fs: '12~l 5 wt bag F,: 6~10wt% F, = 3~12 wt Chi F6: 2~13 tjJt '14 There is more 1
We selected two types of coal and examined the effect on viscosity by varying the proportion of fractions, and when we converted the proportion of 7-luxions that exhibit relatively low viscosity into a cumulative distribution, we found that there was a certain tendency. . Figure 1 shows A coal (bituminous coal, ash content 9).
.. This is the cumulative particle size distribution for Mizuchi's slurry 1.2.3 of 5th C) when the coal concentration becomes 1,000C,p or less in 70 cycles (however, Dp = 297 μm). (The slurry viscosity is the value obtained when the internal cylinder rotation type viscometer is rotated for 5 minutes at a shearing speed M9 In other words, it was found that there is a relationship expressed by equation (1) between the particle size and the cumulative weight under sieve percentage U (D).

U (D) = (−M−)9X 100・・・・・・
・・・・・・・・・(1)h ゾCだし、q:指数。
U (D) = (-M-)9X 100...
・・・・・・・・・(1) h ZoC, q: exponent.

(1)式は、連続粒度系の粉体について最密充填を与え
る粒μ分布式として知られるAnd r t CL J
F t n式と同型であるoAndreastrn式に
関しては過去研究が行なわれ、球型の粒子についてはq
=o、3s〜0゜40で充填率が最大′となることが確
認はれている。
Equation (1) is known as the particle μ distribution equation that provides closest packing for continuous particle powders.
Past research has been conducted on the oAndreastrn equation, which is isomorphic to the F t n equation, and for spherical particles, q
=o, it has been confirmed that the filling rate reaches its maximum at 3s to 0°40.

しかし、充填率は粒子形状により異なり、qの値と石炭
−水スラリとした時のスラリ粘度及び安定性との系統的
な関係は棟8Jされた例は知られていない。
However, the filling rate varies depending on the particle shape, and there is no known example of a systematic relationship between the value of q and the viscosity and stability of the slurry when it is made into a coal-water slurry.

そこで本発明者らは、前記の粒径鋺整法によシ、F1〜
F6の割合をFJ4Bして石炭の粒径を(1)式に近似
できるようにし、m及びqの値を変えてそれが粘度や安
定性に及ぼす影響を検討した結果、1μIn以上の粒径
分布が次式に従うとき、スラリの粘度及び安定性が最適
となることを見出した。
Therefore, the present inventors used the above-mentioned particle size adjustment method to
As a result of changing the ratio of F6 to FJ4B so that the particle size of coal can be approximated by equation (1), and examining the effect of changing the values of m and q on viscosity and stability, the particle size distribution of 1 μIn or more was found. It has been found that the viscosity and stability of the slurry are optimal when

U (D) −(−”−)” L (ただし、q=0.25〜0.50、■=46〜420
μm) まだ、1μm以下の粒子が5〜46wt嗟存在し、かつ
0,05μシル以下の超徽細粒子が0.5以上、好まし
くは0,5〜6.5俤(最も好ましくは1.0〜4.0
φ)存在するとき、スラリの安定性が最適となることを
見出した。
U (D) −(−”−)” L (However, q=0.25~0.50, ■=46~420
μm) There are still 5 to 46wt of particles of 1μm or less, and 0.5wt or more of ultrafine particles of 0.05μm or less, preferably 0.5 to 6.5wt (most preferably 1.0wt). ~4.0
We have found that the stability of the slurry is optimal when φ) is present.

さらに、本発明の石炭l水ス、ラリには分散剤およびP
H調整剤を添加することができ、分散剤の添加廿は3%
以下、好ましくは0.1〜1.5−であり、またPH調
整剤はスラリpHが7〜9となるように添加することが
好ましいことがわかった。
Furthermore, the coal-water solution and laly of the present invention include a dispersant and P.
H regulator can be added, and the amount of dispersant added is 3%.
It has been found that the pH is preferably 0.1 to 1.5, and the pH adjuster is preferably added so that the pH of the slurry is 7 to 9.

本発明において、好ましい分散剤としては、ナフタリン
スルポン酸、オルトリン1112、Hrb+2Pr、0
zns(n≧2)またはHnPnOm (”≧3 > 
テ表b<;6縮合リン0、酒石酸、シュウ酸、クエン酸
、エチレンジアミン四酢酸、リグニンスルホン酸及びこ
み ・ れら塩、ケブラコその他のタンニン類、カルボキシメチ
ルセルロースの金属塩のうち少なく□とも11]類、ま
たPHI剤としては、水′酸化す) IJウム、水酸化
カリウム、水酸化カルシウム、・水酸化バリウム、炭酸
ナトリウムのうち少なくとも1種明があけられる。
In the present invention, preferred dispersants include naphthalene sulfonic acid, orthorin 1112, Hrb+2Pr, 0
zns (n≧2) or HnPnOm (”≧3 >
Table b <;6 Condensed phosphorus 0, tartaric acid, oxalic acid, citric acid, ethylenediaminetetraacetic acid, lignin sulfonic acid, and dirt - At least 11 of the following: salts, quebraco and other tannins, metal salts of carboxymethylcellulose] In addition, as a PHI agent, at least one of hydroxide, potassium hydroxide, calcium hydroxide, barium hydroxide, and sodium carbonate can be used.

本発明で得られる特に好適なスラリは、石炭の自・有量
が60〜80 wt%であシ、内筒回転型粘度−計を用
いてせん断速度995ec−”で測定開始後5分時の粘
度が5,000cp以下のものである。
A particularly preferable slurry obtained in the present invention has a coal content of 60 to 80 wt%, and has a coal content of 60 to 80 wt%, and a viscosity of 5 minutes after the start of measurement at a shear rate of 995 ec-'' using an internal cylinder rotation type viscometer. The viscosity is 5,000 cp or less.

以下、本発明を実施例によってさらに詳細に説明、する
Hereinafter, the present invention will be explained in more detail with reference to Examples.

実施例I A炭(龜背炭、灰分9.5%)について、前記方法で各
フラクションの割合を調整し、(1)式においてDL=
 297μ専及び149μmで、q=0.15.0.2
0.0.25.0.30,0.35.0.40,0.4
5.0.50、・0.55、o、6oK相当する粒i分
布の2゜0槌類の石炭サンプルを製造し、水分を調整し
て石炭一度72裂のスラリとし、分散剤としてナフタリ
ンスルホン酸ナトリウムを石炭重量に対して0.5To
、’pH調整剤としてNaOHを同じ< o、 i 嗟
添加し、スラリ・粘度を測定した。その結果を第2図に
示す。図中、AはDb= 297 ttmS13はDL
= 149μ?nの各場合を示す。
Example I For A charcoal (Kase charcoal, ash content 9.5%), the ratio of each fraction was adjusted by the above method, and in equation (1), DL=
For 297 μm and 149 μm, q=0.15.0.2
0.0.25.0.30, 0.35.0.40, 0.4
5. Produce a 2.0 mm coal sample with a particle distribution corresponding to 0.50, . 0.5To of sodium acid per weight of coal
, 'NaOH was added as a pH adjuster at the same time, and the slurry viscosity was measured. The results are shown in FIG. In the figure, A is Db = 297 ttmS13 is DL
= 149μ? Each case of n is shown.

第2図の結果から比の大小に′かが゛ゎらず、q=0.
40〜0.45において粘度が最小になっていることが
わかった。これはAゎdreaztnの式での球型粒子
の場合の9=0.35〜0.40よりも大きい。
From the results shown in Figure 2, there is no difference in the size of the ratio, and q=0.
It was found that the viscosity was at its minimum between 40 and 0.45. This is larger than 9 = 0.35 to 0.40 in the case of spherical particles in the Adleaztn formula.

他の炭柱についても同様の検討を行なったが、q−0,
40〜0.50において粘度が最小となった。
Similar studies were conducted for other coal pillars, but q−0,
The viscosity was minimum between 40 and 0.50.

実施例2 実力℃例1で調製した石炭−水スラリについて安定性の
検討を行なった。50088のメスシリンダーに深さ1
70寵までスラリを入れ、直径5關重さ1011のガラ
ス棒をスラリ中に自重のみで貫入させ、底に到達するま
での時間の変化を測定した。
Example 2 Stability of the coal-water slurry prepared in Example 1 was investigated. 50088 graduated cylinder with depth 1
A glass rod with a diameter of 5 mm and a weight of 1,011 mm was inserted into the slurry to a depth of 70 cm, and the change in time until it reached the bottom was measured.

スラリM造直後の貫入時間を1とした時の、製造後30
日経過時の貫入時間とqの値との関係を第3図に示す。
When the penetration time immediately after slurry M production is set to 1, 30 minutes after production.
FIG. 3 shows the relationship between the penetration time and the value of q over the course of days.

第3図から明らかなように、貫入時間1ri q = 
0.25〜0.35で最小となっており、この条件が最
も安定性が良いことがわかる。
As is clear from Fig. 3, the penetration time 1ri q =
It is minimum between 0.25 and 0.35, and it can be seen that this condition has the best stability.

他の炭種についてもDLを変えるなどして検討したが、
同様な結果が得られたつ 実施例1および2の結果から、スラリ粘度および安定性
の面で、、q=0.25〜0.50が好ましいことがわ
かった。
We also considered other coal types by changing the DL, but
From the results of Examples 1 and 2, in which similar results were obtained, it was found that q = 0.25 to 0.50 is preferable in terms of slurry viscosity and stability.

実施例3 B炭(臨育炭、灰分13.6%)について、実;月例1
と同様にして、(1)式においてDr、= 297μI
LL Xq=0.40に相当する粒径分布を持つ、石炭
一度70襲のスラリを製造した。これに分散剤としてナ
フタリンスルホン酸ナトリウムの縮合(吻を添加し、そ
の添加量とスラリ粘度の関係を調べた。その結果を第4
図に示す。冬だし、添加量は石炭前景に対する値であり
、PH調整剤としてNaOHを石炭当り0.1チ添加し
た。
Example 3 Regarding B charcoal (cured charcoal, ash content 13.6%), fruit; monthly 1
Similarly, in equation (1), Dr, = 297μI
A slurry of 70 layers of coal was produced with a particle size distribution corresponding to LL Xq = 0.40. Condensation of sodium naphthalene sulfonate was added to this as a dispersant, and the relationship between its addition amount and slurry viscosity was investigated.
As shown in the figure. Since it was winter, the amount added was the value for the coal foreground, and 0.1 g of NaOH was added per coal as a pH adjuster.

第4図の結果から、ナフタリンスルホン酸ナトリワムン
ト作物の添加i 0.5体でスラリ粘度が最小となって
おり、それ以上添加しても述効果とな、5ことがわかる
From the results shown in FIG. 4, it can be seen that the slurry viscosity is minimum when the amount of naphthalene sulfonate sodium is added to i 0.5, and even if more than that is added, the above effect will not occur.

他の炭種についても同様な横割を行なったが、添加針0
.2〜1.2チで粘度が最小となることがわかった。ま
た他のアニオン系界面活性剤を添加した場合も0.1〜
1.5チの怒加量で最小の粘度が得られた。
Similar cross-cutting was performed for other coal types, but the addition needle was 0.
.. It was found that the viscosity was minimum between 2 and 1.2 inches. Also, when other anionic surfactants are added, the
The minimum viscosity was obtained at a loading of 1.5 inches.

実施例季 B炭(盆青炭、灰分13.6襲)について、実旋・>v
 3と同じスラリを製造し、分散剤としてのナフタリン
スルホン酸ナトリウムの添加量を0.5優と一定とし、
水酸化ナトリウムの添加針を変えてスラリPHを調整し
、PHがスラリ粘度に及ぼす影0を検討し尼。その結果
を第5図に示す。
Regarding the example season B coal (Bon blue coal, ash content 13.6%), actual turning
The same slurry as in 3 was produced, and the amount of sodium naphthalene sulfonate as a dispersant was kept constant at 0.5%.
The pH of the slurry was adjusted by changing the addition needle of sodium hydroxide, and the effect of pH on the viscosity of the slurry was examined. The results are shown in FIG.

第5図゛の結果から、スラリ粘度は、PH8までは低下
するが、それ以上はほとんど変化しない・ことがわかる
。水酸化ナトリウムの消費蓋や材料の腐食を考えるとス
ラリのpHは7〜9.が好ましい。
From the results shown in Figure 5, it can be seen that the slurry viscosity decreases up to pH 8, but hardly changes beyond that. Considering the consumption of sodium hydroxide and the corrosion of the lid and materials, the pH of the slurry should be 7 to 9. is preferred.

石炭は炭(、!iiや表面の酸化度に・よシスラリとし
た時のpHが異なるがpHを7〜9に調整するに必要な
水酸化ナトリウムの添加量は石炭重量あたシ0〜1.0
俤程度である。
The pH of coal varies depending on the oxidation level and surface oxidation level, but the amount of sodium hydroxide added necessary to adjust the pH to 7 to 9 is 0 to 1 per coal weight. .0
It is about 500 yen.

実施例5 実施例3と同じB炭スラリに、0.05μmのミリポア
フィルタを通過した石炭の超微細粒子を添加し、スラリ
の安定性に及ぼす影響を検討した。その結果を第6図に
示す。ただし、たて軸の貫入時11は製造30日後の貫
入時間と製造直後の貫入時間の比であり、超微細粒子の
添加量は添加後の総石辰重nilに対す・る割合である
Example 5 Ultrafine particles of coal that had passed through a 0.05 μm Millipore filter were added to the same B coal slurry as in Example 3, and the effect on the stability of the slurry was studied. The results are shown in FIG. However, the penetration time 11 of the vertical axis is the ratio of the penetration time 30 days after production to the penetration time immediately after production, and the amount of ultrafine particles added is the ratio to the total stone weight nil after addition.

第6図の結果から、超微細粒子の添加針3%でスラリの
安定□性が最も良(,0,05μm以下の粒子がスラリ
安定性に・寄与していることがわかる。粒径分布や炭種
を変えて横側した結果、スラリの安・定性向上に有効な
0.05μm以下の粒子重重はおよそ0、5〜6.5φ
(好ましくは1.0〜4.0qL)であることがわかっ
た。
From the results shown in Figure 6, it can be seen that the slurry stability is the best when the ultrafine particles are added at 3% (0.05 μm or less particles contribute to the slurry stability. As a result of changing the coal type and placing it on the side, the particle weight of 0.05μm or less, which is effective for improving slurry stability, is approximately 0.5 to 6.5φ.
(preferably 1.0 to 4.0 qL).

以上、本発明によれば、石炭粒子の粒径分布を”IW・
定範囲のものに訓読することにより、低粘度で、かつ安
定性の良好な高Q度石炭−水スラリを得ることができる
As described above, according to the present invention, the particle size distribution of coal particles is
By adjusting the content within a certain range, a high-Q coal-water slurry with low viscosity and good stability can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は低粘厩スラリの累積粒径分布を示す図、第、2
図は粒径分布とスラリ粘度の関係を示す図、第3Mは給
径分布と安定性の関係を示す図、第4図は分故剤#1加
量と粘度の関係を示す図、8!g5図はpHと粘度の関
係を示す図、第6図は0.05μm以下の超1fi:!
1粒子添加量と安定性の関係を示す図である。    
・ 第1図 第 2 し1 q  (−) 第 3 図 q (−) 2(ミ 4 図
Figure 1 shows the cumulative particle size distribution of low viscosity slurry;
The figure shows the relationship between particle size distribution and slurry viscosity, No. 3M shows the relationship between feed diameter distribution and stability, and Figure 4 shows the relationship between the addition of classifier #1 and viscosity. 8! Figure g5 is a diagram showing the relationship between pH and viscosity, and Figure 6 is a diagram showing the relationship between pH and viscosity.
FIG. 3 is a diagram showing the relationship between the amount of one particle added and stability.
・Fig. 1 2 1 q (-) 3 q (-) 2 (Fig. 4

Claims (1)

【特許請求の範囲】[Claims] (1)水中に石炭粒子を分散させた石炭−水スラリにお
いて、石炭粒子の最大粒径をDLとした場合、下記の粒
径についての石炭の各7ラクシヨンの寓を割合が次のよ
うな範囲にあることを特徴とする石炭−水スラリ。 Fl(DT、/4〜Dp   )−29〜5QwtφF
2 (D1./4”〜DL/4 )、= 20〜25w
t襲Fs (DX74”マDL/4” ) −12〜l
 5 wt係F4 (DI、/4’〜DL/43) =
  6〜IQwtチF5(DTj45〜DL/4’ )
 =  3〜12 wtチFs (D74’〜0 )−
2〜l 3 wtチ(2)特許請求範囲の第1項におい
て、1μm以上の石炭の粒径分布が実質上次式で示され
る石炭粒子を含むことを特徴とする石炭−水スラリ。 Iy (D ) = (−’−)” X 100LI (但し、U(D):累積ふるい下重量百分率(チ)、D
L=46〜420 /jm % q =0.25〜0.
50 )(3)特許請求範囲の第1項または第2項にお
いて、1μ7n以下9石炭粒子が5〜46 wt%存在
し、かつ0.05μm以、下の超微細粒子がo、 s 
wtqb以上存在すること曾特徴とする石炭−水スラリ
(1) In a coal-water slurry in which coal particles are dispersed in water, if the maximum particle size of coal particles is DL, then the ratio of each of the 7 lactations of coal for the following particle sizes is within the following range. A coal-water slurry characterized by: Fl(DT, /4~Dp)-29~5QwtφF
2 (D1./4"~DL/4), = 20~25w
t attack Fs (DX74"ma DL/4") -12~l
5 wt section F4 (DI, /4'~DL/43) =
6~IQwt Chi F5 (DTj45~DL/4')
= 3~12 wt Chi Fs (D74'~0)-
(2) A coal-water slurry according to claim 1, characterized in that the coal-water slurry contains coal particles having a coal particle size distribution of 1 μm or more substantially represented by the following formula. Iy (D) = (-'-)''
L=46~420/jm%q=0.25~0.
50) (3) In claim 1 or 2, 5 to 46 wt% of coal particles of 1 μm or less are present, and ultrafine particles of 0.05 μm or less are o, s.
A coal-water slurry characterized by the presence of more than wtqb.
JP2955083A 1983-02-25 1983-02-25 Coal-water slurry Granted JPS59157183A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2955083A JPS59157183A (en) 1983-02-25 1983-02-25 Coal-water slurry

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2955083A JPS59157183A (en) 1983-02-25 1983-02-25 Coal-water slurry

Publications (2)

Publication Number Publication Date
JPS59157183A true JPS59157183A (en) 1984-09-06
JPH036959B2 JPH036959B2 (en) 1991-01-31

Family

ID=12279246

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2955083A Granted JPS59157183A (en) 1983-02-25 1983-02-25 Coal-water slurry

Country Status (1)

Country Link
JP (1) JPS59157183A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59204688A (en) * 1983-05-06 1984-11-20 Babcock Hitachi Kk Production of coal-water slurry of high concentration
JPS6185491A (en) * 1984-10-03 1986-05-01 Kubota Ltd Coal slurry

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5529583A (en) * 1978-08-19 1980-03-01 Ruhrchemie Ag Coal and water suspension and method
JPS57202387A (en) * 1981-05-21 1982-12-11 Snam Progetti Aqueous coal suspension
JPS5838791A (en) * 1981-08-31 1983-03-07 Ube Ind Ltd Preparation of high concentration coal-water slurry
JPS5896690A (en) * 1981-12-03 1983-06-08 Electric Power Dev Co Ltd Preparation of concentrated coal slurry
JPS5958092A (en) * 1982-09-29 1984-04-03 Babcock Hitachi Kk Preparation of coal slurry
JPS5958093A (en) * 1982-09-29 1984-04-03 Babcock Hitachi Kk Preparation of coal slurry
JPS59149989A (en) * 1983-02-16 1984-08-28 Hitachi Ltd Preparation of coal/water slurry

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5529583A (en) * 1978-08-19 1980-03-01 Ruhrchemie Ag Coal and water suspension and method
JPS57202387A (en) * 1981-05-21 1982-12-11 Snam Progetti Aqueous coal suspension
JPS5838791A (en) * 1981-08-31 1983-03-07 Ube Ind Ltd Preparation of high concentration coal-water slurry
JPS5896690A (en) * 1981-12-03 1983-06-08 Electric Power Dev Co Ltd Preparation of concentrated coal slurry
JPS5958092A (en) * 1982-09-29 1984-04-03 Babcock Hitachi Kk Preparation of coal slurry
JPS5958093A (en) * 1982-09-29 1984-04-03 Babcock Hitachi Kk Preparation of coal slurry
JPS59149989A (en) * 1983-02-16 1984-08-28 Hitachi Ltd Preparation of coal/water slurry

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59204688A (en) * 1983-05-06 1984-11-20 Babcock Hitachi Kk Production of coal-water slurry of high concentration
JPH0344118B2 (en) * 1983-05-06 1991-07-04 Babcock Hitachi Kk
JPS6185491A (en) * 1984-10-03 1986-05-01 Kubota Ltd Coal slurry

Also Published As

Publication number Publication date
JPH036959B2 (en) 1991-01-31

Similar Documents

Publication Publication Date Title
US5599356A (en) Process for producing an aqueous high concentration coal slurry
JPS606395B2 (en) Dispersant for water slurry of coal powder
JPS6226359B2 (en)
US4267065A (en) Dispersants for a ceramic slurry
US4301020A (en) Process of slurrying and spray drying ceramic oxides with polyethyleneimine dispersants
JPS59157183A (en) Coal-water slurry
US4756720A (en) Process for producing a high concentration coal-water slurry
CN104277856B (en) The manufacturing method of coke and the manufacturing method of the pig iron
US4254560A (en) Method of drying brown coal
JPS58194989A (en) Coal-water fuel slurry and manufacture
GB2121819A (en) Method of manufacturing a pumpable coal/liquid mixture
CA1255905A (en) Process for producing a high concentration coal-water slurry
JPS5958092A (en) Preparation of coal slurry
CN1081201A (en) Adopt the coal water slurry and the method for making thereof of improvement inferior grade coal
KR900005100B1 (en) Solid fuel-water slurry confution and it&#39;s preparaing process
EP0165350B1 (en) Process for producing a high concentration coal-water slurry
SU1554764A3 (en) Coal-water suspension
CA1253006A (en) Process for producing a high concentration coal-water slurry
JP2000290673A (en) Modified low-grade coal, its production and coal-water slurry
JPS5838791A (en) Preparation of high concentration coal-water slurry
US5032146A (en) Low-rank coal oil agglomeration
CA2012197A1 (en) High concentration coal aqueous slurry and process for producing same
CA1179132A (en) Carbonaceous materials in water slurries
JPH0633376B2 (en) Stabilizer for coal slurries
CA1115055A (en) Wet pelletizing of brown coal and drying