JP2000290673A - Modified low-grade coal, its production and coal-water slurry - Google Patents
Modified low-grade coal, its production and coal-water slurryInfo
- Publication number
- JP2000290673A JP2000290673A JP11102735A JP10273599A JP2000290673A JP 2000290673 A JP2000290673 A JP 2000290673A JP 11102735 A JP11102735 A JP 11102735A JP 10273599 A JP10273599 A JP 10273599A JP 2000290673 A JP2000290673 A JP 2000290673A
- Authority
- JP
- Japan
- Prior art keywords
- coal
- low
- grade coal
- cwm
- grade
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Liquid Carbonaceous Fuels (AREA)
- Solid Fuels And Fuel-Associated Substances (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、改質低品位炭及び
その製造方法並びに石炭−水スラリーに関する技術分野
に属し、詳細には、石炭及び水を含有するスラリー状混
合体であって燃料等として用いられる石炭−水スラリー
(以下、CWMともいう)の主原料である原料石炭とし
て低品位炭を用いて低品位炭−水スラリー(以下、低品
位炭CWMともいう)を得ようとする場合に、高カロリ
ーの低品位炭CWMを得ることができる原料石炭として
の改質低品位炭、及び、その製造方法、並びに、原料石
炭として主に低品位炭又は改質低品位炭を用いた石炭−
水スラリー(CWM)であって高カロリーのCWMに関
する技術分野に属する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention belongs to the technical field of a modified low-grade coal, a method for producing the same, and a coal-water slurry. More specifically, the present invention relates to a slurry mixture containing coal and water, To obtain low-grade coal-water slurry (hereinafter also referred to as low-grade coal CWM) using low-grade coal as the raw material coal which is the main raw material of coal-water slurry (hereinafter also referred to as CWM) used as In addition, a modified low-grade coal as a raw coal from which a high calorie low-grade coal CWM can be obtained, and a method for producing the same, and a coal mainly using a low-grade coal or a modified low-grade coal as a raw coal −
Water slurry (CWM) belongs to the technical field of high calorie CWM.
【0002】[0002]
【従来の技術】低品位炭は一般に炭化度が低く、親水性
であることに起因して水を多く含み、このため、かかる
低品位炭をCWM化(原料石炭として低品位炭を用いて
CWMにすること)をしても、固形分濃度(石炭濃度)
が上がらないこと、即ち、石炭として低品位炭を多量に
含有させるとCWMとして必要な流動性等の基本的特性
が確保できず、このため石炭を少量しか含有させられ
ず、かかるCWMとして必要な流動性等の基本的特性の
確保の点から含有させ得る石炭の量の最大値(以下、C
WMでの石炭の最高濃度という。石炭が低品位炭に特定
されている場合には、CWMでの低品位炭の最高濃度と
もいう。)が低く制限されること、必然的に自燃しない
こと、カロリー当たりの輸送運賃が高いこと、並びに、
発電効率も低いこと等の欠点があり、低品位炭はCWM
化には適さないとされてきた。2. Description of the Related Art Low-grade coal generally has a low degree of carbonization and contains a large amount of water due to its hydrophilicity. Therefore, such low-grade coal is converted to CWM (CWM using low-grade coal as raw material coal). The solid content concentration (coal concentration)
That is, if a large amount of low-grade coal is contained as coal, basic characteristics such as fluidity required for CWM cannot be secured. Therefore, only a small amount of coal can be contained. From the viewpoint of securing basic characteristics such as fluidity, the maximum amount of coal that can be contained (hereinafter referred to as C
The highest concentration of coal in the WM. When the coal is specified as low-rank coal, it is also referred to as the highest concentration of low-rank coal in CWM. ) Are low, inevitably not self-burning, have high transport fares per calorie,
It has disadvantages such as low power generation efficiency, and low-grade coal is CWM
It has not been suitable for conversion.
【0003】そこで、低品位炭を脱水して水分含有量を
低減し、更に撥水性を持たせた改質低品位炭を得る方
法、及び、かかる改質低品位炭をCWM化することに関
する技術が幾つか提案されている。[0003] Therefore, a method of obtaining a modified low-grade coal having a reduced water content by dehydrating the low-grade coal and having water repellency, and a technique related to converting the modified low-grade coal into CWM. Have been proposed.
【0004】しかし、これらの方法は、親水性の元にな
る親水性官能基を脱離させたり、更に乾留効果によるタ
ール分を表面に滲ませたりするものであり、いずれも化
学反応を利用する方法であるため、処理温度が高く、
又、廃水汚染度が高く、コストが高くかかること等の問
題点があった。一方で、物理的にとどめるため、低品位
炭に油分を塗布するという試みもあるが、非常に大きな
比表面積を有する微粉である低品位炭に少量の油分使用
で効果的に目的の改質を達成することができないという
欠点があった。又、石炭粉は表面積が大きいだけでな
く、CWMを製造する際に湿式ミル内で再度粉砕される
ことを考慮すると、かかる再粉砕によって撥水性を失わ
ないような改質をしておくこと、即ち、再粉砕前に表面
的ではなく低品位炭の内部まで本質的に撥水性に改質さ
れていることが必要であるが、かかる改質は低品位炭に
油分を塗布する方法では達成することができないという
問題点があった。[0004] However, in these methods, a hydrophilic functional group that is a source of hydrophilicity is eliminated, and tar components due to the carbonization effect are oozed on the surface. All of these methods utilize a chemical reaction. Process, the processing temperature is high,
Further, there are problems such as high wastewater pollution and high cost. On the other hand, there is an attempt to apply oil to low-grade coal in order to keep it physically, but low-grade coal, which is a fine powder with an extremely large specific surface area, can be effectively reformed by using a small amount of oil. There was the disadvantage that it could not be achieved. In addition, considering that not only the coal powder has a large surface area but also that the coal powder is pulverized again in a wet mill when producing CWM, the coal powder should be modified so that the water repellency is not lost by the re-pulverization. That is, it is necessary that the surface of the low-grade coal is essentially water-repellent before the regrinding, but not inside, but such a modification is achieved by a method of applying oil to the low-grade coal. There was a problem that it was not possible.
【0005】更に、たとえ低品位炭を改質し得たとして
も、低品位炭の粒子形状に由来する流動性の悪さから、
CWMでの低品位炭の最高濃度がやや低めに抑えられて
しまい、低品位炭濃度の高いCWMが得られないという
問題点がある。即ち、低品位炭粒子は、物理形状が糸状
や偏平状等の非球形の粒子を多く含むため、流動性が悪
く、従って、たとえ低品位炭をある程度改質して撥水性
を持たした上でCWM化(流体化)しても、流動性が悪
く、低品位炭の濃度が充分に高いCWMを得ることはで
きない。低品位炭の濃度が充分に高いCWMを得るに
は、前記流動性の改善が必要である。[0005] Furthermore, even if low-grade coal can be modified, poor fluidity due to the particle shape of low-grade coal implies
There is a problem that the maximum concentration of low-grade coal in CWM is suppressed to a slightly lower level, and CWM having a high-grade low-grade coal concentration cannot be obtained. In other words, the low-grade coal particles have a low fluidity because the physical shape includes many non-spherical particles such as a thread or a flat shape, and therefore, even if the low-grade coal is modified to some extent to have water repellency. Even if CWM (fluidization) is used, the fluidity is poor, and it is not possible to obtain CWM in which the concentration of low-grade coal is sufficiently high. In order to obtain a CWM having a sufficiently high concentration of low-rank coal, the fluidity needs to be improved.
【0006】このように、低品位炭CWMに関して、従
来の技術では低品位炭の濃度を高くすること(高濃度
化)ができず、CWMでの低品位炭の最高濃度が低く、
そのため低品位炭CWMのカロリーが低い。従って、低
品位炭CWMの高カロリー化、このための高濃度化が最
大のボトルネック即ち課題となってきた。[0006] As described above, regarding the low-rank coal CWM, it is impossible to increase the concentration of the low-rank coal (high concentration) with the conventional technology, and the maximum concentration of the low-rank coal in the CWM is low.
Therefore, the calories of low-rank coal CWM are low. Therefore, increasing the calorie of the low-rank coal CWM and increasing the concentration for this purpose have become the biggest bottleneck, that is, the problem.
【0007】[0007]
【発明が解決しようとする課題】本発明は、このような
事情に着目してなされたものであって、その目的は、C
WMでの低品位炭の最高濃度が高くてカロリーの高い低
品位炭CWMを得ることが可能な改質低品位炭及びその
製造方法、並びに、原料石炭として主に低品位炭又は改
質低品位炭を用いたCWMであって高カロリーのCWM
(石炭−水スラリー)を提供しようとするものである。SUMMARY OF THE INVENTION The present invention has been made in view of such circumstances.
Modified low-grade coal capable of obtaining low-grade coal CWM having a high concentration of low-grade coal and high calories in WM, a method for producing the same, and low-grade coal or modified low-grade coal as raw material coal High calorie CWM using charcoal
(Coal-water slurry).
【0008】[0008]
【課題を解決するための手段】上記の目的を達成するた
めに、本発明に係る改質低品位炭及びその製造方法並び
に石炭−水スラリーは、請求項1記載の改質低品位炭、
及び、請求項2記載の改質低品位炭の製造方法、並び
に、請求項3〜7記載の石炭−水スラリーとしており、
それは次のような構成としたものである。In order to achieve the above object, a modified low-grade coal according to the present invention, a method for producing the same, and a coal-water slurry are provided.
And the method for producing a modified low-grade coal according to claim 2, and the coal-water slurry according to claims 3 to 7,
It has the following configuration.
【0009】即ち、請求項1記載の改質低品位炭は、低
品位炭と平均沸点:150 〜300 ℃の石油系軽質油とを含
むスラリー状混合体を加熱して前記低品位炭の油中脱水
をすると共に前記低品位炭に石油系軽質油を含浸付着さ
せて含有せしめてなるスラリー状混合体を固液分離して
前記低品位炭中に残存する石油系軽質油の含有量を調整
してなる改質低品位炭であって、前記低品位炭が粒径:
3mm以下であると共に、前記低品位炭中に残存する石
油系軽質油の含有量が無水低品位炭質量に対して1〜10
質量%であることを特徴とする改質低品位炭である(第
1発明)。That is, the modified low-grade coal according to claim 1 is characterized in that a slurry-like mixture containing a low-grade coal and a petroleum light oil having an average boiling point of 150 to 300 ° C. is heated to produce an oil of the low-grade coal. The dewatering is performed and the slurry mixture obtained by impregnating and adhering the petroleum light oil to the low-grade coal is separated by solid-liquid separation to adjust the content of the petroleum light oil remaining in the low-grade coal. A modified low-grade coal, wherein the low-grade coal has a particle size of:
3 mm or less, and the content of the petroleum light oil remaining in the low-grade coal is 1 to 10 with respect to the weight of the anhydrous low-grade coal.
It is a modified low-grade coal characterized by mass% (first invention).
【0010】請求項2記載の改質低品位炭の製造方法
は、粒径:3mm以下の低品位炭を平均沸点:150 〜30
0 ℃の石油系軽質油と混合してスラリー状混合体を得、
このスラリー状混合体を加熱して前記低品位炭の油中脱
水をすると共に前記低品位炭に石油系軽質油を含浸付着
させて含有せしめた後、このスラリー状混合体を固液分
離して前記低品位炭中に残存する石油系軽質油の含有量
を無水低品位炭質量に対して1〜10質量%に調整した改
質低品位炭を得ることを特徴とする改質低品位炭の製造
方法である(第2発明)。[0010] The method for producing a modified low-grade coal according to claim 2 is characterized in that a low-grade coal having a particle size of 3 mm or less has an average boiling point of 150 to 30.
Mixing with 0 ° C. petroleum light oil to obtain a slurry-like mixture,
After heating the slurry-like mixture to dehydrate the low-grade coal in oil and impregnating and adhering the petroleum light oil to the low-grade coal, the slurry-like mixture is subjected to solid-liquid separation. A modified low-grade coal characterized by obtaining a modified low-grade coal in which the content of petroleum light oil remaining in the low-grade coal is adjusted to 1 to 10% by mass based on the weight of the anhydrous low-grade coal. This is a manufacturing method (second invention).
【0011】請求項3記載の石炭−水スラリーは、石炭
と水とを含む石炭−水スラリーにおいて、前記石炭が請
求項1記載の改質低品位炭または該改質低品位炭が粉砕
されてなる改質低品位炭であることを特徴とする石炭−
水スラリーである(第3発明)。A coal-water slurry according to claim 3 is a coal-water slurry containing coal and water, wherein the coal is obtained by pulverizing the modified low-grade coal according to claim 1 or the modified low-grade coal. Coal characterized by being a modified low-grade coal
It is a water slurry (third invention).
【0012】請求項4記載の石炭−水スラリーは、石炭
として低品位炭と高品位炭とを含む石炭−水スラリーで
あって、前記高品位炭の粒子の平均粒径が前記低品位炭
の粒子の平均粒径より大きいことを特徴とする石炭−水
スラリーである(第4発明)。The coal-water slurry according to claim 4 is a coal-water slurry containing low-grade coal and high-grade coal as coal, wherein the average particle size of the high-grade coal is less than that of the low-grade coal. A coal-water slurry characterized by being larger than the average particle size of the particles (fourth invention).
【0013】請求項5記載の石炭−水スラリーは、石炭
として低品位炭を含む石炭−水スラリーに高品位炭を混
合してなる石炭−水スラリーであって、前記高品位炭の
粒子の平均粒径が前記低品位炭の粒子の平均粒径より大
きいことを特徴とする石炭−水スラリーである(第5発
明)。[0013] The coal-water slurry according to claim 5 is a coal-water slurry obtained by mixing a high-grade coal with a coal-water slurry containing low-grade coal as coal, wherein the average of particles of the high-grade coal is obtained. A coal-water slurry having a particle size larger than the average particle size of the low-grade coal particles (fifth invention).
【0014】請求項6記載の石炭−水スラリーは、前記
低品位炭が請求項1記載の改質低品位炭または該改質低
品位炭が粉砕されてなる改質低品位炭である請求項4又
は5記載の石炭−水スラリーである(第6発明)。請求
項7記載の石炭−水スラリーは、前記石炭中の高品位炭
の量が10〜30質量%である請求項4、5又は6記載
の石炭−水スラリーである(第7発明)。According to a sixth aspect of the present invention, in the coal-water slurry, the low-grade coal is the modified low-grade coal according to the first aspect or a modified low-grade coal obtained by pulverizing the modified low-grade coal. It is a coal-water slurry according to 4 or 5 (sixth invention). The coal-water slurry according to claim 7 is the coal-water slurry according to claim 4, 5 or 6, wherein the amount of high-grade coal in the coal is 10 to 30% by mass (seventh invention).
【0015】[0015]
【発明の実施の形態】本発明は例えば次のようにして実
施する。低品位炭を粗粉砕した後、開口径:3mmのふ
るいにかけて粒径:3mm以下の低品位炭を得、これを
平均沸点:150 〜300 ℃の石油系軽質油と混合してスラ
リー状混合体を得、このスラリー状混合体を100 ℃以
上、例えば130 ℃に加熱して前記低品位炭中の水を蒸発
させて除去する低品位炭の油中脱水をすると共に前記低
品位炭に石油系軽質油を含浸付着させて含有せしめた
後、このスラリー状混合体を固液分離すること、例え
ば、このスラリー状混合体を遠心分離器にかけて固形分
(石油系軽質油を含有した低品位炭)を分離し、更に該
固形分を熱風乾燥にかけて油を除去するという固液分離
をすることにより、前記低品位炭中に残存する石油系軽
質油の含有量を無水低品位炭質量に対して1〜10質量%
に調整した改質低品位炭を得る。尚、油の平均沸点は、
容積平均沸点のことであり、沸点を容積で平均したもの
である。即ち、容積平均沸点(VABP)である。VABP=
(t10+t30 +t50 +t70 +t100)/5)である。t50
は、ASTM蒸留温度曲線の50%真温度である。DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention is implemented, for example, as follows. After coarsely pulverizing low-grade coal, it is sieved through a sieve having an opening diameter of 3 mm to obtain low-grade coal having a particle size of 3 mm or less. This is mixed with petroleum light oil having an average boiling point of 150 to 300 ° C. to obtain a slurry mixture. The slurry-like mixture is heated to 100 ° C. or more, for example, 130 ° C., and the low-grade coal is dewatered in oil to evaporate and remove water in the low-grade coal. After impregnating and adhering the light oil, the slurry mixture is subjected to solid-liquid separation. For example, the slurry mixture is centrifuged to obtain a solid content (low-grade coal containing petroleum light oil). , And the solid content is subjected to hot-air drying to remove oil, whereby the content of the petroleum-based light oil remaining in the low-grade coal is 1 to the mass of the anhydrous low-grade coal. ~ 10% by mass
To obtain modified low-grade coal. The average boiling point of oil is
It is the volume average boiling point, which is the boiling point averaged by volume. That is, the volume average boiling point (VABP). VABP =
(T 10 + t 30 + t 50 + t 70 + t 100) / 5) is. t 50
Is the 50% true temperature of the ASTM distillation temperature curve.
【0016】このような形態で本発明に係る改質低品位
炭の製造方法が実施され、そして本発明に係る改質低品
位炭が得られる。このようにして得られた改質低品位炭
は、CWM(石炭−水スラリー)の石炭原料として使用
される。即ち、この改質低品位炭を水及び界面活性剤等
と混合し、粉砕することにより、改質低品位炭CWMが
得られる。In this manner, the method for producing a modified low-rank coal according to the present invention is carried out, and the modified low-rank coal according to the present invention is obtained. The modified low-grade coal thus obtained is used as a coal raw material for CWM (coal-water slurry). That is, the modified low-grade coal is mixed with water, a surfactant, and the like, and pulverized to obtain a modified low-grade coal CWM.
【0017】又、かかる改質低品位炭CWMに該CWM
中の改質低品位炭よりも粒子の平均粒径より大きい高品
位炭を混合すると、高品位炭の粒子の平均粒径が改質低
品位炭の粒子の平均粒径より大きいCWMが得られる。
尚、粒子の平均粒径とは、例えばマイクロトラックを用
いて得られた粒径分布で、粒子全体の質量を等分できる
粒径のことである。即ち、重量平均径のことである。[0017] The modified low-rank coal CWM is added to the CWM.
Mixing high-grade coal with a larger average particle size than the modified low-grade coal in the middle gives CWM in which the average particle size of the high-grade coal particles is greater than the average particle size of the modified low-grade coal particles .
In addition, the average particle diameter of the particles is a particle diameter that can equally divide the mass of the whole particles in a particle diameter distribution obtained by using, for example, Microtrack. That is, the weight average diameter.
【0018】以下、本発明について主にその作用効果を
説明する。Hereinafter, the function and effect of the present invention will be mainly described.
【0019】低品位炭とは、炭化度の低い炭であり、O
/C比(酸素と炭素との原子比)が0.15以上の炭を指
し、その多くは含水率が25%以上、且つ燃料比(固定炭
素/揮発分)が2.0 以下である。低品位炭は一般に含酸
素官能基を多く有していて親水性があるためにCWM化
に向かないとされてきた。The low-grade coal is a coal having a low carbonization degree,
A coal having a / C ratio (atomic ratio between oxygen and carbon) of 0.15 or more, most of which have a water content of 25% or more and a fuel ratio (fixed carbon / volatile content) of 2.0 or less. It has been considered that low-grade coal is generally unsuitable for CWM because it has many oxygen-containing functional groups and is hydrophilic.
【0020】低品位炭等の石炭をCWM化したときのC
WMでの石炭の最高濃度は、石炭のO/C比に相関があ
るといわれており、低品位炭の如くO/C比が高い場合
は著しくCWMでの石炭の最高濃度が低いことが知られ
ている。これは、例えば図1に示される。このようにO
/C比が高い低品位炭は、それを改質しない場合にはC
WM化し得ないが、水分さえ低くすることができればC
WM化し得、燃焼性が良いものである。When CWM is converted from low-grade coal or the like, C
It is said that the maximum concentration of coal in the WM is correlated with the O / C ratio of the coal. It is known that when the O / C ratio is high, such as in low-grade coal, the maximum concentration of the coal in the CWM is extremely low. Have been. This is shown, for example, in FIG. Like this
Low-grade coal with a high / C ratio can be converted to C
Although it cannot be converted to WM, if even moisture can be reduced, C
It can be converted to WM and has good flammability.
【0021】本発明は、かかる低品位炭を改質し、CW
Mでの低品位炭の最高濃度が高いCWMを得ることがで
きるようにするものであり、先ず、本発明に係る改質低
品位炭は、前述の如く、低品位炭と平均沸点:150 〜30
0 ℃の石油系軽質油とを含むスラリー状混合体を加熱し
て前記低品位炭の油中脱水をすると共に前記低品位炭に
石油系軽質油を含浸付着させて含有せしめてなるスラリ
ー状混合体を固液分離して前記低品位炭中に残存する石
油系軽質油の含有量を調整してなる改質低品位炭であっ
て、前記低品位炭が粒径:3mm以下であると共に、前
記低品位炭中に残存する石油系軽質油の含有量が無水低
品位炭質量に対して1〜10質量%であることとしている
(第1発明)。又、本発明に係る改質低品位炭の製造方
法は、前述の如く、粒径:3mm以下の低品位炭を平均
沸点:150 〜300 ℃の石油系軽質油と混合してスラリー
状混合体を得、このスラリー状混合体を加熱して前記低
品位炭の油中脱水をすると共に前記低品位炭に石油系軽
質油を含浸付着させて含有せしめた後、このスラリー状
混合体を固液分離して前記低品位炭中に残存する石油系
軽質油の含有量を無水低品位炭質量に対して1〜10質量
%に調整した改質低品位炭を得ることを特徴とする改質
低品位炭の製造方法であることとしている(第2発
明)。According to the present invention, such low-grade coal is reformed and CW
The purpose of the present invention is to make it possible to obtain CWM in which the highest concentration of low-grade coal in M is high. First, the modified low-grade coal according to the present invention is, as described above, low-grade coal and the average boiling point: 150 to 30
The slurry-like mixture containing the petroleum light oil at 0 ° C. is heated to dehydrate the low-grade coal in oil, and the low-grade coal is impregnated with the petroleum light oil so as to be contained therein. A modified low-grade coal obtained by adjusting the content of petroleum light oil remaining in the low-grade coal by solid-liquid separation of the body, wherein the low-grade coal has a particle size of 3 mm or less, The content of the petroleum light oil remaining in the low-grade coal is 1 to 10% by mass based on the weight of the anhydrous low-grade coal (first invention). Further, as described above, the method for producing a modified low-grade coal according to the present invention comprises mixing a low-grade coal having a particle diameter of 3 mm or less with a petroleum light oil having an average boiling point of 150 to 300 ° C. And heating the slurry mixture to dehydrate the low-grade coal in oil and impregnating the low-grade coal with petroleum light oil so that the low-grade coal is contained therein. Obtaining a modified low-grade coal in which the content of petroleum light oil separated and remaining in the low-grade coal is adjusted to 1 to 10% by mass based on the mass of the anhydrous low-grade coal. This is a method for producing high-grade coal (second invention).
【0022】上記の如き低品位炭と平均沸点:150 〜30
0 ℃の石油系軽質油とを含むスラリー状混合体を加熱し
て低品位炭の油中脱水をすると、この加熱の際に低品位
炭の細孔内から水が蒸発し水蒸気が出、これにより低品
位炭の脱水が行われる。次いで、このスラリー状混合体
を冷却すると、この冷却過程において前記低品位炭の細
孔内は蒸気圧を失うことにより真空もしくはそれに近い
状態となり、ひいては石油系軽質油を吸い込み、前記低
品位炭の細孔内部までが石油系軽質油で濡れ、従って、
低品位炭に石油系軽質油を含浸付着させて含有させるこ
とができる。Low-grade coal as described above and average boiling point: 150 to 30
When a slurry mixture containing petroleum light oil at 0 ° C. is heated to dehydrate low-grade coal in oil, water evaporates from the pores of the low-grade coal during this heating, and steam is generated. Thereby, dehydration of low-grade coal is performed. Next, when the slurry-like mixture is cooled, the inside of the pores of the low-grade coal loses vapor pressure in the cooling process, so that a vacuum or a state close to the vacuum is obtained. The interior of the pores is wet with petroleum light oil,
The low-grade coal can be impregnated with petroleum light oil and contained.
【0023】一般に石炭は芳香族性が強く、脂肪族性の
石油系軽質油に対して粗(疎)油性を示すため、石炭の
細孔内部まで石油系軽質油に濡らすことは従来は難しか
ったが、上記のような油中脱水をすれば低品位炭の細孔
内部まで石油系軽質油に濡らし、石油系軽質油を含浸付
着させて含有させることができるのである。In general, coal has a strong aromaticity and shows a crude (phobic) oil property to an aliphatic petroleum light oil, so that it was conventionally difficult to wet the inside of the pores of the coal with the petroleum light oil. However, by performing the above-mentioned dehydration in oil, the inside of the pores of the low-grade coal can be wetted with the petroleum light oil, and the petroleum light oil can be impregnated and contained.
【0024】上記油中脱水の後、スラリー状混合体を固
液分離する。例えば、このスラリー状混合体から固形分
(石油系軽質油を含有した低品位炭)を分離し、更に該
固形分から石油系軽質油を機械的に或いは熱的に回収す
る。このとき、低品位炭中に残存する石油系軽質油の含
有量を無水低品位炭質量に対して1〜10質量%になるよ
うにする。そうすると、低品位炭の粒径が3mm以下で
あると共に、低品位炭中に残存する石油系軽質油の含有
量が無水低品位炭質量に対して1〜10質量%である改質
低品位炭が得られる。尚、無水低品位炭質量とは、低品
位炭を無水状態としたときの低品位炭の質量のことであ
る。After dehydration in oil, the slurry mixture is subjected to solid-liquid separation. For example, a solid (low-grade coal containing petroleum light oil) is separated from the slurry mixture, and the petroleum light oil is mechanically or thermally recovered from the solid. At this time, the content of the petroleum light oil remaining in the low-grade coal is adjusted to 1 to 10% by mass based on the weight of the anhydrous low-grade coal. Then, the low-grade coal has a particle size of 3 mm or less, and the content of the petroleum light oil remaining in the low-grade coal is 1 to 10% by mass based on the weight of the anhydrous low-grade coal. Is obtained. The mass of anhydrous low-grade coal is the mass of low-grade coal when the low-grade coal is in an anhydrous state.
【0025】このようにして得られた改質低品位炭は、
水分含有量が極めて少なく、撥水性に優れており、従っ
て、これをCWMの原料石炭として用いれば、CWMで
の低品位炭の最高濃度を高めることができ、低品位炭濃
度が高くてカロリーの高い改質低品位炭CWMを得るこ
とができる。The modified low-grade coal thus obtained is
The water content is extremely low and the water repellency is excellent. Therefore, if this is used as a raw material coal for CWM, the maximum concentration of low-grade coal in CWM can be increased, and the low-grade coal concentration is high and the calorie content is low. Highly modified low-rank coal CWM can be obtained.
【0026】本発明において、上記の如く低品位炭の粒
径が3mm以下であることとしているのは、下記の理由
による。In the present invention, the low-grade coal has a particle size of 3 mm or less as described above for the following reasons.
【0027】低品位炭の粒径が3mm超であると、油中
脱水の際に低品位炭の細孔内部まで石油系軽質油を含浸
付着させることが難しく、ひいてはCWM製造の際の再
粉砕によって撥水性が低下する。即ち、CWM製造の際
に低品位炭が再粉砕されて細かい粉粒体となったときに
石油系軽質油が付着していない部分が表面に露出し、こ
の部分では撥水性が低下する。その結果、CWMでの石
炭(低品位炭)の最高濃度が低下する。If the particle size of the low-grade coal is more than 3 mm, it is difficult to impregnate and adhere the petroleum-based light oil to the inside of the pores of the low-grade coal during dehydration in oil. This reduces the water repellency. That is, when the low-grade coal is re-crushed into fine powder during the production of CWM, a portion to which petroleum light oil is not attached is exposed on the surface, and the water repellency is reduced in this portion. As a result, the maximum concentration of coal (low-rank coal) in CWM decreases.
【0028】これに対し、低品位炭の粒径が3mm以下
であると、低品位炭の細孔内部まで石油系軽質油を含浸
付着させることができる。つまり、低品位炭の内部まで
本質的に撥水性に改質し得る。この場合は、CWM製造
の際の再粉砕によって撥水性が失われたり、低下すると
いうことがなく、再粉砕後も粉砕前と同様の良好な撥水
性を有し、ひいてはCWMでの低品位炭の最高濃度を高
めることができる。On the other hand, when the particle size of the low-grade coal is 3 mm or less, the petroleum light oil can be impregnated and adhered to the inside of the pores of the low-grade coal. That is, even the inside of the low-grade coal can be modified to be essentially water-repellent. In this case, the water repellency is not lost or reduced by the re-grinding during the production of CWM, and the re-grinding has the same good water repellency as before the pulverization. Can increase the maximum concentration.
【0029】又、低品位炭の粒径が3mm超であると、
改質低品位炭の製造の際の油中脱水前後においてポンピ
ングや熱交換器での加熱操作に支障が生じることがある
のに対し、低品位炭の粒径が3mm以下であると、かか
る支障が生じない。If the particle size of the low-grade coal is more than 3 mm,
Pumping and heating operations in a heat exchanger may occur before and after dehydration in oil during the production of modified low-grade coal, whereas when the particle size of low-grade coal is 3 mm or less, such an obstacle may occur. Does not occur.
【0030】次に、低品位炭と混合してスラリー状混合
体とする油、即ち、低品位炭の油中脱水及び油含浸付着
用の油として、平均沸点:150 〜300 ℃の石油系軽質油
を用いるようにしているのは、下記の理由による。Next, as an oil for mixing with low-grade coal to form a slurry mixture, that is, an oil for dehydrating low-grade coal in oil and adhering to oil impregnation, petroleum-based light oil having an average boiling point of 150 to 300 ° C. The reason for using oil is as follows.
【0031】油中脱水用の油は、油中脱水の際に水より
も先に蒸発してはならない。即ち、低品位炭中の水分が
先ず蒸発し、この後、低品位炭に油が含浸付着する必要
がある。この点から沸点:100 ℃超であることが先ず必
要であるが、沸点:150 ℃未満の場合には油中脱水の際
の油の蒸発量が多いという支障がある。又、油中脱水及
び油含浸付着の後は固液分離して油含有量を調整してな
る改質低品位炭を得ると共に油分を回収する必要があ
り、この油含有量の調整に際しては改質低品位炭から余
計な油分を該油分の沸点以上の温度に加熱し熱乾燥して
回収する必要があり、このとき油分の沸点が300 ℃超で
あると低品位炭が熱的に変質するという支障が生じるの
で、油の沸点:300 ℃以下であることが必要である。従
って、油中脱水用の油は平均沸点:150 〜300 ℃のもの
であることとした。尚、上記熱乾燥による油の回収性を
より容易にするという面からは平均沸点:150 〜250 ℃
の油を用いることが望ましい。このように油分は含浸付
着せしめる一部を除いて徹底的に回収するが、それは石
炭に比べて油は高価であり、回収可能な油は回収すべき
であり、そうしなければ改質低品位炭製造プロセスに係
わるトータルコストが増え、低品位炭の改質、CWMの
カロリー向上の意義や価値が減少するからである。Oil for dehydration in oil must not evaporate before water during dehydration in oil. That is, it is necessary that the water in the low-grade coal first evaporates, and then the low-grade coal is impregnated with the oil. From this point, it is first necessary that the boiling point is higher than 100 ° C. However, if the boiling point is lower than 150 ° C, there is a problem that a large amount of oil evaporates during dehydration in oil. In addition, after dehydration in oil and oil impregnation, it is necessary to obtain a modified low-grade coal by adjusting the oil content by solid-liquid separation and recover the oil content. It is necessary to recover excess oil from the low-grade coal by heating it to a temperature higher than the boiling point of the oil and drying it by heat. If the boiling point of the oil exceeds 300 ° C., the low-grade coal thermally degrades Therefore, it is necessary that the oil has a boiling point of 300 ° C. or less. Therefore, the oil for dehydration in oil was determined to have an average boiling point of 150 to 300 ° C. The average boiling point is from 150 to 250 ° C. from the viewpoint of making the recovery of oil by thermal drying easier.
It is desirable to use an oil of In this way, the oil is thoroughly recovered except for the part that causes it to impregnate and adhere, but it is expensive compared to coal, and the recoverable oil should be recovered. This is because the total cost related to the coal production process increases, and the significance and value of reforming low-rank coal and increasing the calories of CWM decrease.
【0032】低品位炭に含浸付着用の油は、低品位炭を
撥水性に改質し得るものであることが必要であり、この
ためには疎水性であることが必要である。石油系軽質油
(灯油、軽油)は疎水性に優れている。従って、石油系
軽質油を用いるようにした。なお、石油系軽質油にアス
ファルト等の重質油分を少量(例えば1〜2%)添加し
てもよい。この重質油分は回収できないが、低品位炭に
吸着してカロリーアップや撥水性への改質に寄与し、
又、界面活性剤的な役割をして油中脱水の際に油中での
低品位炭の分散を良くする働きもある。The oil for impregnating and adhering to low-grade coal needs to be capable of modifying low-grade coal to be water-repellent, and for this purpose it is necessary to be hydrophobic. Petroleum-based light oils (kerosene, light oil) have excellent hydrophobicity. Therefore, petroleum-based light oil was used. A small amount (for example, 1 to 2%) of heavy oil such as asphalt may be added to petroleum light oil. Although this heavy oil cannot be recovered, it absorbs low-grade coal and contributes to increasing calories and improving water repellency.
It also acts as a surfactant to improve the dispersion of low-grade coal in oil during dehydration in oil.
【0033】次に、前記油中脱水及び油含浸付着後の固
液分離の後に低品位炭中に残存する石油系軽質油の含有
量(以下、残油量ともいう)が無水低品位炭質量に対し
て1〜10質量%であることとしているのは、下記の理由
による。Next, the content of the petroleum-based light oil remaining in the low-grade coal after the dehydration in oil and the solid-liquid separation after the oil impregnation and adhesion (hereinafter also referred to as the residual oil amount) is changed to the mass of the anhydrous low-grade coal. 1 to 10% by mass with respect to the following reason.
【0034】残油量を1質量%未満とした場合には、低
品位炭の撥水性が不充分であり、ひいてはCWMでの低
品位炭の最高濃度が高いCWMが得られ難い。これに対
し、残油量を1質量%以上とした場合には、撥水性が優
れて充分な改質低品位炭となり、ひいてはCWMでの低
品位炭の最高濃度が高いCWMが得られる。しかし、油
は低品位炭に比較すると極めて高価であり、10質量%超
にすると経済性が悪くなる。かかる点から、残油量を1
〜10質量%とした。尚、より確実に撥水性が優れた改質
低品位炭を得るために残油量を1.5 質量%以上にするこ
とが望ましく、一方、経済性の面からは残油量を5質量
%以下とすることが望ましい。When the residual oil content is less than 1% by mass, the water repellency of the low-grade coal is insufficient, and it is difficult to obtain a CWM with a high maximum concentration of the low-grade coal in CWM. On the other hand, when the residual oil content is 1% by mass or more, a sufficiently modified low-grade coal having excellent water repellency and a high concentration of the low-grade coal in CWM can be obtained. However, oil is extremely expensive as compared with low-grade coal, and if it exceeds 10% by mass, the economical efficiency is deteriorated. From this point, the residual oil amount is 1
To 10% by mass. In order to more reliably obtain a modified low-grade coal having excellent water repellency, the residual oil content is desirably 1.5% by mass or more. On the other hand, from the viewpoint of economy, the residual oil content is 5% by mass or less. It is desirable to do.
【0035】このような低品位炭の撥水性に及ぼす残油
量の影響は、図2からもわかる。即ち、低品位炭の典型
例である豪州褐炭を油中脱水して改質した場合に得られ
た低品位炭についての残油量と恒湿水分との関係を図2
に示す。この恒湿水分は、通常 JIS M 8811 の方法によ
り測定される。これは、飽和食塩水を入れた恒湿容器内
で恒量になるまで静置した後、107 ℃±2℃で恒量とな
るまで乾燥し、その質量差から恒湿水分を求めるもので
ある。この恒湿水分は撥水性の強弱の目安となる。換言
すれば、撥水性の強いものほど恒湿水分が低く、撥水性
の弱いものほど恒湿水分が高い。図2によれば、恒湿水
分には残油量1.5 質量%以上で飽和現象が見られ、ま
た、残油量1質量%でもこの飽和レベルにかなり近い。
このことから、疎水性発現には残油量1%でかなりの効
果があり、残油量1.5 %以上ならほぼ確実な効果が期待
できる。尚、豪州褐炭はO/C比が0.3 弱と大きく、
又、最も内表面積の多い低品位炭に属するので、豪州褐
炭以外の低品位炭においても残油量が1質量%以上であ
れば撥水性は充分であるといえる。The effect of the residual oil amount on the water repellency of such low-grade coal can also be seen from FIG. In other words, FIG. 2 shows the relationship between the residual oil content and the constant humidity moisture for low-grade coal obtained when Australian brown coal, which is a typical example of low-grade coal, is reformed by dehydration in oil.
Shown in This constant moisture is usually measured by the method of JIS M8811. In this method, the sample is allowed to stand in a constant-humidity container containing a saturated saline solution until it reaches a constant weight, and then dried at 107 ° C. ± 2 ° C. to a constant weight, and the constant moisture is determined from the difference in mass. This constant moisture is a measure of the strength of the water repellency. In other words, the stronger the water repellency, the lower the constant humidity moisture, and the weaker the water repellency, the higher the constant moisture. According to FIG. 2, the constant humidity shows a saturation phenomenon when the residual oil amount is 1.5% by mass or more, and even when the residual oil amount is 1% by mass, the saturation level is very close to this saturation level.
From these facts, it is expected that the residual oil content of 1% has a considerable effect on the development of hydrophobicity, and that an almost reliable effect can be expected if the residual oil content is 1.5% or more. In addition, Australian lignite has a large O / C ratio of less than 0.3,
In addition, since it belongs to the low-grade coal having the largest inner surface area, even in low-grade coal other than Australian lignite, it can be said that the water repellency is sufficient if the residual oil amount is 1% by mass or more.
【0036】上記第1発明に係る改質低品位炭をCWM
の原料石炭として用いてCWMを製造すると、CWMで
の石炭(改質低品位炭)の最高濃度が高くてカロリーの
高い改質低品位炭CWM(即ち、第3発明に係るCW
M)が得られる。このCWMの製造は、通常はボールミ
ル等の粉砕機に原料の改質低品位炭と水、或いは更に界
面活性剤を供給し、これらを混合粉砕する湿式法により
行われる。このとき、原料石炭(混合粉砕前)の改質低
品位炭は粒径が3mm以下であり、通常はmmオーダで
あるが、混合粉砕により1〜500 μm の細かい粒子とな
る。即ち、この場合にはCWM中の改質低品位炭は、混
合粉砕により粉砕されてなる改質低品位炭の状態で存在
する。これに対し、原料石炭の改質低品位炭の粒径が極
めて細かいときには、殆ど粉砕することなく混合するだ
けでCWMを製造し得、この場合にはCWM中の改質低
品位炭は殆ど粉砕されない状態で存在することになる。The modified low-grade coal according to the first aspect of the present invention is CWM
When CWM is manufactured using the raw material coal of the present invention, the modified low-grade coal CWM (ie, the CW according to the third invention) in which the maximum concentration of coal (modified low-grade coal) in the CWM is high and the calorie is high.
M) is obtained. The production of CWM is usually carried out by a wet method in which a raw material of modified low-grade coal and water or a surfactant is supplied to a pulverizer such as a ball mill and a surfactant is mixed and pulverized. At this time, the modified low-grade coal of the raw coal (before mixing and pulverization) has a particle size of 3 mm or less, usually on the order of mm, but becomes fine particles of 1 to 500 μm by mixing and pulverization. That is, in this case, the modified low-grade coal in the CWM exists in a state of the modified low-grade coal obtained by being pulverized by mixing and pulverization. On the other hand, when the particle size of the modified low-grade coal of the raw coal is extremely fine, CWM can be produced only by mixing with little pulverization. In this case, the modified low-grade coal in CWM is almost pulverized. Will exist in a state that will not be done.
【0037】尚、特許第2607424 号公報には、低品位炭
に油を塗布して油中脱水して改質することが記載されて
いる。この改質の方法は、油中脱水する点において上記
本発明と共通するが、油塗布される低品位炭の粒径は1/
2 〜3インチと記載されており、上記本発明の場合(粒
径:3mm以下)と比較し、極めて粗大であり、特にこ
の点において相違する。[0037] Japanese Patent No. 2607424 describes that low-grade coal is coated with oil and dehydrated in oil for reforming. This reforming method is common to the above-described present invention in that it is dehydrated in oil, but the particle size of the low-grade coal applied with oil is 1 /
It is described as 2 to 3 inches, which is extremely coarse as compared with the case of the present invention (particle size: 3 mm or less), and is particularly different in this point.
【0038】上記公報の場合のように油中脱水される低
品位炭の粒径が大きい場合には、低品位炭の細孔内部ま
で油を含浸付着させて低品位炭の内部まで本質的に撥水
性に改質することは極めて困難であり、殆ど不可能であ
るので、CWM製造の際の再粉砕によって油が付着して
いない表面が多く露出し、撥水性が失われ、或いは低下
し、ひいてはCWMでの低品位炭の最高濃度をあまり高
め得ない。これに対して、上記本発明の場合には、油中
脱水される低品位炭の粒径が極めて小さい(3mm以
下)ので、前述の如く、低品位炭の細孔内部まで油を含
浸付着させ、低品位炭の内部まで本質的に撥水性に改質
し得、この結果、CWM製造の際の再粉砕によって撥水
性が失われたり、低下するということがなく、再粉砕後
も粉砕前と同様の良好な撥水性を有し、ひいてはCWM
での低品位炭の最高濃度を高めることができる。特に、
かかる点において上記公報記載のものと上記本発明とは
作用効果が顕著に相違する。When the low-grade coal to be dehydrated in oil has a large particle size as in the case of the above-mentioned publication, oil is impregnated and adhered to the inside of the pores of the low-grade coal, and the inside of the low-grade coal is essentially impregnated. Since it is extremely difficult and almost impossible to modify to water repellency, re-grinding during the production of CWM exposes many surfaces to which oil is not attached, and loses or reduces water repellency, As a result, the maximum concentration of low-rank coal in CWM cannot be increased so much. On the other hand, in the case of the present invention, since the particle size of the low-grade coal to be dehydrated in oil is extremely small (3 mm or less), the oil is impregnated and adhered to the inside of the pores of the low-grade coal as described above. In addition, the inside of the low-grade coal can be modified to be essentially water-repellent, so that the water-repellency is not lost or reduced by re-grinding during CWM production. Has a similar good water repellency and thus CWM
Can increase the maximum concentration of low-grade coal. In particular,
In this respect, the operation described in the above publication and the invention are remarkably different.
【0039】この他、油中脱水用の油、低品位炭中に含
有させる油の量、油の種類等の点において、上記本発明
と上記公報記載のものとは構成及び作用効果が相違す
る。In addition, the present invention is different from the above-mentioned publication in the constitution, operation and effect in the point of oil for dehydration in oil, amount of oil contained in low-grade coal, type of oil and the like. .
【0040】上記本発明に係る改質低品位炭CWMに該
CWM中の改質低品位炭の平均粒径よりも平均粒径が大
きい高品位炭を存在(共存)させると、CWMの流動性
を向上し得、このため、CWMに含有させ得る改質低品
位炭の量を多くし得、ひいてはCWMでの改質低品位炭
の最高濃度が高くてカロリーの高いCWM(即ち、第6
発明に係るCWM)を得ることができる。この詳細、特
に上記流動性の向上の点についての詳細を、以下説明す
る。When the high-grade coal having an average particle size larger than the average particle size of the modified low-grade coal in the CWM is present (coexisting) in the CWM of the present invention, the fluidity of the CWM is improved. And therefore the amount of modified low rank coal that can be included in the CWM can be increased, and thus the highest concentration of the modified low rank coal in the CWM and the high calorie CWM (ie, 6th
CWM according to the invention). The details, particularly the details of the improvement in the fluidity, will be described below.
【0041】低品位炭の場合、これを粉砕機により粉砕
して得られる粒子、特にボールミル等の通常の粉砕手段
により粉砕して得られる粒子は、図3(A) に例示する如
く、高品位炭の場合に比較して球形度が悪い。かかる球
形度が悪い粒子を水と混合して懸濁液、即ちCWMとす
る場合、該粒子を懸濁液中にたとえ細密に充填したとし
ても、この懸濁液(CWM)は変形に対する抵抗が強い
ため、見掛け粘度が大きくなり、ときには変形速度が上
がるほど見掛け粘度が上がるという性質を示すことすら
ある。In the case of low-grade coal, particles obtained by pulverizing the same with a pulverizer, particularly particles obtained by pulverizing with a usual pulverizing means such as a ball mill, have a high quality as shown in FIG. Poor sphericity compared to charcoal. When the particles having poor sphericity are mixed with water to form a suspension, that is, CWM, even if the particles are finely packed in the suspension, the suspension (CWM) has a resistance to deformation. Since it is strong, the apparent viscosity is increased, and sometimes the apparent viscosity is increased as the deformation speed is increased.
【0042】これに対し、瀝青炭等のように炭化度の高
い高品位炭の場合、通常の粉砕たとえばボールミル粉砕
で得られる粒子でも、図3(B) に例示する如く、球形度
が高い。On the other hand, in the case of a high-rank coal having a high degree of carbonization, such as bituminous coal, even particles obtained by ordinary pulverization, for example, ball mill pulverization, have a high sphericity as exemplified in FIG. 3 (B).
【0043】かかる球形度の高い高品位炭粒子を改質低
品位炭CWMに存在させる。このとき、この高品位炭粒
子としては改質低品位炭の平均粒径よりも平均粒径が大
きいものを存在させる。つまり、CWM中に該CWM中
の改質低品位炭よりも平均粒径が大きく球形度の高い高
品位炭粒子を存在させる。そうすると、変形に対する抵
抗を弱め、流動性を改善することができる。即ち、CW
M中において高品位炭粒子は改質低品位炭粒子の中でベ
アリング或いは車輪的な働きを持ち、そのため流動性が
向上する。このため、高品位炭粒子を共存させることに
よって粘度を上げることなく、CWMに含有させ得る改
質低品位炭の量を多くし得る。ひいてはCWMでの改質
低品位炭の最高濃度が高くてカロリーの高いCWMを得
ることができる。The high-grade coal particles having a high sphericity are present in the modified low-grade coal CWM. At this time, as the high-grade coal particles, those having an average particle size larger than the average particle size of the modified low-grade coal are present. That is, high-grade coal particles having a larger average particle size and higher sphericity than the modified low-grade coal in the CWM are present in the CWM. Then, the resistance to deformation can be reduced and the fluidity can be improved. That is, CW
In M, the high-grade coal particles have a bearing or wheel function in the modified low-grade coal particles, so that the fluidity is improved. Therefore, the amount of the modified low-grade coal that can be contained in CWM can be increased without increasing the viscosity by coexisting the high-grade coal particles. As a result, CWM having a high maximum concentration of the modified low-rank coal in CWM and having high calories can be obtained.
【0044】ここで、低品位炭に共存させる高品位炭粒
子の平均粒径を低品位炭よりも大きくしているのは、下
記の理由による。The reason why the average particle size of the high-grade coal particles coexisting with the low-grade coal is larger than that of the low-grade coal is as follows.
【0045】図4に示す如く、2枚の板(板状粒子)の
間に球を挟んだ状態において、この球の大きさが小さい
場合は、球の摩擦低減効果は板と板が互いに平行にずれ
るときに限られるのに対し、球の大きさが大きい場合
は、球の摩擦低減効果はこのような平行な板のずれのと
きに限られず、球の摩擦低減効果の方向性に自由度が大
きい。ここで、球形度が悪い低品位炭粒子は板状粒子或
いはそれに類似したものとみなし、球形度が高い高品位
炭粒子は球或いはそれに類似したものとみなし得る。そ
うすると、球形度が悪い低品位炭粒子と球形度が高い高
品位炭粒子が共存する場合、高品位炭粒子が大きいとき
はその摩擦低減効果の方向性に自由度が大きいことにな
る。As shown in FIG. 4, in a state where a sphere is sandwiched between two plates (plate-like particles), when the size of the sphere is small, the friction reducing effect of the sphere is parallel to each other. When the size of the sphere is large, the effect of reducing the friction of the sphere is not limited to the displacement of such parallel plates. Is big. Here, low-grade coal particles having poor sphericity can be regarded as plate-like particles or similar ones, and high-grade coal particles having high sphericity can be regarded as spheres or similar ones. Then, when low-grade coal particles having poor sphericity and high-grade coal particles having high sphericity coexist, when the high-grade coal particles are large, the degree of freedom in the direction of the friction reducing effect is large.
【0046】このように高品位炭粒子の摩擦低減効果の
方向性に自由度が大きいと、CWMの変形に対する抵抗
が弱く、その流動性が向上する。即ち、改質低品位炭粒
子は球形度が悪くて紙状や糸状であり、かかる改質低品
位炭粒子がCWMの水中という3次元の液空間に存在す
るので、その方向性は各粒子でまちまちであるのに対
し、CWMの変形には方向性が有るので、高品位炭粒子
の摩擦低減効果の方向性に自由度が大きいとCWMの変
形に対する抵抗が弱く、その流動性が向上する。As described above, when the degree of freedom in the direction of the friction reducing effect of the high-grade coal particles is large, the resistance to deformation of the CWM is weak, and the fluidity thereof is improved. That is, the modified low-grade coal particles have poor sphericity and are paper-like or thread-like. Since such modified low-grade coal particles exist in the three-dimensional liquid space of CWM in water, the directionality of each particle is different. On the other hand, since the deformation of the CWM has directionality, if the degree of freedom of the direction of the friction reducing effect of the high-grade coal particles is large, the resistance to the deformation of the CWM is weak and the fluidity is improved.
【0047】よって、低品位炭に共存させる高品位炭粒
子の平均粒径を低品位炭よりも大きくしているのであ
る。Therefore, the average particle size of the high-grade coal particles coexisting with the low-grade coal is made larger than that of the low-grade coal.
【0048】上記CWM中の高品位炭粒子は球形度が高
いことが望ましい。そのためには、この原料状態での高
品位炭としては、これを粉砕したときに球形度が高い粒
子となるものが必要である。又、上記高品位炭粒子はC
WM燃焼の際の燃焼速度が遅すぎないことが必要であ
る。かかる観点から、これらの点を充たす高品位炭は、
O/C比で0.03〜0.15の範囲のものである。It is desirable that the high-grade coal particles in the CWM have a high sphericity. For this purpose, it is necessary that the high-grade coal in the raw material state be one that becomes particles with high sphericity when pulverized. The high-grade coal particles are C
It is necessary that the burning rate during WM burning is not too slow. From this viewpoint, high-grade coal that satisfies these points is
The O / C ratio is in the range of 0.03 to 0.15.
【0049】前記の如く、低品位炭に共存させる高品位
炭粒子の平均粒径を低品位炭よりも大きくしているが、
各々の平均粒径を具体的にどの程度にするかという点に
ついては、下記の如く実用性等を加味して考慮すること
が望ましい。即ち、通常CWM中の石炭粒径は1〜500
μm 程度が良いとされていて、1000μm を大きく超える
石炭粗粒子は沈降性の面から望ましくなく、又、1μm
を大きく下回る石炭粒子を多量に製造することはエネル
ギー的にも、設備的にも現実的でなく、実用性に乏し
い。又、粉砕でえられる粒子は、ある粒度分布を持つ。
かかる事情を考慮すると、低品位炭側の粒度分布を1〜
500 μm とし、高品位炭側の粒度分布を10〜1000μm 、
望ましくは50〜1000μm とすることが適切である。この
場合、CWMの流動性向上の効果が得られ、CWMでの
石炭の最高濃度が高くてカロリーの高いCWMを得るこ
とができるが、低品位炭の平均粒径と高品位炭粒子の平
均粒径との差が小さくなると、CWMの流動性向上の効
果が小さくなるので、この平均粒径の差は大きい方がよ
い。As described above, the average particle size of the high-grade coal particles coexisting with the low-grade coal is larger than that of the low-grade coal.
It is desirable to take into consideration the practicality and the like, as described below, in terms of the specific average particle size. That is, the particle size of coal in CWM is usually 1 to 500.
μm is considered to be good, and coal coarse particles exceeding 1000 μm are undesirable because of sedimentation.
It is not practical in terms of energy and equipment to produce a large amount of coal particles significantly lower than the above, and is not practical. The particles obtained by pulverization have a certain particle size distribution.
In consideration of such circumstances, the particle size distribution on the low-rank coal side is 1 to
500 μm, and the particle size distribution on the high-grade coal side is 10-1000 μm,
Desirably, the thickness is 50 to 1000 μm. In this case, the effect of improving the fluidity of the CWM can be obtained, and the CWM having the highest concentration of coal in the CWM and having a high calorie can be obtained. However, the average particle size of the low-rank coal and the average grain of the high-rank coal particles are obtained. When the difference from the diameter is small, the effect of improving the fluidity of the CWM is small, so that the difference in the average particle diameter is preferably large.
【0050】上記本発明を実際に適用する場合のCWM
製造プロセスの一例を図5に示す。この図5に例示のプ
ロセスにおいては、一旦改質低品位炭CWMを製造し、
これを海上輸送またはパイプライン輸送により遠隔地に
運び、そこで該改質低品位炭CWMに対し高品位炭を粗
粉砕してなる高品位炭粒子(該CWM中改質低品位炭よ
りも平均粒径が大きい)を混合してCWMを得るという
ものである。この高品位炭粒子の混合に際し、高品位炭
粒子の平均粒径が改質低品位炭の平均粒径よりも小さく
ならないようにすることが必要であり、そのためには高
品位炭として粉砕され易い瀝青炭等を添加した場合は混
合粉砕するのではなく、混合するだけにするのがよい。
粉砕され難い瀝青炭等の高品位炭を添加した場合は混合
粉砕してもかまわない。尚、高品位炭粒子の混合は改質
低品位炭CWMの製造現場で行ってもよい。CWM when the present invention is actually applied
FIG. 5 shows an example of the manufacturing process. In the process illustrated in FIG. 5, once the modified low-rank coal CWM is manufactured,
This is transported to a remote place by sea or pipeline transportation, where the high quality coal particles obtained by coarsely pulverizing the high quality coal with respect to the modified low quality coal CWM (the average particle size is higher than that of the modified low quality coal in the CWM) (Large diameter) is mixed to obtain CWM. In mixing the high-grade coal particles, it is necessary to prevent the average particle size of the high-grade coal particles from being smaller than the average particle size of the modified low-grade coal, and for that purpose, it is easily crushed as high-grade coal When bituminous coal or the like is added, it is preferred that the mixture is not mixed and pulverized, but only mixed.
If high-grade coal, such as bituminous coal, which is difficult to pulverize, is added, it may be mixed and pulverized. The high-grade coal particles may be mixed at the production site of the modified low-grade coal CWM.
【0051】上記の如く改質低品位炭CWMに該CWM
中の改質低品位炭の平均粒径よりも平均粒径が大きい高
品位炭を共存させると、CWMの流動性を向上し得、こ
のため、CWMに含有させ得る改質低品位炭の量を多く
し得、ひいてはCWMでの改質低品位炭の最高濃度が高
くてカロリーの高いCWM(第6発明に係るCWM)を
得ることができる。かかる効果は、高品位炭と共存する
ベース(主体の石炭)の改質低品位炭が前記第1発明に
係る改質低品位炭である場合だけでなく、油中脱水法に
よる改質手段以外の改質手段によって得られた改質低品
位炭である場合も、同様に得られる。As described above, the modified low-rank coal CWM
When high-grade coal having an average particle size larger than the average particle size of the modified low-grade coal in the coexistence, the fluidity of CWM can be improved, and therefore, the amount of the modified low-grade coal that can be contained in CWM Therefore, CWM having high maximum concentration of modified low-rank coal in CWM and high calories (CWM according to the sixth invention) can be obtained. This effect is obtained not only when the modified low-grade coal of the base (mainly coal) coexisting with the high-grade coal is the modified low-grade coal according to the first invention, but also in the case other than the reforming means by the in-oil dehydration method. In the case of the modified low-grade coal obtained by the above-mentioned reforming means, the same can be obtained.
【0052】更には、上記主体の石炭が改質低品位炭で
はなく、低品位炭(改質されていない低品位炭)である
場合においても、上記と同様の効果が得られる。即ち、
低品位炭CWMに該CWM中の低品位炭の平均粒径より
も平均粒径が大きい高品位炭を共存させると、CWMの
流動性を向上し得、このため、CWMに含有させ得る低
品位炭の量を多くし得、ひいてはCWMでの低品位炭の
最高濃度が高くてカロリーの高いCWM(第4発明に係
るCWM)を得ることができる。Further, even when the main coal is not low-grade coal but low-grade coal (low-grade coal that has not been reformed), the same effect as described above can be obtained. That is,
When high-grade coal having an average particle size larger than the average particle size of the low-grade coal in the CWM is allowed to coexist with the low-grade coal CWM, the fluidity of the CWM can be improved, and therefore, the low-grade coal that can be contained in the CWM is reduced. It is possible to increase the amount of charcoal, and thus to obtain a CWM having a high concentration of low-grade coal in the CWM and a high calorie (the CWM according to the fourth invention).
【0053】かかるCWMは、低品位炭CWMを一旦得
た後、該CWMに対して該CWM中低品位炭よりも平均
粒径が大きい高品位炭を混合することにより、低品位炭
と該低品位炭よりも平均粒径が大きい高品位炭とが共存
して含まれたCWM(第5発明に係るCWM)を得るこ
とができる。The CWM is obtained by once obtaining a low-grade coal CWM and then mixing the CWM with a high-grade coal having an average particle size larger than that of the CWM medium-low-grade coal, thereby obtaining the low-grade coal and the low-grade coal. It is possible to obtain a CWM (CWM according to the fifth invention) in which high-grade coal having an average particle size larger than that of the high-grade coal coexists.
【0054】前記の如く低品位炭と該低品位炭よりも平
均粒径が大きい高品位炭とを含むCWM(第4発明、第
5発明、第6発明に係るCWM)において、ベース(主
体の石炭)は低品位炭であり、よって、高品位炭の量は
低品位炭の量よりも少ない。このときの高品位炭の量
は、特には制限されないが、石炭の量(低品位炭及び高
品位炭の合計量)に対して10〜30質量%とすることが望
ましい。それは、高品位炭の量が10質量%未満の場合に
は高品位炭によるCWMの流動性の向上の程度が低く、
カロリーアップの意味が希薄になり、このため10質量%
以上とし多くすることが望ましいが、30質量%超とする
と高品位炭が多すぎて経済性の低下を招くようになるか
らである。As described above, in the CWM including the low-grade coal and the high-grade coal having an average particle size larger than that of the low-grade coal (the CWM according to the fourth, fifth, and sixth inventions), Coal) is a low-rank coal, so the amount of high-rank coal is less than the amount of low-rank coal. The amount of high-grade coal at this time is not particularly limited, but is preferably 10 to 30% by mass based on the amount of coal (total amount of low-grade coal and high-grade coal). That is, when the amount of high-grade coal is less than 10% by mass, the degree of improvement of CWM fluidity by high-grade coal is low,
The meaning of calorie up is diluted, so 10% by mass
Although it is desirable to increase the amount as described above, if it exceeds 30% by mass, the amount of high-grade coal is too large, which causes a decrease in economic efficiency.
【0055】尚、特公平7-84670 号公報には、低品位炭
と高品位炭とを含むCWMが記載されている。しかし、
この低品位炭は粗粒であり、高品位炭は微粉であり、低
品位炭よりも高品位炭の方が粒径が細かい。これは、界
面活性剤を多く消費する低品位炭の表面積を小さくし
て、界面活性使用量を低減することを意図するものであ
る。従って、この公報に記載されたものは、前記本発明
(第4〜7発明)とは、上記の如き点において目的及び
構成が相違し、その作用効果も相違することは明らかで
ある。更に、これ以外の点においても、両者は構成及び
作用効果が相違する。Incidentally, Japanese Patent Publication No. 7-84670 discloses a CWM containing low-grade coal and high-grade coal. But,
The low-grade coal is coarse and the high-grade coal is fine powder. The high-grade coal has a finer grain size than the low-grade coal. This is intended to reduce the surface area of low-grade coal that consumes a large amount of surfactant, thereby reducing the amount of surfactant used. Therefore, it is apparent that the object described in this publication differs from the present invention (the fourth to seventh inventions) in the purpose and configuration in the above-described points, and also in the operation and effect. In other respects as well, the two have different configurations and operational effects.
【0056】ところで、CWMを燃料として用いるに際
し、CWMのカロリーは重要な事項であり、それが高い
ことが望まれるが、この他にCWMの石炭灰(石炭灰
分)の塩基度及び融点も重要な事項であり、CWMの用
途によって石炭灰の塩基度及び融点の調整が行われる。
この点に関する現状と問題点、及び、その対策について
以下記述する。When CWM is used as a fuel, the calorie of CWM is an important matter, and it is desired that the calorie be high. In addition, the basicity and melting point of coal ash (coal ash) of CWM are also important. The basicity and melting point of coal ash are adjusted depending on the use of CWM.
The current situation and problems in this regard, and the countermeasures are described below.
【0057】一般の石炭ボイラー(以下、微粉炭焚きボ
イラーともいう)においては、スラギング(炉汚れ)を
避けるために、或いは、大きい熱流束を得るために、石
炭灰の融点が高いことが好まれる。そこで、石炭輸入国
は高融点灰(高融点石炭灰)の石炭を購入し、低融点灰
の石炭は産炭地において熱流束を抑えた設計の効率の悪
いボイラー火炉で使われている。一方、電力用ガス化炉
の主流となりつつあるスラグタップ型(ウェットボトム
型)の噴流層ガス化炉の場合は、石炭灰の融点が低いこ
とが好まれる。そこで、高品位炭にCaを主体とする所謂
フラックスを添加して、石炭灰の塩基度を上げて、融点
を下げることが行われている。In a general coal boiler (hereinafter also referred to as a pulverized coal-fired boiler), it is preferable that the melting point of coal ash be high in order to avoid slagging (furnace fouling) or to obtain a large heat flux. . Therefore, coal importing countries have purchased high-melting ash (high-melting ash) coal, and low-melting ash coal is being used in coal-producing areas in inefficient boiler furnaces designed to reduce heat flux. On the other hand, in the case of a slag tap type (wet bottom type) spouted bed gasifier which is becoming the mainstream of a power gasifier, it is preferable that the melting point of coal ash be low. Therefore, a so-called flux mainly composed of Ca is added to high-grade coal to raise the basicity of coal ash and lower the melting point.
【0058】かかるボイラーや炉等に低品位炭CWMを
使用する場合、下記の如き問題点等がある。低品位炭
は、含水率が高いので、イオン交換性のミネラル分(N
a,Ca,K,Mg等)を含むものが多く、灰分(石炭灰)
の塩基度が高い。かかる塩基度が高い灰分は灰の融点が
低い傾向があって、一般の石炭ボイラーではスラギング
等の炉内汚れを起こす心配がある。更に、塩基度があま
りにも高くなると、逆に融点が上がる傾向があり、かか
る低品位炭はスラグタップ型噴流床ガス化炉では使い難
い。When low-grade coal CWM is used in such a boiler or furnace, there are the following problems. Since low-grade coal has a high water content, it has an ion-exchange mineral (N
a, Ca, K, Mg, etc.) and ash (coal ash)
Has a high basicity. Such an ash having a high basicity tends to have a low melting point of the ash, and there is a concern that a general coal boiler may cause in-furnace contamination such as slagging. Further, when the basicity is too high, the melting point tends to increase, and such low-grade coal is difficult to use in a slag tap type spouted bed gasifier.
【0059】低品位炭は反応性が高く、火炉、ガス化炉
に好ましい基礎物性を有するが、灰分の融点を調整する
ことができなければ、上記の如き問題点があって利用し
ずらい面がある。従って、灰分の融点を調整し得るよう
にすることが、重要である。尚、低品位炭としては灰分
の含有量が無水低品位炭質量に対して(乾炭比で)5質
量%以下のものが豪州やインドネシア等に少なからず存
在する。Low-grade coal is highly reactive and has favorable basic physical properties for furnaces and gasifiers. However, if the melting point of the ash cannot be adjusted, the problems described above make it difficult to use. There is. Therefore, it is important to be able to adjust the melting point of the ash. Notably, low-rank coals having an ash content of not more than 5% by mass (based on dry coal) based on the weight of anhydrous low-rank coal are not limited to Australia and Indonesia.
【0060】上記低品位炭の場合に対し、高品位炭の灰
分はSiO2、Al2O3 が多く塩基度が低い。又、灰分量が極
端に少ないことは殆どなく、選炭しても乾炭比で10質量
%以下になる例は少ない。In contrast to the case of the low-rank coal, the ash of the high-rank coal has a large amount of SiO 2 and Al 2 O 3 and a low basicity. In addition, the ash content is hardly extremely small, and there are few cases where the dry coal ratio is 10% by mass or less even when the coal is cleaned.
【0061】上記の如き塩基度は、Base/Acid比=〔Ca
O+Fe2O3+MgO+Na2O+K2O〕/〔SiO2+Al2O3+TiO2〕で評価
されることが多い(以下、この比を B/A比という)。一
般にB/A 比が上がると融点が下がることが知られてお
り、ボイラー用石炭を購入する際にはB/A 比やこれを含
むインデックス(Index)に上限を設けることが多い。ま
た、前記ガス化炉や製鉄用高炉等ではCaを含むフラック
スを添加し混入してB/A比を上げて融点を下げる技術が
既に確立している。The basicity as described above is calculated based on the ratio Base / Acid = [Ca
O + Fe 2 O 3 + MgO + Na 2 O + K 2 O ] / [SiO 2 + Al 2 O 3 + TiO 2 ] is often evaluated (hereinafter, the ratio of B / A ratio). It is generally known that as the B / A ratio increases, the melting point decreases. When purchasing coal for boilers, it is often the case that an upper limit is set for the B / A ratio and an index containing the same. In addition, in the gasification furnace and the blast furnace for steelmaking, a technique has been already established in which a flux containing Ca is added and mixed to increase the B / A ratio and lower the melting point.
【0062】塩基度(B/A 比)がさらに高く、あまりに
も高くなると、融点は逆に上がることが知られている。
このことは、例えば表3や図11からもわかる。この表3
や図11はB/A 比と融点の関係を示すものである。ある程
度の幅(誤差)があるものの、多くの石炭灰のデータが
これらの図表に示すB/A 比と融点の関係を示す線図に従
うという意味で図11及び表3は典型的なデータである。It is known that if the basicity (B / A ratio) is higher and too high, the melting point will be higher.
This can be seen from, for example, Table 3 and FIG. This Table 3
FIG. 11 shows the relationship between the B / A ratio and the melting point. Although there is some width (error), FIG. 11 and Table 3 are typical data in the sense that many coal ash data follow the diagram showing the relationship between B / A ratio and melting point shown in these charts. .
【0063】この図11においてB/A 比:1.0 以上の石炭
を、以下、超塩基度灰炭と呼ぶ。超塩基度灰炭は、殆ど
低品位炭であり、塩基性分によって既に融点が高いか、
或いは前述の如きフラックスを加えて融点を上げること
ができる。しかし、かかる超塩基度灰炭の場合は、石炭
ボイラー火炉でのスラギングを防げても、対流伝熱部で
塩基成分が伝熱管に付着する所謂ファウリングが激しく
なって利用に耐えなくなる。かかる超塩基度灰炭は塩基
度を下げて融点を下げると、前述の噴流床ガス化炉に用
いることができるはずである。In FIG. 11, coal having a B / A ratio of 1.0 or more is hereinafter referred to as ultrabasic ash coal. Ultra-basic ash coal is almost low-grade coal, and its melting point is already high due to basic components.
Alternatively, the melting point can be increased by adding a flux as described above. However, in the case of such an ultrabasic ash coal, even if slagging in a coal boiler furnace can be prevented, so-called fouling in which the base component adheres to the heat transfer tube in the convection heat transfer section becomes severe, and the use cannot be tolerated. Such ultra-basic ash charcoal should be able to be used in the above-described spouted bed gasifier if its basicity is lowered to lower its melting point.
【0064】前述の低品位炭(或いは改質低品位炭)と
該低品位炭よりも平均粒径が大きい高品位炭とが共存し
て含まれたCWMにおいては、高品位炭の含有量は少な
いものの、低品位炭の灰分量が少なく(5質量%以
下)、又、高品位炭の灰分量が多い(10質量%以上)の
で、この高品位炭のB/A 比が十分に小さい(例えば0.2
以下)ならば、表4や図12に例示する如く、かかる高品
位炭を含有させることによって、CWMの灰分のB/A 比
を下げて融点を大きく下げることができ、ガス化炉用途
に好適なCWMとなる。In the CWM in which the above-mentioned low-grade coal (or modified low-grade coal) and high-grade coal having an average particle size larger than that of the low-grade coal coexist, the content of the high-grade coal is The ash content of low-rank coal is small (5 mass% or less), while the ash content of high-rank coal is high (10 mass% or more), but the B / A ratio of this high-rank coal is sufficiently small ( For example 0.2
In this case, as shown in Table 4 and FIG. 12, by adding such high-grade coal, the B / A ratio of the ash of CWM can be reduced and the melting point can be greatly reduced, making it suitable for gasification furnace applications. CWM.
【0065】低品位炭のB/A 比が0.5 付近であり、融点
が最小値付近にある場合は、B/A 比の小さい高品位炭を
共存させると、表5や図12に例示する如く、CWMの灰
分の塩基度成分の相対濃度を下げてB/A 比を下げ、これ
に伴ってCWMの灰分の融点を上げることができる。か
かるCWMは、灰分のB/A 比が小さく且つ融点が高いこ
とに起因して、スラギング及びファウリングが起こり難
いので、石炭ボイラー用途に好適である。When the B / A ratio of the low-rank coal is around 0.5 and the melting point is near the minimum value, when a high-rank coal having a low B / A ratio coexists, as shown in Table 5 and FIG. , The B / A ratio can be lowered by lowering the relative concentration of the basic component of the ash content of CWM, and the melting point of the ash content of CWM can be raised accordingly. Such CWM is suitable for use in coal boilers because slagging and fouling hardly occur due to a small ash B / A ratio and a high melting point.
【0066】このように改質低品位炭に高品位炭を共存
させることにより、CWMの灰分の塩基度及び融点を的
確に調整することができる。このことは、上記改質低品
位炭に代えて低品位炭を用いた場合も同様であり、低品
位炭に高品位炭を共存させることにより、CWMの灰分
の塩基度及び融点を的確に調整することができる。即
ち、灰分の塩基度が高く(通常、B/A 比:0.5 以上)、
灰分量の少ない(通常、乾炭質量比:5%以下)低品位
炭に、灰分の塩基度が低く(通常B/A 比:0.2 以下)、
灰分量の多い(通常乾炭質量比:10%以上)高品位炭を
共存させることにより、CWM中の灰分の塩基度及び融
点を的確に調整し得る。例えば、低品位炭としてB/A
比:0.5 付近の低品位炭を用いた場合、高品位炭を共存
させることにより、CWMの灰分の塩基度を下げ、融点
を上げることができ、スラギング及びファウリングが起
こり難いCWMとなる。又、低品位炭のB/A 比が比較的
高くて融点が高い場合、高品位炭を共存させることによ
り、CWMの灰分の塩基度を下げ、融点を下げることが
でき、ガス化炉用途に好適なCWMとなる。By coexisting the high-grade coal with the modified low-grade coal in this way, the basicity and melting point of the ash of CWM can be accurately adjusted. The same is true for the case where low-grade coal is used in place of the above-mentioned modified low-grade coal. By coexisting high-grade coal with low-grade coal, the basicity and melting point of the ash content of CWM can be accurately adjusted. can do. That is, the basicity of ash is high (normally, B / A ratio: 0.5 or more),
Low-grade coal with low ash content (usually dry coal mass ratio: 5% or less) has low ash basicity (usually B / A ratio: 0.2 or less)
By coexisting high-grade coal having a large amount of ash (usually dry coal mass ratio: 10% or more), the basicity and melting point of the ash in CWM can be accurately adjusted. For example, B / A as low-grade coal
When low-grade coal having a ratio of around 0.5 is used, coexistence of high-grade coal can lower the basicity of ash in CWM and increase the melting point, resulting in CWM in which slagging and fouling are unlikely to occur. In addition, when the B / A ratio of low-grade coal is relatively high and the melting point is high, the co-presence of high-grade coal can lower the basicity of ash in CWM and lower the melting point. It becomes a suitable CWM.
【0067】[0067]
【実施例】〔実施例A〕本発明の実施例に係るCWM及
び比較例に係るCWMについて、高濃度化性、即ち、C
WMでの石炭の最高濃度の程度を調べ、又、カロリーを
調べた。この詳細を、以下説明する。[Example A] The CWM according to the example of the present invention and the CWM according to the comparative example have a high concentration property,
The degree of maximum concentration of coal in the WM was determined, and the calorie was also determined. The details will be described below.
【0068】CWMでの石炭の最高濃度はある範囲にお
いてCWMの粘度に対応して変化するので、高濃度化性
の評価には粘度を揃えて比較する必要がある。この粘度
の測定に際し、CWMの如き懸濁液については回転円筒
粘度計で粘度を測定するのが一般的であるが、CWMは
ニュートン流体ではなく、見かけ粘度は時間及び剪断速
度で変化するので、粘度の測定基準を設ける必要があ
る。そこで、CWMについて剪断速度を上げた後、一定
時間保持し、この後、剪断速度を下げて剪断速度がある
値、例えば100/sec になったときの見かけ粘度を基準と
し、この見かけ粘度が1000cpになったときの石炭濃度を
CWMでの石炭の最高濃度として、高濃度化性を各石炭
間で比較する方法が採用されることが多い。Since the maximum concentration of coal in the CWM varies within a certain range according to the viscosity of the CWM, it is necessary to compare the viscosity in order to evaluate the high concentration. In measuring this viscosity, it is common to measure the viscosity of a suspension such as CWM with a rotating cylinder viscometer, but since CWM is not a Newtonian fluid and the apparent viscosity varies with time and shear rate, It is necessary to establish a standard for measuring viscosity. Therefore, after increasing the shear rate for CWM, it is held for a certain period of time, and then, the shear rate is reduced to a certain value, for example, the apparent viscosity at the time when the shear rate reaches 100 / sec. In many cases, a method is used in which the concentration of coal at the time of is set as the maximum concentration of coal in the CWM, and the high concentration property is compared between the coals.
【0069】そこで、上記の如く剪断速度が100/sec に
なったときの見かけ粘度が1000cpになる場合の石炭濃度
(100/sec-Down時1000cpとなる石炭濃度)をCWMでの
石炭の最高濃度として測定した。即ち、種々の石炭濃度
のCWMを作製し、これらについて前記の如く剪断速度
が100/sec になったときの見かけ粘度を測定し、この見
かけ粘度が1000cpとなるようなCWMを調べ、このCW
Mでの石炭濃度をCWMでの石炭の最高濃度とした。更
に、この最高濃度のCWMについて、CWMの単位質量
当たりのカロリーを石炭のカロリーのデータ等を用いて
計算により求めた。Therefore, as described above, the coal concentration when the apparent viscosity becomes 1000 cp when the shear rate becomes 100 / sec (the coal concentration that becomes 1000 cp at 100 / sec-down) is the maximum concentration of coal in the CWM. Was measured. That is, CWMs of various coal concentrations were prepared, and the apparent viscosities of these were measured at a shear rate of 100 / sec as described above, and a CWM having an apparent viscosity of 1000 cp was examined.
The coal concentration at M was taken as the highest concentration of coal at CWM. Further, for the CWM having the highest concentration, the calorie per unit mass of the CWM was obtained by calculation using calorie data of coal and the like.
【0070】上記測定の対象としたCWMは、下記〜
のものである。The following CWM was measured:
belongs to.
【0071】 低品位炭CWM ---- 低品位炭である
褐炭(豪州ロイヤン炭)を3mmアンダーに粉砕し、こ
れに水とアニオン系添加剤(PSS : Sodium Polystylene
Su-lfonate )とを加え、10Lボールミルで15分間湿式
混合粉砕してCWM化したもの。尚、上記添加剤の添加
量は乾炭質量比で0.5 %である。褐炭量と水の量との比
率は、CWMでの石炭の最高濃度を調べるため、種々変
化させた。Low-grade coal CWM ---- Lignite (Royan coal, Australia), which is a low-grade coal, is pulverized to under 3 mm and mixed with water and an anionic additive (PSS: Sodium Polystylene).
Su-lfonate) and wet-mixed and pulverized for 15 minutes with a 10 L ball mill to form CWM. The amount of the above additive is 0.5% by dry coal mass ratio. The ratio between the amount of lignite and the amount of water was varied in order to examine the maximum concentration of coal in CWM.
【0072】 乾燥低品位炭CWM ---- 上記と同
様の褐炭(生褐炭)を107 ±2 ℃で恒量になるまで乾燥
した後、上記と同様の褐炭粉砕、水及び添加剤の添
加、混合粉砕によりCWM化したもの。Dry low-grade coal CWM ---- Lignite (raw lignite) similar to the above is dried at 107 ± 2 ° C. to a constant weight, and then pulverized lignite, water and additives are added and mixed as described above. What was made into CWM by pulverization.
【0073】 改質低品位炭CWM ---- 下記手順で
製造した改質低品位炭を上記と同様の方法により粉
砕、水及び添加剤の添加、混合粉砕をしてCWM化した
もの。 改質低品位炭の製造手順 ---- 上記と同様の褐炭を3
mmアンダーに粉砕したものを石油系軽質油である灯油
(平均沸点:約200 ℃)と混合してスラリーを得た。こ
のとき、混合比は褐炭1に対し灯油が乾炭質量比で2.3
である。次に、このスラリーを蒸気で間接加熱して、約
140 ℃、3kg/cm2Gの条件で褐炭の油中脱水をすると共
に褐炭への灯油の含浸付着をさせた後、このスラリーを
遠心分離機で固液分離して灯油が含浸付着した褐炭と灯
油とに分離した。次に、この褐炭をオーブンにより150
℃に加熱して乾燥し、余分の油分を蒸発させ、褐炭中に
残存する油分の含有量を乾炭質量比で2%に調整した改
質低品位炭を得た。Modified low-grade coal CWM --- Modified low-grade coal produced according to the following procedure, pulverized, water and additives added, mixed and pulverized into CWM by the same method as described above. Production procedure of modified low-grade coal ---- 3 lignite similar to above
The slurry pulverized to a size under mm was mixed with kerosene (average boiling point: about 200 ° C.) as a petroleum light oil to obtain a slurry. At this time, the mixing ratio of kerosene to brown coal 1 was 2.3 in terms of dry coal mass ratio.
It is. Next, the slurry is heated indirectly with steam to produce
After dehydrating the lignite in oil at 140 ° C. and 3 kg / cm 2 G and impregnating and adhering the kerosene to the lignite, the slurry was solid-liquid separated by a centrifuge to remove the lignite to which the kerosene was impregnated. Separated from kerosene. Next, this lignite is placed in an oven for 150
The dried oil was heated to ° C. and the excess oil was evaporated to obtain a modified low-grade coal in which the content of the oil remaining in the lignite was adjusted to 2% by dry coal mass ratio.
【0074】 改質低品位炭CWMに粗粒の高品位炭
を添加したもの ---- 前記の改質低品位炭CWMに対
し、該CWM中の低品位炭の平均粒径よりも平均粒径が
大きい粗粒の高品位炭(豪州マウントソーリ炭)を添加
し混合したもの。このとき、高品位炭の添加量は改質低
品位炭の量の1/7の量とした。故に、CWM中の石炭
(改質低品位炭及び高品位炭)に対する高品位炭の割合
は12.5質量%となる。尚、上記改質低品位炭の粒度分布
は1〜300 μm であり、平均15μm である。高品位炭の
粒度分布は70〜500 μm である。Modified low-grade coal CWM to which coarse-grained high-grade coal is added ---- The above-mentioned modified low-grade coal CWM has an average grain size smaller than the average particle size of the low-grade coal in the CWM. A mixture of high-quality coarse coal (Mount Soli coal, Australia) with a large diameter. At this time, the amount of high-grade coal added was 1/7 of the amount of modified low-grade coal. Therefore, the ratio of high-grade coal to coal (modified low-grade coal and high-grade coal) in CWM is 12.5% by mass. The particle size distribution of the modified low-grade coal is 1 to 300 μm, and the average is 15 μm. The particle size distribution of high-grade coal is 70-500 μm.
【0075】 低品位炭CWMに粗粒の高品位炭を添
加したもの ---- 前記の低品位炭CWMに対し、該C
WM中の低品位炭の平均粒径よりも平均粒径が大きい粗
粒の高品位炭(マウントソーリ炭)を添加し混合したも
の。このとき、高品位炭の添加量は低品位炭の量の1/
7の量とした。故に、CWM中の石炭(低品位炭及び高
品位炭)に対する高品位炭の割合は12.5質量%となる。
尚、上記低品位炭の粒度分布は1〜300 μm であり、平
均15μm である。高品位炭の粒度分布は、70〜500 μm
である。Low-grade coal CWM to which coarse-grained high-grade coal has been added ----
A mixture obtained by adding and mixing coarse-grained high-grade coal (Mountsori coal) whose average particle size is larger than the average particle size of low-grade coal in WM. At this time, the amount of high-grade coal added is 1 / the amount of low-grade coal.
The amount was 7. Therefore, the ratio of high-rank coal to coal (low-rank coal and high-rank coal) in CWM is 12.5% by mass.
The low-grade coal has a particle size distribution of 1 to 300 μm and an average of 15 μm. Particle size distribution of high-grade coal is 70-500 μm
It is.
【0076】 高品位炭CWM ---- 高品位炭(豪州
マウントソーリ炭)を上記と同様の方法により粉砕、
水及び添加剤の添加、混合粉砕をしてCWM化したも
の。High-grade coal CWM ---- High-grade coal (Mount Soli coal, Australia) is ground by the same method as above.
CWM made by adding water and additives, mixing and grinding.
【0077】上記CWMでの石炭の最高濃度(100/sec-
Down時1000cpとなる石炭濃度)の測定結果、及び、この
最高濃度のCWMについてのカロリーの計算結果を、表
1に示す。The maximum concentration of coal in the above CWM (100 / sec-
Table 1 shows the measurement results of the coal concentration that is 1000 cp at the time of Down), and the calorie calculation results for the CWM having the highest concentration.
【0078】表1からわかる如く、の低品位炭CWM
の場合、CWMでの石炭の最高濃度は24%に過ぎない。
カロリーは1500kcal/kg 程度であって自燃できないの
で、燃料として使えない。As can be seen from Table 1, low-rank coal CWM
In this case, the maximum concentration of coal in the CWM is only 24%.
The calorie is about 1500kcal / kg and cannot burn itself, so it cannot be used as fuel.
【0079】の乾燥低品位炭CWMの場合、CWMで
の石炭の最高濃度は35%であり、前記の低品位炭CW
Mの場合よりも高い。これは、乾燥による脱水によって
石炭の物理的形状が不可逆的に変化してしまい細孔を失
うからである。但し、親水性は残るので、CWMでの石
炭の最高濃度は充分ではない。In the case of the dry low-rank coal CWM, the maximum concentration of coal in the CWM is 35%, and the low-rank coal CW
It is higher than M. This is because the physical shape of coal changes irreversibly due to dehydration by drying, and pores are lost. However, since the hydrophilicity remains, the maximum concentration of coal in CWM is not sufficient.
【0080】の改質低品位炭CWMの場合、CWMで
の石炭の最高濃度は48%であり、前記の低品位炭CW
Mの場合に比較して著しく高い。これは、改質によって
改質低品位炭が優れた撥水性を有したことによるもので
ある。この撥水性は、油中脱水の際の改質によって油分
が内部細孔に少量ながら一様に吸着して得られたもので
あり、化学的な変化によるものではなく、これは表2か
らもよくわかる。すなわち、表2は低品位炭の油中での
改質前後の化学組成を示すものであり、これからわかる
如く、微量油分の吸着による僅かな変化はあるものの、
改質前後の化学組成に大きな変化がないので、油中脱水
の際に化学的な変化は起こっていない。尚、若干O/C
比が下がっているが、これは前記150 ℃加熱による油分
の回収の際に改質低品位炭の官能基が若干失われたこと
によるものである。厳密には、このO/C比の低下によ
ってもCWMでの石炭の最高濃度が上昇するかも知れな
いが、この程度は極めて小さく、これに比べて前記撥水
性の効果は遙かに大きく、このことは図1からも明らか
である。In the case of the modified low rank coal CWM, the maximum concentration of coal in the CWM is 48%, and the low rank coal CW
Significantly higher than M. This is because the modified low-grade coal had excellent water repellency due to the modification. This water repellency is obtained by a small amount of oil uniformly adsorbed on the internal pores by reforming during dehydration in oil, and is not due to a chemical change. I understand well. That is, Table 2 shows the chemical composition of low-grade coal before and after reforming in oil. As can be seen from this, although there is a slight change due to the adsorption of trace oil,
Since there is no significant change in the chemical composition before and after the reforming, no chemical change has occurred during dehydration in oil. In addition, slightly O / C
The ratio has decreased, which is due to a slight loss of the functional groups of the modified low-grade coal during the oil recovery by heating at 150 ° C. Strictly speaking, the reduction of the O / C ratio may increase the maximum concentration of coal in the CWM, but the degree is extremely small, and the effect of the water repellency is much greater. This is clear from FIG.
【0081】の改質低品位炭CWMに粗粒の高品位炭
を添加してなるCWMの場合、CWMでの石炭の最高濃
度は55%であり、前記の改質低品位炭CWMの場合よ
りも高くなる。この上昇分は7%であるが、熱量や経済
性等の事情からCWMでの石炭の最高濃度は1%でも高
いことが望ましく、その点からすると、この7%の上昇
分は極めて大きいといえる。In the case of CWM obtained by adding coarse-grained high-grade coal to the modified low-grade coal CWM, the maximum concentration of coal in the CWM is 55%, which is higher than that of the above-mentioned modified low-grade coal CWM. Will also be higher. Although this increase is 7%, it is desirable that the maximum concentration of coal in the CWM is as high as 1% from the viewpoint of calorific value and economy, and from that point, it can be said that the increase of 7% is extremely large. .
【0082】の高品位炭CWMの場合、CWMでの石
炭の最高濃度は68%である。In the case of the high-rank coal CWM, the maximum concentration of coal in the CWM is 68%.
【0083】前記の改質低品位炭CWMに粗粒の高品
位炭を添加した場合の効果に関し、これが改質低品位炭
と高品位炭との割合を単純に48:7にしただけの効果で
あれば、CWMでの石炭(低品位炭)の最高濃度は50%
程度が妥当な値であるが、高品位炭を改質低品位炭のわ
ずか1/7の量にして共存させるだけで、前記の改質
低品位炭CWMの場合の最高濃度(48%)との高品位
炭CWMの場合の最高濃度(68%)との中央値にほぼ近
い最高濃度(55%)になるのは、前述の粗粒の球形高品
位炭による流動性の向上というレオロジー的な作用効果
によるものである。Regarding the effect of adding coarse-grained high-grade coal to the above-mentioned modified low-grade coal CWM, this is the effect of simply setting the ratio between the modified low-grade coal and high-grade coal to simply 48: 7. Then, the maximum concentration of coal (low-grade coal) in CWM is 50%
Although the degree is a reasonable value, the highest concentration (48%) in the case of the above-mentioned modified low-grade coal CWM can be obtained only by coexisting the high-grade coal in an amount of only 1/7 of the modified low-grade coal. The highest concentration (55%), which is almost the median of the highest concentration (68%) in the case of high-grade coal CWM, is due to the rheological improvement that the above-mentioned coarse-grained spherical high-grade coal improves fluidity. This is due to the effect.
【0084】このことは、レオロジー曲線からも説明す
ることが可能である。以下、この詳細について記述す
る。This can be explained from a rheological curve. The details will be described below.
【0085】高品位炭CWMについてのレオロジー曲線
を図6に示す。CWMの静置時は粒子間が弱い相互作用
で疑似的な構造を保つため、見かけ粘度が高いが、剪断
速度が上がると、それが上がるほど、時間が経つほど、
拘束力が弱くなり、見かけ粘度が下がる。これはチキソ
トロピーといわれる。上記図6のレオロジー曲線は、厳
密ではないにしろ球形粒子を前提とした理論にほぼ定性
的に従っている。FIG. 6 shows a rheological curve for the high-rank coal CWM. When the CWM is allowed to stand, the apparent viscosity is high to maintain a pseudo structure due to weak interaction between the particles, but as the shear rate increases, the higher the shear rate, the longer the time,
The binding force is weakened, and the apparent viscosity is reduced. This is called thixotropic. The rheological curve in FIG. 6 substantially qualitatively follows a theory presuming spherical particles if not strictly.
【0086】一方、改質低品位炭CWMについてのデー
タを図7に示す。剪断速度が速くなると、見かけ粘度が
上がる。所謂ダイラタンシーを示している。これは、改
質低品位炭の粒子形状が非球形であるため、変形に対し
て抵抗が強いことによる。脱水による不可逆変化も一因
と考えられる。このため、改質低品位炭CWMの最高濃
度は高品位炭よりも高くなり得ない。On the other hand, FIG. 7 shows data on the modified low-rank coal CWM. As the shear rate increases, the apparent viscosity increases. This shows a so-called dilatancy. This is because the modified low-rank coal has a non-spherical particle shape, and thus has a strong resistance to deformation. Irreversible changes due to dehydration are also considered to be a factor. For this reason, the maximum concentration of the modified low-rank coal CWM cannot be higher than that of the high-rank coal.
【0087】この改質低品位炭CWMに粗粒の球形高品
位炭を改質低品位炭の1/7 の量で添加すると、このCW
Mのレオロジー曲線は図8のようになり、ダイラタンシ
ーが消えて高品位炭CWMの場合と同じようなレオロジ
ー特性を示す。このように量的に圧倒的に少ない高品位
炭の添加によりレオロジーが全く変わってしまう。ここ
に、低品位炭に粗粒の高品位炭粒子を共存させるという
本発明の着想の起源があり、粗粒の高品位炭粒子の添加
によってその効果が単に付加されるというのではなく、
相乗効果的な作用効果が生じて、顕著な作用効果を奏す
るのである。When coarse spherical high-grade coal is added to the modified low-grade coal CWM in an amount 1/7 that of the modified low-grade coal, the CW
The rheological curve of M is as shown in FIG. 8, and the dilatancy disappears and the same rheological characteristics as in the case of high-grade coal CWM are shown. The rheology is completely changed by the addition of the overwhelmingly small amount of high-grade coal. Here, there is the origin of the idea of the present invention that low-grade coal coexists with coarse-grained high-grade coal particles, and the effect is not merely added by the addition of coarse-grained high-grade coal particles.
A synergistic effect is produced and a remarkable effect is achieved.
【0088】の低品位炭CWMに粗粒の高品位炭を添
加してなるCWMの場合、CWMでの石炭の最高濃度は
30.7%であり、前記の低品位炭CWMの場合よりも高
い。このように粗粒高品位炭の添加対象が低品位炭CW
Mの場合であっても粗粒高品位炭の添加によってCWM
での石炭の最高濃度が24%から約7%も向上して30.7%
になる。この最高濃度は、の改質低品位炭CWMの場
合よりは低いが、これは上記低品位炭CWMの石炭の最
高濃度がもともと低いからであり、低品位炭がより良質
であって低品位炭CWMでの石炭(低品位炭)の最高濃
度が更に高く24%超の場合には、該低品位炭の最高濃度
が高くなるに伴い、該低品位炭CWMに粗粒の高品位炭
を添加してなるCWMの石炭の最高濃度は高くなる。こ
のように低品位炭がより良質である場合にはCWMの石
炭の最高濃度が高くなり、一方、低品位炭がより良質で
ある場合にはそれが良質であるほど油中脱水による改質
の程度(向上割合)が小さくなり、ひいてはの如き油
中脱水による改質低品位炭を用いることによるCWMで
の石炭の最高濃度の向上の程度は小さくなる傾向にある
ので、低品位炭CWMへの粗粒高品位炭の添加の効果
(CWMでの石炭の最高濃度の向上効果)が顕著とな
り、その意義が深く、果たす役割が大きくなってくる。In the case of CWM obtained by adding coarse-grained high-grade coal to low-grade coal CWM, the maximum concentration of coal in CWM is as follows:
30.7%, which is higher than that of the low-rank coal CWM described above. Thus, the addition target of coarse-grain high-grade coal is low-grade coal CW
Even in the case of M, the addition of coarse-grained high-grade coal allows CWM
30.7%, the highest concentration of coal in the country increased from 24% to about 7%
become. This maximum concentration is lower than in the case of the modified low-rank coal CWM, because the maximum concentration of the low-rank coal CWM is originally lower, and the lower-rank coal is of higher quality and lower-rank coal. If the highest concentration of coal (low-rank coal) in CWM is higher and more than 24%, coarse-grained high-rank coal is added to the low-rank coal CWM as the highest concentration of low-rank coal increases. The resulting CWM has a higher maximum coal concentration. Thus, the higher the quality of the low-rank coal, the higher the concentration of the CWM coal is, while the higher the quality of the low-rank coal, the higher the quality of the coal. The degree (improvement ratio) is reduced, and the degree of improvement of the maximum concentration of coal in CWM by using modified low-grade coal by dehydration in oil tends to be small. The effect of the addition of coarse-grained high-grade coal (the effect of improving the maximum concentration of coal in CWM) becomes remarkable, and its significance is deeper and the role it plays becomes greater.
【0089】〔実施例B〕前記改質低品位炭CWMに粗
粒の高品位炭を添加したもの()においては、高品位
炭の粒度分布は70〜500 μm であったが、実施例Bでは
粒度分布が種々異なる高品位炭を用いた。この点を除
き、前記の場合と同様の方法により、CWMを得た。
そして、このCWMの粘度を測定した。この結果を図9
の(A) 、図9の(B) に示す。図9の(A) は高品位炭の添
加量:20%の場合の結果であり、図9の(B) は高品位炭
の添加量:30%の場合の結果である。いずれの場合も、
改質低品位炭CWMに添加する高品位炭の粒度が大きい
場合の方が、CWMの粘度が低いことがわかる。[Example B] In the case where the modified low-grade coal CWM was added with coarse-grained high-grade coal (), the particle size distribution of the high-grade coal was 70 to 500 µm. Used high-grade coals with different particle size distributions. Except for this point, CWM was obtained in the same manner as described above.
And the viscosity of this CWM was measured. The result is shown in FIG.
(A) and (B) of FIG. FIG. 9 (A) shows the result when the amount of high-grade coal added: 20%, and FIG. 9 (B) shows the result when the amount of high-grade coal added: 30%. In either case,
It can be seen that the viscosity of CWM is lower when the particle size of the high-rank coal added to the modified low-rank coal CWM is large.
【0090】〔実施例C〕前記改質低品位炭CWMに粗
粒の高品位炭を添加したもの()においては、高品位
炭の添加量は改質低品位炭の量に対し7質量%であった
が、実施例Cでは高品位炭の添加量を変化させた。又、
CWM化の際の混合粉砕はボールミルでなく、高速攪拌
型の設備を用いて行った。かかる点を除き、前記の場
合と同様の方法により、CWMを得た。そして、CWM
の粘度が1000cpになるときの最高到達濃度(CWMでの
石炭の最高濃度)を測定した。その結果を図10に示す。
この図10において、(B) は粒度調整に本発明の如き工夫
がなく、単純な混炭が行われたと仮定したとき、即ち、
低品位炭に単に高品位炭が添加され、レオロジー的作用
効果がないときの最高到達濃度、(A) は本発明によって
レオロジー的改善を実施しながら混炭が行われたとき、
即ち、改質低品位炭CWMに粗粒の高品位炭が添加さ
れ、レオロジー的作用効果があるときの最高到達濃度を
示すものである。CWM化の際の混合粉砕を高速攪拌型
の設備を用いて行ったため、CWMでの石炭の最高濃度
が51.7%と表1の場合よりもやや高くなっているが、少
量の高品位炭の添加により最高濃度を高め、高濃度化性
を向上し得ることが確認できる。高品位炭の添加量:30
〜40%の範囲では、高品位炭の添加量が多いほど、最高
濃度を高める効果が大きいが、高品位炭の価格や経済
性、添加の効果等を考慮すると、高品位炭の添加量〔=
高品位炭の量/(低品位炭の量+高品位炭の量)〕とし
ては10〜30質量%とすることが好ましいといえる。[Example C] In the case of (C) in which the coarse-grained high-grade coal was added to the modified low-grade coal CWM, the amount of the high-grade coal was 7% by mass with respect to the amount of the modified low-grade coal. However, in Example C, the amount of high-grade coal added was changed. or,
Mixing and pulverization at the time of CWM conversion was performed using a high-speed stirring type equipment instead of a ball mill. Except for this point, CWM was obtained in the same manner as described above. And CWM
Was measured when the viscosity reached 1000 cp (the highest concentration of coal in CWM). The result is shown in FIG.
In FIG. 10, (B) is based on the assumption that a simple coal-mixing was performed without any device for particle size adjustment as in the present invention, that is,
The highest concentration when no high-rank coal is simply added to low-rank coal and there is no rheological effect, (A) is when the coal is mixed while performing rheological improvement according to the present invention,
That is, it indicates the highest attainable concentration when the high-quality coarse coal is added to the modified low-grade coal CWM and there is a rheological effect. Since the mixing and grinding at the time of CWM conversion was performed using high-speed stirring type equipment, the maximum concentration of coal in CWM was 51.7%, slightly higher than in Table 1, but a small amount of high-grade coal was added. It can be confirmed that the maximum concentration can be increased and the high concentration property can be improved. High-grade coal added: 30
In the range of 40% to 40%, the higher the amount of high-grade coal added, the greater the effect of increasing the highest concentration. However, considering the price, economy, and effect of addition of high-grade coal, the amount of high-grade coal added [ =
The amount of high-grade coal / (the amount of low-grade coal + the amount of high-grade coal)] is preferably 10 to 30% by mass.
【0091】[0091]
【表1】 [Table 1]
【0092】[0092]
【表2】 [Table 2]
【0093】[0093]
【表3】 [Table 3]
【0094】[0094]
【表4】 [Table 4]
【0095】[0095]
【表5】 [Table 5]
【0096】[0096]
【発明の効果】本発明に係る改質低品位炭は、水分含有
量が極めて少なく、撥水性に優れており、従って、これ
をCWMの原料石炭として用いれば、CWMでの低品位
炭の最高濃度を高めることができ、低品位炭濃度が高く
てカロリーの高い改質低品位炭CWMを得ることができ
る。The modified low-grade coal according to the present invention has an extremely low water content and excellent water repellency. Therefore, if this is used as a raw material coal for CWM, it is the highest of low-grade coal in CWM. The concentration can be increased, and a low-rank coal having high low-rank coal concentration and high calorie can be obtained.
【0097】本発明に係る改質低品位炭の製造方法によ
れば、上記の如くCWMでの低品位炭の最高濃度が高く
てカロリーの高い低品位炭CWMを得ることができる。According to the method for producing a modified low-rank coal according to the present invention, as described above, a low-rank coal having a high concentration of the low-rank coal in the CWM and a high calorie can be obtained.
【0098】本発明に係る改質低品位炭CWM(原料石
炭として改質低品位炭を用いてなるCWM)は、CWM
での改質低品位炭の最高濃度が高くてカロリーが高いの
で、燃料経済性(カロリー/コスト)に優れており、
又、原料石炭として改質低品位炭を用いるものであるの
で、低品位炭の用途拡大がはかれる。The modified low-grade coal CWM (CWM using modified low-grade coal as raw material coal) according to the present invention is CWM.
The highest concentration of modified low-rank coal in the country is high and the calories are high, so fuel economy (calories / cost) is excellent,
In addition, since the modified low-grade coal is used as the raw coal, the use of the low-grade coal is expanded.
【0099】本発明に係る改質低品位炭CWMに粗粒
(該CWM中の改質低品位炭よりも平均粒径が大きい)
の高品位炭を存在させてなるCWMは、改質低品位炭C
WMよりも流動性が向上し、ひいては、CWMでの改質
低品位炭の最高濃度が高くてカロリーが高い。Coarse grains in the modified low-grade coal according to the present invention (the average particle size is larger than that of the modified low-grade coal in the CWM)
CWM made of high-quality coal of high quality
It has better fluidity than WM and, consequently, has a higher maximum concentration of modified low rank coal in CWM and higher calories.
【0100】本発明に係る低品位炭CWMに粗粒の高品
位炭を存在させてなるCWMは、低品位炭CWMよりも
流動性が向上し、ひいては、CWMでの低品位炭の最高
濃度が高くてカロリーが高い。このように、低品位炭に
粗粒の高品位炭を共存させることにより、CWMの流動
性を向上させ、CWMでの低品位炭の最高濃度を高くす
ることができるので、低品位炭CWMの実用性を高める
ことができ、特に、従来CWM化し得なかった低品位炭
をもCWM化し得、かかる低品位炭のCWM原料として
の用途の拡大がはかれる。The low-rank coal CWM according to the present invention, in which coarse-particle high-rank coal is present, has a higher fluidity than the low-rank coal CWM, and as a result, the maximum concentration of the low-rank coal in the CWM is lower. High and high in calories. As described above, the coexistence of coarse-grained high-grade coal with low-grade coal can improve the fluidity of CWM and increase the maximum concentration of low-grade coal in CWM. Practicality can be improved, and in particular, low-grade coal which could not be converted to CWM can be converted to CWM, and the use of such low-grade coal as a CWM raw material can be expanded.
【図1】 石炭のO/C比とCWMでの石炭の最高濃度
との関係を示す図である。FIG. 1 is a diagram showing the relationship between the O / C ratio of coal and the maximum concentration of coal in CWM.
【図2】 改質低品位炭についての残油量と恒湿水分と
の関係を示す図である。FIG. 2 is a diagram showing the relationship between the residual oil amount and the constant moisture for modified low-grade coal.
【図3】 石炭粒子の顕微鏡写真を示す図面代用写真で
あって、図3の(A)は低品位炭を粉砕機により粉砕して
得られた低品位炭粒子についてのもの、図3の(B) は高
品位炭を粉砕機により粉砕して得られた高品位炭粒子に
ついてのものである。FIG. 3 is a drawing substitute photograph showing a micrograph of coal particles, in which (A) of FIG. 3 shows low-grade coal particles obtained by pulverizing low-grade coal with a pulverizer; B) is for high-grade coal particles obtained by grinding high-grade coal with a crusher.
【図4】 低品位炭CWMの流動性、低品位炭CWMに
高品位炭粒子を添加してなるCWMの流動性と高品位炭
粒子の粒径との関係を説明する図であって、図4の(A)
は低品位炭CWMについての説明図であり、図4の(B)
は存在させた高品位炭粒子の粒径が低品位炭よりも大き
い場合についての説明図であり、図4の(C) は存在させ
た高品位炭粒子の粒径が低品位炭よりも小さい場合につ
いての説明図である。FIG. 4 is a diagram illustrating the relationship between the fluidity of low-grade coal CWM, the fluidity of CWM obtained by adding high-grade coal particles to low-grade coal CWM, and the particle size of high-grade coal particles. 4 (A)
FIG. 4 is an explanatory view of low-rank coal CWM, and FIG.
Fig. 4 is an explanatory view of a case where the particle size of the high-grade coal particles that are present is larger than that of the low-grade coal, and Fig. 4C illustrates the case where the particle size of the high-grade coal particles that are present is smaller than that of the low-grade coal. It is explanatory drawing about a case.
【図5】 本発明に係るCWM製造プロセスの一例を説
明する図である。FIG. 5 is a diagram illustrating an example of a CWM manufacturing process according to the present invention.
【図6】 高品位炭CWMについてのレオロジー曲線
(即ち、剪断速度の変化に伴う見かけ粘度の変化)を示
す図である。FIG. 6 is a diagram showing a rheological curve (ie, a change in apparent viscosity with a change in shear rate) for a high-rank coal CWM.
【図7】 改質低品位炭CWMについてのレオロジー曲
線(即ち、剪断速度の変化に伴う見かけ粘度の変化)を
示す図である。FIG. 7 is a diagram showing a rheological curve (ie, a change in apparent viscosity with a change in shear rate) for a modified low-rank coal CWM.
【図8】 改質低品位炭CWMに粗粒の球形高品位炭を
改質低品位炭の1/7の量で添加してなるCWMについて
のレオロジー曲線(即ち、剪断速度の変化に伴う見かけ
粘度の変化)を示す図である。FIG. 8: Rheological curves for CWM obtained by adding coarse spherical high-grade coal to modified low-grade coal CWM in an amount 1/7 that of modified low-grade coal (ie, apparent with change in shear rate) FIG.
【図9】 改質低品位炭CWMに高品位炭を添加したC
WMにおける高品位炭の粒度と粘度との関係を示す図で
あって、図9の(A) は高品位炭の添加量:20%の場合に
ついてのもの、図9の(B) は高品位炭の添加量:30%の
場合についてのものである。FIG. 9: C obtained by adding high-grade coal to modified low-grade coal CWM
FIG. 9A is a diagram showing the relationship between the particle size and the viscosity of high-grade coal in WM, where FIG. 9A shows the case where the amount of high-grade coal added is 20%, and FIG. The amount of charcoal added is for the case of 30%.
【図10】 改質低品位炭CWMに粗粒の高品位炭を添
加したCWMにおける高品位炭の添加量とCWMでの石
炭の最高到達濃度との関係を示す図である。FIG. 10 is a graph showing the relationship between the amount of high-grade coal added to CWM obtained by adding coarse-grained high-grade coal to modified low-grade coal CWM, and the ultimate coal concentration in CWM.
【図11】 CWMの石炭灰のBase/Acid比(塩基度)
と還元性雰囲気での灰の軟化点との関係を示す図であ
る。FIG. 11 Base / Acid ratio (basicity) of coal ash of CWM
FIG. 4 is a diagram showing the relationship between the ash and the softening point of the ash in a reducing atmosphere.
【図12】 CWMの石炭灰のBase/Acid比(塩基度)
と還元性雰囲気での灰の軟化点との関係を示す図であ
り、特には、低品位炭CWMへの高品位炭の添加によっ
てCWMの石炭灰のBase/Acid比および灰の軟化点を調
整し得ることを説明する図である。FIG. 12 Base / Acid ratio (basicity) of CWM coal ash
FIG. 3 is a diagram showing the relationship between the ash softening point in a reducing atmosphere and the ash softening point, in particular, adjusting the Base / Acid ratio and the ash softening point of coal ash of CWM by adding high-grade coal to low-grade coal CWM. It is a figure explaining what can be done.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 出口 哲也 兵庫県神戸市西区高塚台1丁目5番5号 株式会社神戸製鋼所神戸総合技術研究所内 (72)発明者 和田 保郎 兵庫県尼崎市大浜町2丁目23番地 株式会 社ケイエヌラボアナリシス内 Fターム(参考) 4H013 DA02 4H015 AA09 AA11 AB01 AB09 BA09 BB03 CB01 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Tetsuya Exit 1-5-5 Takatsukadai, Nishi-ku, Kobe City, Hyogo Prefecture Inside Kobe Research Institute, Kobe Steel Ltd. (72) Inventor Yasuo Wada Amagasaki City University, Hyogo Prefecture 2-23 Hamacho F-term in KN Lab Analysis Co., Ltd. (reference) 4H013 DA02 4H015 AA09 AA11 AB01 AB09 BA09 BB03 CB01
Claims (7)
の石油系軽質油とを含むスラリー状混合体を加熱して前
記低品位炭の油中脱水をすると共に前記低品位炭に石油
系軽質油を含浸付着させて含有せしめてなるスラリー状
混合体を固液分離して前記低品位炭中に残存する石油系
軽質油の含有量を調整してなる改質低品位炭であって、
前記低品位炭が粒径:3mm以下であると共に、前記低
品位炭中に残存する石油系軽質油の含有量が無水低品位
炭質量に対して1〜10質量%であることを特徴とする
改質低品位炭。1. Low-grade coal and average boiling point: 150 to 300 ° C.
And heating the slurry mixture containing petroleum light oil to dewater the low-grade coal in oil and impregnating and adhering the low-grade coal with petroleum light oil to contain the slurry mixture. A modified low-grade coal obtained by adjusting the content of petroleum light oil remaining in the low-grade coal after solid-liquid separation,
The low-grade coal has a particle size of 3 mm or less, and the content of petroleum-based light oil remaining in the low-grade coal is 1 to 10% by mass based on the weight of the anhydrous low-grade coal. Modified low-grade coal.
点:150〜300℃の石油系軽質油と混合してスラリ
ー状混合体を得、このスラリー状混合体を加熱して前記
低品位炭の油中脱水をすると共に前記低品位炭に石油系
軽質油を含浸付着させて含有せしめた後、このスラリー
状混合体を固液分離して前記低品位炭中に残存する石油
系軽質油の含有量を無水低品位炭質量に対して1〜10
質量%に調整した改質低品位炭を得ることを特徴とする
改質低品位炭の製造方法。2. A low-grade coal having a particle size of 3 mm or less is mixed with a petroleum light oil having an average boiling point of 150 to 300 ° C. to obtain a slurry-like mixture. After the coal is dehydrated in oil and the low-grade coal is impregnated with petroleum-based light oil to be contained therein, the slurry-like mixture is subjected to solid-liquid separation, and the petroleum-based light oil remaining in the low-grade coal is removed. Is 1 to 10 with respect to the weight of anhydrous low-grade coal.
A method for producing a modified low-grade coal, wherein a modified low-grade coal adjusted to mass% is obtained.
いて、前記石炭が請求項1記載の改質低品位炭または該
改質低品位炭が粉砕されてなる改質低品位炭であること
を特徴とする石炭−水スラリー。3. A coal-water slurry containing coal and water, wherein the coal is the modified low-grade coal according to claim 1 or the modified low-grade coal obtained by pulverizing the modified low-grade coal. A coal-water slurry, characterized in that:
石炭−水スラリーであって、前記高品位炭の粒子の平均
粒径が前記低品位炭の粒子の平均粒径より大きいことを
特徴とする石炭−水スラリー。4. A coal-water slurry containing low-grade coal and high-grade coal as coal, wherein the average particle size of the high-grade coal particles is larger than the average particle size of the low-grade coal particles. Characterized coal-water slurry.
リーに高品位炭を混合してなる石炭−水スラリーであっ
て、前記高品位炭の粒子の平均粒径が前記低品位炭の粒
子の平均粒径より大きいことを特徴とする石炭−水スラ
リー。5. A coal-water slurry obtained by mixing a high-grade coal with a coal-water slurry containing low-grade coal as the coal, wherein the high-grade coal particles have an average particle size of the low-grade coal particles. Coal-water slurry characterized by having an average particle size larger than the above.
位炭または該改質低品位炭が粉砕されてなる改質低品位
炭である請求項4又は5記載の石炭−水スラリー。6. The coal-water slurry according to claim 4, wherein the low-grade coal is the modified low-grade coal according to claim 1 or the modified low-grade coal obtained by pulverizing the modified low-grade coal. .
質量%である請求項4、5又は6記載の石炭−水スラリ
ー。7. The amount of high-grade coal in the coal is 10 to 30.
The coal-water slurry according to claim 4, 5 or 6, which is a mass%.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11102735A JP2000290673A (en) | 1999-04-09 | 1999-04-09 | Modified low-grade coal, its production and coal-water slurry |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11102735A JP2000290673A (en) | 1999-04-09 | 1999-04-09 | Modified low-grade coal, its production and coal-water slurry |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2000290673A true JP2000290673A (en) | 2000-10-17 |
Family
ID=14335511
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11102735A Withdrawn JP2000290673A (en) | 1999-04-09 | 1999-04-09 | Modified low-grade coal, its production and coal-water slurry |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2000290673A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1300285C (en) * | 2003-11-07 | 2007-02-14 | 株式会社神户制钢所 | Apparatus and method for manufacturing solid fuel with low-rank coal |
WO2007060852A1 (en) * | 2005-11-22 | 2007-05-31 | Kabushiki Kaisha Kobe Seiko Sho | Process and equipment for producing solid fuel by using coal as raw material |
WO2008093706A1 (en) | 2007-01-31 | 2008-08-07 | Central Research Institute Of Electric Power Industry | Process for treatment of water-containing substance |
US7537700B2 (en) | 2002-06-03 | 2009-05-26 | Central Research Institute Of Electric Power Industry | Method for removing water contained in solid using liquid material |
WO2010041572A1 (en) * | 2008-10-09 | 2010-04-15 | 株式会社神戸製鋼所 | Solid fuel manufacturing method and solid fuel manufactured using the manufacturing method |
US8246789B2 (en) | 2007-03-09 | 2012-08-21 | Central Research Institute Of Electric Power Industry | Hydrous matter treatment system |
US9777235B2 (en) | 2016-04-04 | 2017-10-03 | Allard Services Limited | Fuel oil compositions and processes |
-
1999
- 1999-04-09 JP JP11102735A patent/JP2000290673A/en not_active Withdrawn
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7537700B2 (en) | 2002-06-03 | 2009-05-26 | Central Research Institute Of Electric Power Industry | Method for removing water contained in solid using liquid material |
CN1300285C (en) * | 2003-11-07 | 2007-02-14 | 株式会社神户制钢所 | Apparatus and method for manufacturing solid fuel with low-rank coal |
US8252070B2 (en) | 2005-11-22 | 2012-08-28 | Kobe Steel, Ltd. | Process and apparatus for producing solid fuel from coal |
CN101243164B (en) * | 2005-11-22 | 2011-12-21 | 株式会社神户制钢所 | Process and equipment for producing solid fuel by using coal as raw material |
WO2007060852A1 (en) * | 2005-11-22 | 2007-05-31 | Kabushiki Kaisha Kobe Seiko Sho | Process and equipment for producing solid fuel by using coal as raw material |
US9090843B2 (en) | 2005-11-22 | 2015-07-28 | Kobe Steel, Ltd. | Apparatus for producing solid fuel from coal |
WO2008093706A1 (en) | 2007-01-31 | 2008-08-07 | Central Research Institute Of Electric Power Industry | Process for treatment of water-containing substance |
US8246789B2 (en) | 2007-03-09 | 2012-08-21 | Central Research Institute Of Electric Power Industry | Hydrous matter treatment system |
WO2010041572A1 (en) * | 2008-10-09 | 2010-04-15 | 株式会社神戸製鋼所 | Solid fuel manufacturing method and solid fuel manufactured using the manufacturing method |
JP2010090296A (en) * | 2008-10-09 | 2010-04-22 | Kobe Steel Ltd | Manufacturing method of solid fuel and solid fuel manufactured by the manufacturing method |
JP4580011B2 (en) * | 2008-10-09 | 2010-11-10 | 株式会社神戸製鋼所 | Solid fuel production method and solid fuel produced by the production method |
US9005317B2 (en) | 2008-10-09 | 2015-04-14 | Kobe Steel, Ltd | Method for producing solid fuel and solid fuel produced by the method |
US9777235B2 (en) | 2016-04-04 | 2017-10-03 | Allard Services Limited | Fuel oil compositions and processes |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2607424B2 (en) | Use of low-grade coal and peat | |
AU2004224904B2 (en) | Apparatus and method for manufacturing solid fuel with low-rank coal | |
JP4603620B2 (en) | Method for producing molded solid fuel using porous coal as raw material | |
Guo et al. | Recycling residual carbon from gasification fine slag and its application for preparing slurry fuels | |
Mollah et al. | An attempt to produce blast furnace coke from Victorian brown coal | |
JP5241105B2 (en) | Coke manufacturing method and pig iron manufacturing method | |
JP2009215421A (en) | Method for producing coke | |
JP2019513840A (en) | Fuel oil composition and process | |
WO2013129607A1 (en) | Coal blend briquette and process for producing same, and coke and process for producing same | |
JP2019513841A (en) | Solid-liquid crude oil composition and its rectification method | |
Ren et al. | Petroleum coke facilitate the upgrade of lignite under microwave irradiation for slurryability improvement | |
US20230088821A1 (en) | Thermal fracture and microcarbon separation of coal particles | |
JP2000290673A (en) | Modified low-grade coal, its production and coal-water slurry | |
KR20220006599A (en) | Process using refined coal to upgrade refinery process components in the manufacture of petroleum coke | |
WO2015178386A1 (en) | Method for producing carbon material, and carbon material | |
JP5530292B2 (en) | Manufacturing method of coke for steel making | |
WO2010116722A1 (en) | Process for producing blast furnace coke | |
KR20150021543A (en) | Coke and method for producing same | |
JP4950527B2 (en) | Coke manufacturing method and pig iron manufacturing method | |
US5162050A (en) | Low-rank coal oil agglomeration product and process | |
JPS58113291A (en) | Preparation of oil-containing fine carbonaceous sphere | |
JP2008144113A (en) | Manufacturing method and manufacturing apparatus of solid fuel | |
Wei et al. | Hydrothermal treatment of the blend of lignite and rapid hydrogasification char for preparing slurry fuels | |
US5032146A (en) | Low-rank coal oil agglomeration | |
JPS62241993A (en) | Coal-methanol slurry and production thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20060704 |