JP3586178B2 - Organic positive temperature coefficient thermistor and manufacturing method thereof - Google Patents

Organic positive temperature coefficient thermistor and manufacturing method thereof Download PDF

Info

Publication number
JP3586178B2
JP3586178B2 JP2000235122A JP2000235122A JP3586178B2 JP 3586178 B2 JP3586178 B2 JP 3586178B2 JP 2000235122 A JP2000235122 A JP 2000235122A JP 2000235122 A JP2000235122 A JP 2000235122A JP 3586178 B2 JP3586178 B2 JP 3586178B2
Authority
JP
Japan
Prior art keywords
organic
electrode
temperature coefficient
positive temperature
coefficient thermistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000235122A
Other languages
Japanese (ja)
Other versions
JP2002050503A (en
Inventor
保英 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2000235122A priority Critical patent/JP3586178B2/en
Publication of JP2002050503A publication Critical patent/JP2002050503A/en
Application granted granted Critical
Publication of JP3586178B2 publication Critical patent/JP3586178B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、有機質正特性サーミスタとその製造方法に係わり、特にその電極と製造方法に関する。
【0002】
【従来の技術】
ポリエチレンやポリプロピレン等の有機ポリマーにカーボンブラックや金属粉等の導電性物質を分散させた導電性組成物は、PTC特性を発揮することが知られている。このような組成物は、例えば米国特許第3591526号、米国特許第3673121号等に開示されている。また、これらの電極形成方法として、金属めっきを施す方法(特公平4−44401号)、金属からなる網状電極を埋設する方法(特公平2−160022号)、スパッタリングによる方法(特開昭62−85401号)等が知られている。
【0003】
【発明が解決しようとする課題】
図5(A)に示すように、前記した組成からなるPTC素体1の表裏面に電極2を接合してなる有機質正特性サーミスタにおいて、前述のように電極2を金属めっきにより形成する場合、あるいはスパッタリングにより電極2を形成する場合、PTC素体1の熱膨張収縮により、図5(B)に示すように、素体1が変形したり、電極2にしわや亀裂が入ったり、素体1から剥離する等の理由により、抵抗値が増大するという問題点があった。一方、電極2として網状電極を用いた場合、素体1の形状のわりには抵抗が下がらず、抵抗値が不安定であるという問題点があった。
【0004】
本発明は、上記問題点に鑑み、素体の熱膨張、収縮に伴う素体変形、電極のしわの発生や亀裂発生が無くなり、安定した抵抗値が得られる有機質正特性サーミスタとその製造方法を提供することを目的とする。
【0005】
【課題を解決するための手段と作用、効果】
請求項1の有機質正特性サーミスタは、有機ポリマーに導電性物質が分散されたPTC特性の素体を有し、かつ該素体の表裏面に少なくとも一対の電極を有する有機質正特性サーミスタであって、
有機ポリマーと導電性フィラーからなる多孔質構造とした電極を備えた
ことを特徴とする。
請求項2の有機質正特性サーミスタは、請求項1において、
前記電極の多孔質構造が、有機ポリマーと導電性フィラーと低分子有機化合物とを混合してシート状に成形した成形物から有機溶剤または水により前記低分子有機化合物を除去することにより実現されたものである
ことを特徴とする。
【0006】
このように、電極の全体を、有機ポリマーと導電性フィラーとからなる多孔質構造とすることにより、電極が素体の熱膨張、収縮に追従して膨張、収縮し、これにより応力が緩和され、電極にしわや亀裂が発生することが防止される。また、前記のように、応力が緩和されることにより、電極の素体に対する接合が良好な状態に維持され、抵抗値が安定する。このような特性のサーミスタは、電池の充放電回路の短絡、自動車のドアロックモータに代表される小型のモータのロック、さらには電話通信回路や情報機器の短絡による過電流防止の用途に有用である。
【0007】
請求項3の有機質正特性サーミスタは、請求項1または2において、
前記電極の一部が、前記素体の表面に熱圧着によって埋設されている
ことを特徴とする。
【0008】
このように、電極の一部を熱圧着によって埋設することにより、電極が素体に強固に接合され、抵抗値がより安定する。
【0009】
請求項4の有機質正特性サーミスタは、請求項1から3までのいずれかにおいて、
前記素体を構成する有機ポリマーがポリエチレン、ポリプロピレン、ポリ弗化ビニリデン、ポリ塩化ビニル、ポリ酢酸ビニル、アイオノマー樹脂、またはこれらの共重合体、熱可塑性エラストマーの群から選択されたポリマーからなり、
前記導電性フィラーが、カーボンブラック、グラファイト、炭素繊維、導電性ウィスカー、導電性セラミック粉、もしくはニッケル、銅、金、銀、鉄、クロムの金属粒子のうちの1種以上のものからなる
ことを特徴とする。
【0010】
このような材料を選択することにより、前記サーミスタとして、耐久性、抵抗値の安定の面でより有効な特性のものが得られる。
【0011】
請求項5の有機質正特性サーミスタの製造方法は、有機ポリマーに導電性物質が分散されたPTC特性を有する素体を有し、かつ該素体の表裏面に少なくとも一対の電極を有する有機質正特性サーミスタの製造方法であって、
前記有機ポリマーと導電性フィラーと低分子有機化合物とを混合してシート状に成形し、
該シート状の成形物から有機溶剤または水により前記低分子有機化合物を除去することにより、電極シート素材を得、
該電極シート素材をPTC特性を有する素材に熱圧着してサーミスタ素材を得る
ことを特徴とする。
【0012】
このような製造方法により、請求項1に記載の特性の良好なサーミスタが得られる。
【0013】
請求項6の有機質正特性サーミスタの製造方法は、請求項5において、
前記電極用シート状の成形物中の導電性フィラーの含有率が10〜70vol%である
ことを特徴とする。
【0014】
電極用シート状の導電性フィラーの含有率が10vol%未満であると、十分な導電性が得られず、70vol%を超えると成形性が悪くなる。
【0015】
【発明の実施の形態】
本発明の対象となるサーミスタは、一例として前記図5(A)に示したように、素体1の表裏面に電極2を形成したものである。電極2は一対のみでなく、複数対設ける場合もある。PTC特性の素体1を得るため、有機ポリマーと導電性物質とを混合してシート状に成形する。この素体形成のための有機ポリマーとしては、ポリエチレン、ポリプロピレン、ポリ弗化ビニリデン、ポリ塩化ビニル、ポリ酢酸ビニル、アイオノマー樹脂、またはこれらの共重合体、熱可塑性エラストマーの群から選択されたポリマーが用いられる。
【0016】
また、素体1中の前記導電性物質としては、ファーネスブラックやアセチレンブラック等のカーボンブラックやグラファイト、あるいは炭素繊維、導電性ウィスカー、導電性セラミック粉もしくはニッケル、銅、金、銀、鉄、クロム等の金属粒子のうちの1種以上のものが用いられる。
【0017】
このような有機ポリマーと導電性物質とを、バンバリーミキサー、ミキシングロール等の混練機によって例えば120℃〜250℃で15分〜60分混練後、加熱ロールや熱プレスによりシート状あるいはフィルム状に成形する。この場合、必ずしも必要ではないが、PTC発現後のポリマーの流動性を抑制し、抵抗値の安定が図るため、米国特許第3269862号公報に開示されているように、電子線やその効率を高めるために架橋助剤を添加した電子線架橋を行ったり、化学架橋を行ってもよい。また、特公平4−11575号公報に開示されているように、シラン化合物を遊離基発生剤の存在下で有機ポリマーにグラフト化させた後、シラノール縮合触媒の存在下に水あるいは水性触媒と接触させて水架橋を行う等の方法により、PTC発現後のポリマーの流動性を抑制し、抵抗値の安定が図られる。
【0018】
このようにして得られた素体用シート状成形物の両主面に、本発明による電極シートを加熱圧着により接合する。電極シートの導電性フィラーとして材質の制限はなく、炭素繊維、導電性ウィスカー、導電性セラミック粉もしくはニッケル、銅、金、銀、鉄、クロム等の金属粒子のうちの1種以上のものが用いられる。電極シートは、ポリエチレン等の熱可塑性有機ポリマーとそれと相溶する例えばパラフィンワックス等のような低分子量有機化合物と前記導電性フィラーとからなる。低分子量有機化合物は比較的低分子量であり、後の工程で除去する必要があるため、有機溶剤または水により溶解するものでなければならない。
【0019】
このような有機ポリマー、低分子量有機化合物、導電性フィラーを用いて電極シートは次のようにして作製される。図1(A)に示すように、有機ポリマー3、低分子量有機化合物4、導電性フィラー5を、バンバリーミキサー、ミキシングロール等の混練機によって有機ポリマーの融点以上の温度で混練し、混練物を所望の厚みになるように加熱プレス等でシート状に成形する。
【0020】
次に低分子量有機化合物4を溶解する有機溶剤または水により低分子量有機化合物4を除去し、図1(B)に示すように、低分子量有機化合物4が充填されていた部分が空洞となった多孔質構造の電極シート6を得る。このような電極シート6は、含有している導電性フィラー5が露出し、かつシート内部まで多数の孔が洞窟状に入り組んだ構造となるため、PTC成形物からなる素体1の両主面に熱圧着する場合、成形体表面とのアンカー効果が従来構造よりも格段に大きくなるため、電極シートの接合強度および素体1の安定化、低抵抗化が可能となる。
【0021】
このとき、電極シートの孔の入口部の径は、0.1μm未満のような小さなものでは熱圧着したときのアンカー効果は得られず、素体の安定化、低抵抗化が得られないので、電極シート表面の孔の径は少なくとも0.1μm以上となるように有機ポリマー3および低分子量有機化合物4と導電性フィラー5との混合比および導電性フィラー5の粒径を設定しなければならない。このような理由により、低分子量有機化合物4を含む電極シート中の導電性フィラー5の好ましい含有率は、10〜70vol%である。また、導電性フィラー5の好ましい平均粒径は、0.05μm〜500μmである。平均粒径が0.05μm未満であると、PTC特性を得ることが困難であり、一方500μmを超えると電極シートを作製できず、また、素体とのアンカー効果が悪くなる。
【0022】
電極シートを素体1に熱圧着した後、電極に金属リード端子電極を付ける必要がある場合には、電極シートの表面にさらに化学めっきあるいは電気めっきもしくは蒸着やスパッタリング等の真空帰趨めっき法により金属膜を形成する。このような金属膜を形成すると、リード端子電極との密着強度が得られやすい。
【0023】
前述のようにシート状PTC成形物の両面に多孔質構造の電極シートを熱圧着した後、打ち抜きあるいはカッティングにより所望の大きさに加工し、さらに必要に応じて金属リード線を半田付けし、その後、外装として絶縁樹脂でモールドしたり、導電性接着剤を電極に塗布後、金属からなる他の端子を接着してもよい。以下本発明の具体的実施例を説明する。
【0024】
(実施例1)
[シート状PTC成形物の作製]
有機ポリマーとして高密度ポリエチレン(以下HDPEと称す)(三井化学(株)製HY540)に特公平4−11575号公報に示されるように、シランカップリング剤(信越化学工業(株)製KBC1003)をポリマー100重量部に対して10重量部加え、かつポリマーをラジカル化するための有機過酸化物である2,5ジメチル−2,5(t−ブチルパオキシン)ヘキシン−3を同じく1重量部の割合で加え、ラボプラストミル(東洋精機(株)製)にて150℃、1時間加熱混練し、二軸押し出し機でグラフト化樹脂を作製した。
【0025】
次に、該グラフト化樹脂にフィラメント状ニッケル粉(INCO社製#255)を30vol%加えて混合し、150℃で加熱しながら回転数25rpmにて1時間混練してPTC組成物を得た後、150℃−2.94MPaにて熱プレスし、厚さ1mm程度のシート成形物を得た。
【0026】
得られた素体用シートを60℃の水に浸漬させ、さらに架橋触媒として、ジブチル錫ジラウレートを5重量部触媒として加えて8時間放置後、真空乾燥機により60℃で12時間乾燥し、シート架橋を終了した。
【0027】
[電極シートの作製]
電極シートの導電性フィラーとしてのフィラメント状ニッケル粉(INCO社製#110)50vol%と、有機ポリマーとしてのHDPE20vol%(三井化学(株)製HY540)と、低分子量有機化合物としてのエチレンホモポリマー(日本精蝋(株)製MDP7000)30vol%とを、ラボプラストミルにより150℃で30分間加熱混練した後、加熱プレスで150℃−2.94MPaにて熱プレスし、厚さ0.1mm程度の電極シート成形物を得た。
【0028】
得られた電極シート成形物を50mm×100mmのサイズに切断したものをトルエンに浸漬し、超音波洗浄機により20Hzで1時間洗浄してエチレンホモポリマー分を完全に除去し、その後、アセトンに25℃で10分間浸漬してトルエンをアセトンで置換し、真空乾燥機により60℃で8時間溶剤分を完全に揮発させ、電極シートを得た。
【0029】
[サンプルの作製]
上述のようにして作製した素体用シートを2枚の電極シートで挟み込むようにして重ね、加熱プレスにより150℃で3分間予熱した後、150℃−2.94MPaにて熱プレスを行い、シート厚の0.5mmのサンプルシートを得た。さらにこのサンプルシートの両電極表面に1〜2μmの無電解めっきを施した。そしてこのサンプルシートを10mφの大きさに打ち抜いてサンプルを得た。
【0030】
(実施例2)
導電性フィラーとして、フレーク状ニッケル粉(INCO社製/HCA−1)を使用した以外は、実施例1と同様の条件でサンプルを作製した。
【0031】
(実施例3)
導電性フィラーとして、WC粉(東京タングステン(株)製/WC05N)を使用した以外は、実施例1と同様の条件でサンプルを作製した。
【0032】
(実施例4)
導電性フィラーとして、非酸化セラミック導電粉(日本新金属(株)製/TICM#100)を使用した以外は、実施例1と同様の条件でサンプルを作製した。
【0033】
(実施例5)
導電性フィラーとして、フィラメント状ニッケル粉(INCO社製/#210)を使用した以外は、実施例1と同様の条件でサンプルを作製した。
【0034】
(実施例6)
導電性フィラーとして、フィラメント状ニッケル粉(INCO社製/#255)を使用した以外は、実施例1と同様の条件でサンプルを作製した。
【0035】
(比較例)
素体は実施例1と同様に作製し、電極シートは用いず、特公平4−44401号公報に記載されている方法で電極を作製した。具体的には、PTC組成物をクロム酸混液(ハイクロム混液)中に浸漬し、60℃で15分間エッチング処理し、水洗し、真空乾燥機により100℃で1時間乾燥した。さらに、塩酸0.06ml/lの水溶液を用いためっき浴に浸漬して陰極とし、一方、含リン銅板を陽極として1〜2μm厚の電気めっきを行った。
【0036】
(微細構造の観察)
図2(A)に実施例1により作製した電極表面の写真図を示し、図2(B)にその断面の写真図を示す。これらの図から判るように、本発明による電極は多孔質構造を示す。
【0037】
(特性測定)
[初期抵抗値]各サンプルの初期抵抗値をデジタルマルチメータにより4端子法で測定した。
[電極密着強度]電極の密着強度をみるため、粘着テープ(ソニーケミカルT4000)によりピーリング試験を行った。ここで、ピーリング試験とは、前記粘着テープをサンプルの電極部全体が密着するように貼り付けた後、瞬間的にそのテープを引き剥がしたときに粘着面に電極が付着しているかどうかで電極の密着強度を見る方法である。
[抵抗−温度(R−T)特性]各サンプルについて、室温25℃〜140℃までの抵抗−温度特性を測定した。
[抵抗−温度(R−T)特性後の変形の有無]各サンプルについて、抵抗−温度特性測定後の変形の有無を観察した。
【0038】
(評価)
表1に初期抵抗値、ピーリング試験の結果に示すように、従来のようにめっきのみの場合(比較例)は、電極と素体との密着が弱く、抵抗値も高かった。一方、本発明の実施例1〜6による場合、素体となるシート状PTC成形物にめっきや蒸着膜を形成する前に電極シートを接合することにより、初期抵抗値が下がると共に、熱膨張、収縮により熱応力が加わった際の応力緩和が起こり、素体や電極変形、亀裂防止等の補強効果があることが判明した。
【0039】
【表1】

Figure 0003586178
【0040】
すなわち、表1のR−T特性測定後の変形の欄に示すように、電極にめっきや蒸着膜のみを施した場合(比較例)は、素体との熱膨張係数の違いから、熱膨張収縮の応力により素体や電極の変形やしわ、亀裂等の発生があるが、実施例1〜6のように、本発明の電極シートを素子に接合することにより、その多孔質構造で応力を緩和すると共に、電極膜のアンカー効果が高まり、これらの問題が改善され、しわや亀裂の発生が無くなるものと考えられる。
【0041】
実施例1〜6のR−T特性測定の結果はそれぞれ図3、図4に示す通りであり、いずれも所望のPTC特性が得られることが判明した。また、図4中の下段に示す比較例の特性図から判るように、素体に単に電極をめっきにより付けた場合には初期抵抗値が大となる。
【0042】
(電極シートの組成について)
電極シートを作製する際の有機ポリマー、低分子有機化合物、導電性フィラーの組成を変化させて初期抵抗値、成形性を観察した結果を表2に示す。ここで、有機ポリマーと低分子有機化合物との比は、1:1および1:2(体積比)とし、それぞれの場合について、導電性フィラーの混合率(vol%)を5〜100の範囲で変化させた。また、他のサンプルの作製条件は実施例1と同様に作製した。
【0043】
表2に示すように、サンプルの初期抵抗値は、導電性フィラーの添加量に大きく依存し、特に導電性フィラーが10〜70vol%で低抵抗を示し、10vol%未満であると抵抗値が高くなり、一方70vol%を超えるとサンプルを作製することが困難となった。従って、低分子有機化合物除去前の電極シートの導電性フィラーの含有率は10〜70vol%であることが好ましい。
【0044】
【表2】
Figure 0003586178

【図面の簡単な説明】
【図1】本発明によるサーミスタの断面構造を示す図であり、(A)は低分子有機化合物除去前の電極シートの断面図、(B)はその低分子有機化合物を除去した後の状態を示す断面図、(C)は該電極を素体に接合した状態を示す断面図である。
【図2】(A)は本発明によるサーミスタの電極の表面構造の一例を示す写真図、(B)はその断面構造を示す写真図である。
【図3】本発明の実施例1〜4における抵抗−温度特性図である。
【図4】本発明の実施例5、6および比較例における抵抗−温度特性図である。
【図5】(A)は従来のサーミスタの一例を示す側面図、(B)はその熱膨張、収縮による電極および素体の変化を示す側面図である。
【符号の説明】
1:素体、3:有機ポリマー、4:低分子有機化合物、5:導電性フィラー、6:電極[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an organic positive temperature coefficient thermistor and a method for manufacturing the same, and more particularly, to an electrode and a method for manufacturing the same.
[0002]
[Prior art]
It is known that a conductive composition in which a conductive substance such as carbon black or metal powder is dispersed in an organic polymer such as polyethylene or polypropylene exhibits PTC characteristics. Such compositions are disclosed, for example, in U.S. Pat. Nos. 3,591,526 and 3,673,121. Further, as a method for forming these electrodes, a method of applying metal plating (Japanese Patent Publication No. 4-44401), a method of burying a reticulated electrode made of a metal (Japanese Patent Publication No. 2-160022), and a method of sputtering (Japanese Patent Application Laid-Open No. Sho 62-142). No. 85401).
[0003]
[Problems to be solved by the invention]
As shown in FIG. 5A, in an organic positive temperature coefficient thermistor in which an electrode 2 is joined to the front and back surfaces of a PTC element 1 having the above-described composition, when the electrode 2 is formed by metal plating as described above, Alternatively, when the electrode 2 is formed by sputtering, the thermal expansion and contraction of the PTC body 1 causes the body 1 to deform, the electrode 2 to be wrinkled or cracked, There is a problem that the resistance value increases due to reasons such as peeling from No. 1. On the other hand, when a mesh electrode is used as the electrode 2, there is a problem that the resistance does not decrease for the shape of the element body 1 and the resistance value is unstable.
[0004]
In view of the above problems, the present invention provides an organic positive temperature coefficient thermistor which eliminates thermal expansion and contraction of the elementary body, deformation of the elementary body due to shrinkage, generation of wrinkles and cracks in the electrode, and obtains a stable resistance value, and a method of manufacturing the same. The purpose is to provide.
[0005]
[Means for solving the problem, functions and effects]
The organic positive temperature coefficient thermistor according to claim 1, which has an element having a PTC characteristic in which a conductive substance is dispersed in an organic polymer, and has at least a pair of electrodes on front and back surfaces of the element. ,
An electrode having a porous structure comprising an organic polymer and a conductive filler is provided .
The organic positive temperature coefficient thermistor according to claim 2 is the method according to claim 1, wherein
The porous structure of the electrode was realized by removing the low-molecular organic compound with an organic solvent or water from a molded article formed by mixing an organic polymer, a conductive filler, and a low-molecular organic compound into a sheet. characterized in that <br/> that one.
[0006]
As described above, by forming the entire electrode into a porous structure including the organic polymer and the conductive filler, the electrode expands and contracts in accordance with the thermal expansion and contraction of the element body, thereby alleviating the stress. Also, generation of wrinkles and cracks in the electrode is prevented. In addition, as described above, by relaxing the stress, the bonding of the electrode to the element body is maintained in a good state, and the resistance value is stabilized. A thermistor with such characteristics is useful for short-circuiting the charge / discharge circuit of a battery, locking a small motor typified by an automobile door lock motor, and preventing overcurrent due to short-circuiting of a telephone communication circuit or information equipment. is there.
[0007]
Organic PTC thermistor according to claim 3, in claim 1 or 2,
A part of the electrode is embedded in the surface of the element body by thermocompression bonding.
[0008]
By embedding a part of the electrode by thermocompression bonding as described above, the electrode is firmly joined to the element body, and the resistance value is further stabilized.
[0009]
The organic positive temperature coefficient thermistor according to claim 4 is the method according to any one of claims 1 to 3,
The organic polymer constituting the elementary body is polyethylene, polypropylene, polyvinylidene fluoride, polyvinyl chloride, polyvinyl acetate, an ionomer resin, or a copolymer thereof, a polymer selected from the group of thermoplastic elastomers,
The conductive filler, carbon black, graphite, carbon fiber, conductive whisker, conductive ceramic powder, or nickel, copper, gold, silver, iron, that one or more of the metal particles of chromium Features.
[0010]
By selecting such a material, it is possible to obtain a thermistor having more effective characteristics in terms of durability and resistance value stability.
[0011]
The method of manufacturing an organic positive temperature coefficient thermistor according to claim 5 , comprising a body having a PTC property in which a conductive substance is dispersed in an organic polymer, and having at least a pair of electrodes on the front and back surfaces of the body. A method for manufacturing a thermistor,
Mixing the organic polymer, conductive filler and low molecular weight organic compound to form a sheet,
By removing the low-molecular-weight organic compound from the sheet-like molded product with an organic solvent or water, an electrode sheet material is obtained,
The electrode sheet material is thermocompression-bonded to a material having PTC characteristics to obtain a thermistor material.
[0012]
According to such a manufacturing method, a thermistor having excellent characteristics according to claim 1 can be obtained.
[0013]
The method for manufacturing an organic positive temperature coefficient thermistor according to claim 6 is the method according to claim 5 , wherein
The content of the conductive filler in the sheet-like molded product for an electrode is 10 to 70 vol%.
[0014]
If the content of the sheet-like conductive filler for an electrode is less than 10 vol%, sufficient conductivity cannot be obtained, and if it exceeds 70 vol%, moldability deteriorates.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
As an example, a thermistor to which the present invention is applied is one in which the electrodes 2 are formed on the front and back surfaces of the element body 1 as shown in FIG. The electrodes 2 may be provided not only in pairs but also in pairs. In order to obtain a body 1 having PTC characteristics, an organic polymer and a conductive substance are mixed and formed into a sheet. Examples of the organic polymer for forming the element body include polyethylene, polypropylene, polyvinylidene fluoride, polyvinyl chloride, polyvinyl acetate, an ionomer resin, or a copolymer thereof, or a polymer selected from the group of thermoplastic elastomers. Used.
[0016]
Examples of the conductive substance in the element body 1 include carbon black and graphite such as furnace black and acetylene black, or carbon fibers, conductive whiskers, conductive ceramic powder or nickel, copper, gold, silver, iron, and chromium. One or more of the metal particles such as described above are used.
[0017]
Such an organic polymer and a conductive substance are kneaded by a kneading machine such as a Banbury mixer or a mixing roll at, for example, 120 to 250 ° C. for 15 to 60 minutes, and then formed into a sheet or film by a heating roll or a hot press. I do. In this case, although it is not always necessary, since the fluidity of the polymer after the expression of PTC is suppressed and the resistance value is stabilized, the electron beam and its efficiency are increased as disclosed in US Pat. No. 3,269,862. For this purpose, electron beam crosslinking with the addition of a crosslinking assistant may be performed, or chemical crosslinking may be performed. Further, as disclosed in Japanese Patent Publication No. 11575/1992, after a silane compound is grafted onto an organic polymer in the presence of a free radical generator, it is contacted with water or an aqueous catalyst in the presence of a silanol condensation catalyst. For example, by performing a method such as water crosslinking, the fluidity of the polymer after the expression of PTC is suppressed, and the resistance value is stabilized.
[0018]
The electrode sheet according to the present invention is bonded to both main surfaces of the thus obtained sheet-like molded body for a body by thermocompression bonding. There is no restriction on the material of the conductive filler of the electrode sheet, and one or more of carbon fibers, conductive whiskers, conductive ceramic powder or metal particles such as nickel, copper, gold, silver, iron, and chromium are used. Can be The electrode sheet is composed of a thermoplastic organic polymer such as polyethylene, a low molecular weight organic compound compatible with the organic polymer such as paraffin wax, and the conductive filler. Since the low molecular weight organic compound has a relatively low molecular weight and needs to be removed in a later step, it must be soluble in an organic solvent or water.
[0019]
An electrode sheet is prepared as follows using such an organic polymer, a low molecular weight organic compound, and a conductive filler. As shown in FIG. 1 (A), the organic polymer 3, the low molecular weight organic compound 4, and the conductive filler 5 are kneaded by a kneader such as a Banbury mixer or a mixing roll at a temperature equal to or higher than the melting point of the organic polymer. It is formed into a sheet by a hot press or the like so as to have a desired thickness.
[0020]
Next, the low-molecular-weight organic compound 4 was removed with an organic solvent or water that dissolves the low-molecular-weight organic compound 4, and as shown in FIG. 1B, the portion filled with the low-molecular-weight organic compound 4 became a cavity. An electrode sheet 6 having a porous structure is obtained. Such an electrode sheet 6 has a structure in which the conductive filler 5 contained therein is exposed and a large number of holes are formed in a cave shape up to the inside of the sheet. Therefore, both main surfaces of the element body 1 made of a PTC molded product When thermocompression bonding is performed, the anchor effect with the surface of the molded body is much larger than that of the conventional structure, so that the bonding strength of the electrode sheet, the stabilization of the element body 1 and the reduction in resistance can be achieved.
[0021]
At this time, if the diameter of the entrance portion of the hole of the electrode sheet is as small as less than 0.1 μm, the anchor effect at the time of thermocompression bonding cannot be obtained, and the element body cannot be stabilized and the resistance cannot be reduced. The mixing ratio between the organic polymer 3 and the low molecular weight organic compound 4 and the conductive filler 5 and the particle size of the conductive filler 5 must be set so that the diameter of the pores on the surface of the electrode sheet is at least 0.1 μm or more. . For these reasons, the preferred content of the conductive filler 5 in the electrode sheet containing the low molecular weight organic compound 4 is 10 to 70 vol%. The preferred average particle size of the conductive filler 5 is 0.05 μm to 500 μm. If the average particle size is less than 0.05 μm, it is difficult to obtain PTC characteristics.
[0022]
If it is necessary to attach a metal lead terminal electrode to the electrode after thermocompression bonding of the electrode sheet to the element body 1, the surface of the electrode sheet is further subjected to chemical plating, electroplating, or vacuum return plating such as evaporation or sputtering. Form a film. When such a metal film is formed, the adhesion strength to the lead terminal electrode can be easily obtained.
[0023]
After thermocompression bonding of the electrode sheet having a porous structure to both sides of the sheet-like PTC molded article as described above, processing to a desired size by punching or cutting, and further, if necessary, soldering a metal lead wire, and then Alternatively, the terminal may be molded with an insulating resin as an exterior, or a conductive adhesive may be applied to the electrode, and then another terminal made of metal may be adhered. Hereinafter, specific examples of the present invention will be described.
[0024]
(Example 1)
[Production of sheet-like PTC molded product]
As shown in Japanese Patent Publication No. 11575/1992, a silane coupling agent (KBC1003 manufactured by Shin-Etsu Chemical Co., Ltd.) was used for high-density polyethylene (hereinafter referred to as HDPE) (HY540 manufactured by Mitsui Chemicals, Inc.) as an organic polymer. 10 parts by weight based on 100 parts by weight of the polymer, and 2,5 dimethyl-2,5 (t-butylpaoxin) hexyne-3, which is an organic peroxide for radicalizing the polymer, was also added to 1 part by weight. The mixture was heated and kneaded at 150 ° C. for 1 hour in a Labo Plastomill (manufactured by Toyo Seiki Co., Ltd.), and a grafted resin was prepared with a twin screw extruder.
[0025]
Next, 30 vol% of filamentary nickel powder (# 255 manufactured by INCO) was added to the grafted resin, mixed, and kneaded at 150 rpm for 1 hour at a rotation speed of 25 rpm to obtain a PTC composition. At 150 ° C. and 2.94 MPa to obtain a sheet molded product having a thickness of about 1 mm.
[0026]
The obtained sheet for elementary body was immersed in water at 60 ° C., and 5 parts by weight of dibutyltin dilaurate as a crosslinking catalyst was added as a catalyst and left for 8 hours, and then dried at 60 ° C. for 12 hours by a vacuum dryer. Crosslinking was completed.
[0027]
[Preparation of electrode sheet]
50 vol% of filamentary nickel powder (# 110, manufactured by INCO) as a conductive filler of the electrode sheet, 20 vol% of HDPE as an organic polymer (HY540, manufactured by Mitsui Chemicals, Inc.), and ethylene homopolymer as a low molecular weight organic compound ( 30 vol% of Nippon Seiro Wax Co., Ltd.) was heated and kneaded at 150 ° C. for 30 minutes using a Labo Plastomill, and then hot-pressed at 150 ° C.-2.94 MPa with a hot press to obtain a thickness of about 0.1 mm. An electrode sheet molded product was obtained.
[0028]
The obtained electrode sheet molded product was cut into a size of 50 mm × 100 mm, immersed in toluene, washed with an ultrasonic cleaner at 20 Hz for 1 hour to completely remove ethylene homopolymer, and then washed with acetone in 25%. The resultant was immersed at 10 ° C. for 10 minutes to replace toluene with acetone, and the solvent was completely evaporated at 60 ° C. for 8 hours using a vacuum dryer to obtain an electrode sheet.
[0029]
[Preparation of sample]
The element body sheet prepared as described above is overlapped so as to be sandwiched between two electrode sheets, preheated at 150 ° C. for 3 minutes by a hot press, and then hot pressed at 150 ° C.-2.94 MPa. A 0.5 mm thick sample sheet was obtained. Furthermore, electroless plating of 1-2 μm was applied to both electrode surfaces of this sample sheet. Then, this sample sheet was punched into a size of 10 mφ to obtain a sample.
[0030]
(Example 2)
A sample was produced under the same conditions as in Example 1 except that flake-like nickel powder (manufactured by INCO / HCA-1) was used as the conductive filler.
[0031]
(Example 3)
A sample was produced under the same conditions as in Example 1 except that WC powder (manufactured by Tokyo Tungsten Co., Ltd./WC05N) was used as the conductive filler.
[0032]
(Example 4)
A sample was produced under the same conditions as in Example 1 except that a non-oxidized ceramic conductive powder (TICM # 100, manufactured by Nippon Shinkin Co., Ltd.) was used as the conductive filler.
[0033]
(Example 5)
A sample was produced under the same conditions as in Example 1 except that a filamentary nickel powder (manufactured by INCO / # 210) was used as the conductive filler.
[0034]
(Example 6)
A sample was produced under the same conditions as in Example 1 except that a filamentary nickel powder (manufactured by INCO / # 255) was used as the conductive filler.
[0035]
(Comparative example)
An element was produced in the same manner as in Example 1, and an electrode was produced by a method described in Japanese Patent Publication No. 4-44001 without using an electrode sheet. Specifically, the PTC composition was immersed in a chromic acid mixture (high chromium mixture), etched at 60 ° C. for 15 minutes, washed with water, and dried at 100 ° C. for 1 hour by a vacuum dryer. Furthermore, it was immersed in a plating bath using an aqueous solution of hydrochloric acid 0.06 ml / l to form a cathode, and on the other hand, a phosphoric copper-containing plate was used as an anode to perform electroplating with a thickness of 1 to 2 μm.
[0036]
(Observation of microstructure)
FIG. 2A shows a photograph of the surface of the electrode manufactured according to Example 1, and FIG. 2B shows a photograph of a cross section thereof. As can be seen from these figures, the electrodes according to the invention show a porous structure.
[0037]
(Characteristic measurement)
[Initial resistance value] The initial resistance value of each sample was measured by a four-terminal method using a digital multimeter.
[Electrode adhesion strength] A peeling test was carried out using an adhesive tape (Sony Chemical T4000) to check the electrode adhesion strength. Here, the peeling test refers to whether the electrode is adhered to the adhesive surface when the adhesive tape is attached so that the entire electrode portion of the sample is in close contact, and then the tape is peeled off instantaneously. This is a method of checking the adhesion strength of the sheet.
[Resistance-Temperature (RT) Characteristics] The resistance-temperature characteristics of each sample from room temperature of 25 ° C to 140 ° C were measured.
[Presence of Deformation after Resistance-Temperature (RT) Characteristics] For each sample, the presence or absence of deformation after resistance-temperature characteristics measurement was observed.
[0038]
(Evaluation)
As shown in the results of the initial resistance value and the peeling test in Table 1, in the case of the conventional plating only (Comparative Example), the adhesion between the electrode and the element was weak and the resistance value was high. On the other hand, in the case of Examples 1 to 6 of the present invention, by joining the electrode sheet before forming the plating or vapor-deposited film on the sheet-like PTC molded product serving as the elementary body, the initial resistance value is reduced, and the thermal expansion, It has been found that stress relaxation occurs when thermal stress is applied due to shrinkage, and there is a reinforcing effect such as deformation of the element body, electrode deformation and crack prevention.
[0039]
[Table 1]
Figure 0003586178
[0040]
That is, as shown in the column of deformation after measurement of RT characteristics in Table 1, when only plating or a vapor-deposited film was applied to the electrode (Comparative Example), the thermal expansion coefficient was different from that of the element body. Deformation, wrinkles, cracks, etc. of the elementary body and the electrode may occur due to the shrinkage stress. However, as in Examples 1 to 6, by joining the electrode sheet of the present invention to the element, the stress is reduced by the porous structure. It is considered that these effects are alleviated, the anchor effect of the electrode film is enhanced, these problems are improved, and wrinkles and cracks are eliminated.
[0041]
The results of the RT characteristic measurement of Examples 1 to 6 are as shown in FIGS. 3 and 4, respectively, and it was found that the desired PTC characteristic was obtained in each case. Further, as can be seen from the characteristic diagram of the comparative example shown in the lower part of FIG. 4, when the electrode is simply plated on the element body, the initial resistance value becomes large.
[0042]
(About composition of electrode sheet)
Table 2 shows the results of observing the initial resistance value and moldability by changing the composition of the organic polymer, the low molecular weight organic compound, and the conductive filler when preparing the electrode sheet. Here, the ratio of the organic polymer to the low molecular weight organic compound is 1: 1 and 1: 2 (volume ratio), and in each case, the mixing ratio (vol%) of the conductive filler is in the range of 5 to 100. Changed. The other samples were manufactured in the same manner as in Example 1.
[0043]
As shown in Table 2, the initial resistance value of the sample greatly depends on the amount of the conductive filler added. In particular, the conductive filler has a low resistance at 10 to 70 vol%, and has a high resistance value at less than 10 vol%. On the other hand, if it exceeds 70% by volume, it becomes difficult to prepare a sample. Therefore, the content of the conductive filler in the electrode sheet before the removal of the low-molecular organic compound is preferably 10 to 70 vol%.
[0044]
[Table 2]
Figure 0003586178

[Brief description of the drawings]
FIG. 1 is a view showing a cross-sectional structure of a thermistor according to the present invention, wherein (A) is a cross-sectional view of an electrode sheet before a low-molecular organic compound is removed, and (B) is a state after the low-molecular organic compound is removed. FIG. 2C is a cross-sectional view showing a state where the electrode is joined to a body.
2A is a photograph showing an example of a surface structure of an electrode of a thermistor according to the present invention, and FIG. 2B is a photograph showing a sectional structure thereof.
FIG. 3 is a resistance-temperature characteristic diagram in Examples 1 to 4 of the present invention.
FIG. 4 is a resistance-temperature characteristic diagram in Examples 5 and 6 of the present invention and a comparative example.
FIG. 5A is a side view showing an example of a conventional thermistor, and FIG. 5B is a side view showing changes in electrodes and element bodies due to thermal expansion and contraction thereof.
[Explanation of symbols]
1: elementary body, 3: organic polymer, 4: low molecular organic compound, 5: conductive filler, 6: electrode

Claims (6)

有機ポリマーに導電性物質が分散されたPTC特性の素体を有し、かつ該素体の表裏面に少なくとも一対の電極を有する有機質正特性サーミスタであって、
有機ポリマーと導電性フィラーからなる多孔質構造とした電極を備えた
ことを特徴とする有機質正特性サーミスタ。
An organic positive temperature coefficient thermistor having a PTC element body in which a conductive substance is dispersed in an organic polymer, and having at least a pair of electrodes on the front and back surfaces of the element body,
An organic positive temperature coefficient thermistor comprising an electrode having a porous structure comprising an organic polymer and a conductive filler .
請求項1において、
前記電極の多孔質構造が、有機ポリマーと導電性フィラーと低分子有機化合物とを混合してシート状に成形した成形物から有機溶剤または水により前記低分子有機化合物を除去することにより実現されたものである
ことを特徴とする有機質正特性サーミスタ。
In claim 1,
The porous structure of the electrode was realized by removing the low-molecular organic compound with an organic solvent or water from a molded article formed by mixing an organic polymer, a conductive filler, and a low-molecular organic compound into a sheet. organic PTC thermistor according to claim in which <br/> that one.
請求項1または2において、
前記電極の一部が、前記素体の表面に熱圧着によって埋設されている
ことを特徴とする有機質正特性サーミスタ。
In claim 1 or 2,
An organic positive temperature coefficient thermistor, wherein a part of said electrode is embedded in the surface of said element body by thermocompression bonding.
請求項1から3までのいずれかにおいて、
前記素体を構成する有機ポリマーがポリエチレン、ポリプロピレン、ポリ弗化ビニリデン、ポリ塩化ビニル、ポリ酢酸ビニル、アイオノマー樹脂、またはこれらの共重合体、熱可塑性エラストマーの群から選択されたポリマーからなり、
前記導電性物質が、カーボンブラック、グラファイト、炭素繊維、導電性ウィスカー、
導電性セラミック粉、もしくはニッケル、銅、金、銀、鉄、クロムのいずれかの金属粒子
うちの1種以上のものからなる
ことを特徴とする有機質正特性サーミスタ。
In any one of claims 1 to 3,
The organic polymer constituting the elementary body is polyethylene, polypropylene, polyvinylidene fluoride, polyvinyl chloride, polyvinyl acetate, an ionomer resin, or a copolymer thereof, a polymer selected from the group of thermoplastic elastomers,
The conductive material is carbon black, graphite, carbon fiber, conductive whiskers,
An organic positive temperature coefficient thermistor comprising conductive ceramic powder or at least one of nickel, copper, gold, silver, iron and chromium metal particles.
有機ポリマーに導電性物質が分散されたPTC特性の素体を有し、かつ該素体の表裏面に少なくとも一対の電極を有する有機質正特性サーミスタの製造方法であって、
有機ポリマーと導電性フィラーと低分子有機化合物とを混合してシート状に成形し、
該シート状の成形物から有機溶剤または水により前記低分子有機化合物を除去することにより、有機ポリマーと導電性フィラーとからなる多孔質構造の電極シート素材を得、
該電極シート素材をPTC特性を有する素材に熱圧着してサーミスタ素材を得る
ことを特徴とする有機質正特性サーミスタの製造方法。
A method for producing an organic positive temperature coefficient thermistor having a PTC element body in which a conductive substance is dispersed in an organic polymer, and having at least a pair of electrodes on the front and back surfaces of the element body,
A mixture of an organic polymer, a conductive filler and a low molecular organic compound is formed into a sheet,
By removing the low-molecular-weight organic compound from the sheet-like molded product with an organic solvent or water, an electrode sheet material having a porous structure including an organic polymer and a conductive filler is obtained.
A method for producing an organic positive temperature coefficient thermistor, characterized by obtaining said thermistor material by thermocompression bonding said electrode sheet material to a material having PTC characteristics.
請求項5において、
前記電極用シート状の成形物中の導電性フィラーの含有率が10〜70vol%である
ことを特徴とする有機質正特性サーミスタの製造方法。
In claim 5,
The method for producing an organic positive temperature coefficient thermistor, wherein the content of the conductive filler in the electrode sheet-shaped molded product is 10 to 70 vol%.
JP2000235122A 2000-08-03 2000-08-03 Organic positive temperature coefficient thermistor and manufacturing method thereof Expired - Fee Related JP3586178B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000235122A JP3586178B2 (en) 2000-08-03 2000-08-03 Organic positive temperature coefficient thermistor and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000235122A JP3586178B2 (en) 2000-08-03 2000-08-03 Organic positive temperature coefficient thermistor and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2002050503A JP2002050503A (en) 2002-02-15
JP3586178B2 true JP3586178B2 (en) 2004-11-10

Family

ID=18727389

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000235122A Expired - Fee Related JP3586178B2 (en) 2000-08-03 2000-08-03 Organic positive temperature coefficient thermistor and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3586178B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090051196A1 (en) * 2006-03-29 2009-02-26 Matsushita Electric Industrial., Ltd. Sheet heating element and seat making use of the same

Also Published As

Publication number Publication date
JP2002050503A (en) 2002-02-15

Similar Documents

Publication Publication Date Title
US9001495B2 (en) High power and high energy electrodes using carbon nanotubes
KR100295013B1 (en) Organic PTC Thermistor and Fluorescent Lamp Overheating Device Using It
SE468026B (en) SET TO MAKE AN ELECTRIC DEVICE
TW200407914A (en) Electrical conducting resin film, collector and their manufacturing methods
JP3586178B2 (en) Organic positive temperature coefficient thermistor and manufacturing method thereof
JPH07331201A (en) Electrically conductive adhesive and bonded structure using the same
JP2009194168A (en) Thermistor, and manufacturing method thereof
JP2002241554A (en) Semiconductive admixture
JP2810351B2 (en) Organic positive temperature coefficient thermistor
JP3500493B2 (en) Porous electrode and method for producing the same
JP3117644B2 (en) Conductive film for current collection and manufacturing method
JP2002008685A (en) Separator for fuel battery cell
JP2014183222A (en) PTC composition
JP3214546B2 (en) Organic positive temperature coefficient thermistor manufacturing method and organic positive temperature coefficient thermistor
JP3226027B2 (en) Battery electrode and secondary battery using the same
KR20010079845A (en) Ptc device and method for producing the same
JP3833538B2 (en) Electrical device comprising a PTC conductive polymer
JP2003178903A (en) Macromolecular ptc element and its manufacturing method
JPH0935906A (en) Polymer based ptc element and its manufacture
JP2000252102A (en) Protective element and its manufacture
JP2000188209A (en) Resistor element employing surface buried layer of conductive powder as electrode
JP2003530718A5 (en)
JP2002093601A (en) Method of manufacturing organic positive temperature coefficient thermistor
JP2003092202A (en) Polymer ptc element and manufacturing method thereof
JPS6387705A (en) Ptc device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040405

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040405

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040803

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040805

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080813

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080813

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090813

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090813

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100813

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees