JP2002008685A - Separator for fuel battery cell - Google Patents

Separator for fuel battery cell

Info

Publication number
JP2002008685A
JP2002008685A JP2000190778A JP2000190778A JP2002008685A JP 2002008685 A JP2002008685 A JP 2002008685A JP 2000190778 A JP2000190778 A JP 2000190778A JP 2000190778 A JP2000190778 A JP 2000190778A JP 2002008685 A JP2002008685 A JP 2002008685A
Authority
JP
Japan
Prior art keywords
separator
fuel cell
melting point
metal
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000190778A
Other languages
Japanese (ja)
Inventor
Tatsuya Hayashi
林  達也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Plastics Inc
Original Assignee
Mitsubishi Plastics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Plastics Inc filed Critical Mitsubishi Plastics Inc
Priority to JP2000190778A priority Critical patent/JP2002008685A/en
Publication of JP2002008685A publication Critical patent/JP2002008685A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a separator for fuel battery cells having high conductivity, high durability, and excellent productivity. SOLUTION: The separators for fuel battery cells (20) which are used for collecting electricity from electrodes while contacting to a pair of the electrodes (11) sandwiching an electrolyte film (12) respectively, has a gas flow pass (21) for supplying gas in the electrode side. A material of the separator is made of a thermoplastic resin containing a low fusing-point metal, and a conductive polymer is coated at least on the above electrode side surface of the separator.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電解質膜を挟み込
む1対の電極に接触し、電極からの集電に用いられると
ともに、少なくとも前記電極側にガス供給用のガス流路
を有する燃料電池セル用セパレータに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuel cell which is in contact with a pair of electrodes sandwiching an electrolyte membrane, is used for current collection from the electrodes, and has a gas supply gas passage at least on the electrode side. For separators for

【0002】[0002]

【従来の技術】上記の燃料電池セル用セパレータ(以
下、単に「セパレータ」という)には、電極からの集電
をする都合上、高度の導電性が必要である。さらに、ガ
ス不透過性や、耐食性、機械的強度等も必要とされる。
そして、セパレータには電極にガスを供給するためのガ
ス流路や冷却溝を形成するが、その形成方法は、従来、
金属板やカーボンプレートのような導電材料にエンドミ
ル、フライス等の切削加工を施して形成されていた。
2. Description of the Related Art The above-mentioned separator for a fuel cell (hereinafter simply referred to as "separator") requires a high degree of conductivity in order to collect current from an electrode. Further, gas impermeability, corrosion resistance, mechanical strength, and the like are required.
Then, a gas flow path and a cooling groove for supplying gas to the electrode are formed in the separator.
It has been formed by cutting a conductive material such as a metal plate or a carbon plate with an end mill, a milling machine, or the like.

【0003】[0003]

【発明が解決しようとする課題】セパレータ材料として
純銅やステンレス鋼などの金属材料で構成する例が知ら
れているが、これらの金属系の材質では重量的に重くな
る他に燃料ガスとして用いる水素ガスと長時間に亘って
接触するために、水素脆性が生じて材質劣化が起こる欠
点や、溝形成における切削加工やエッチング処理、さら
には金属の腐食、劣化を防ぐ為の貴金属メッキなども必
要とするので工数や材料でのコスト増が避けられない。
It is known that a separator material is made of a metal material such as pure copper or stainless steel. However, such a metal material becomes heavy in weight and hydrogen used as a fuel gas is used. Due to prolonged contact with gas, hydrogen embrittlement occurs and material deterioration is caused, cutting and etching processing for groove formation, and precious metal plating to prevent metal corrosion and deterioration are also required. As a result, cost increases in man-hours and materials are inevitable.

【0004】また、金属系の他には緻密質カーボン板材
を採用し、この板材に切削加工を経てガス流路を形成し
てセパレータとしている例がある。このセパレータでは
軽量化は解決できるが板自体の製造に長時間を要し、生
産性が悪いという問題がある。さらに、金属板と同様の
流路の加工に加え、板材とするためのダイヤモンドカッ
タによるスライス切削等も必要とするので、工数増加と
それに伴うコスト増が避けられない。
Further, there is an example in which a dense carbon plate material is adopted in addition to a metal material, and a gas flow path is formed in this plate material through cutting to form a separator. This separator can solve the problem of weight reduction, but has a problem that it takes a long time to manufacture the plate itself and the productivity is poor. Further, in addition to the processing of the flow path similar to that of the metal plate, slice cutting or the like by a diamond cutter for forming a plate material is required, so that an increase in man-hours and an accompanying cost are inevitable.

【0005】本発明は、従来のセパレータの問題点を解
決すべく、集電性に極めて優れた高度の導電性および耐
金属腐食性を備えるとともに、生産性に優れたセパレー
タを提供することを目的としている。
An object of the present invention is to solve the problems of the conventional separator by providing a separator excellent in current collection and having high conductivity and metal corrosion resistance and excellent in productivity. And

【0006】[0006]

【課題を解決するための手段】本発明は、上述の問題点
を解消できる燃料電池セル用セパレータを見出したもの
であり、その要旨とするところは、電解質膜12を挟み
込む1対の電極11にそれぞれ接触し、電極からの集電
に用いられるとともに、上記電極側にガス供給用のガス
流路21が有する燃料電池セル用セパレータ20であっ
て、該セパレータの材料が融点300℃以下の低融点金
属、及び融点300℃以上の金属粉末を含有した熱可塑
性樹脂あるいは熱可塑性エラストマーからなり、さらに
該セパレータの表面が導電性ポリマー30で覆われてい
ることを特徴とする燃料電池セル用セパレータにある。
SUMMARY OF THE INVENTION The present invention has found a separator for a fuel cell which can solve the above-mentioned problems. The gist of the present invention is to provide a separator for a pair of electrodes 11 sandwiching an electrolyte membrane 12 therebetween. A fuel cell separator 20 having a gas flow path 21 for gas supply on the electrode side, wherein the material of the separator has a low melting point of 300 ° C. or less. A separator for a fuel cell, comprising a metal and a thermoplastic resin or a thermoplastic elastomer containing a metal powder having a melting point of 300 ° C. or more, and the surface of the separator is covered with a conductive polymer 30. .

【0007】[0007]

【発明の実施の形態】以下、本発明を詳しく説明する。
図1は固体高分子型の燃料電池セルの構造を示した断面
概略図である。この図1に示すように、燃料電池セル1
0は、電解質膜12と、この電解質膜12を両側から挟
んでサンドイッチ構造とする一対の電極11と、このサ
ンドイッチ構造を両側から挟みつつ電極に接触するセパ
レータ20を備えている。セパレータ20は電極側にガ
ス供給用のガス流路21を有し、電極の反対側に冷却水
路22を有している。この冷却水路22は必要に応じて
設けることができる。また、電極に接触するセパレータ
20の少なくとも電極側表面には、セパレータの腐蝕防
止の為、導電性ポリマー30がコーティングされてい
る。セパレータ20の全厚みは通常、1.0mm〜3.
0mmの範囲である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail.
FIG. 1 is a schematic sectional view showing the structure of a polymer electrolyte fuel cell. As shown in FIG. 1, the fuel cell 1
Reference numeral 0 includes an electrolyte membrane 12, a pair of electrodes 11 having a sandwich structure sandwiching the electrolyte membrane 12 from both sides, and a separator 20 contacting the electrodes while sandwiching the sandwich structure from both sides. The separator 20 has a gas passage 21 for gas supply on the electrode side, and a cooling water passage 22 on the opposite side of the electrode. The cooling water passage 22 can be provided as needed. Further, at least the electrode side surface of the separator 20 which is in contact with the electrode is coated with a conductive polymer 30 in order to prevent corrosion of the separator. The total thickness of the separator 20 is usually 1.0 mm to 3.0 mm.
The range is 0 mm.

【0008】本発明の燃料電池セル用セパレータは、そ
の材料が(a)熱可塑性樹脂あるいは熱可塑性エラスト
マーおよびこれらの混合物、(b)融点が300℃以下
の低融点金属、及び(c)金属粉末の混合物(以下、
「混合材」という)からなることに特徴がある。このよ
うに熱可塑性樹脂あるいは熱可塑性エラストマーおよび
これらの混合物と導電性を付与するための金属成分を特
定の組み合わせとすることにより、極めて高度の導電性
と機械的強度などの他の特性をバランス良く付与できる
ことを見出したものであり、混合剤においては、(a)
熱可塑性樹脂あるいは熱可塑性エラストマーおよびこれ
らの混合物を組成物全体の20〜80容量%、好ましく
は40〜60容量%の範囲で含有するすることが望まし
い。樹脂成分が80容量%を越えると導電性が発現し難
い傾向にあり、20容量%未満では、流動性が低下し
て、成形が困難となる。また、熱可塑性樹脂あるいは熱
可塑性エラストマーおよびこれらの混合物と低融点金属
との接着強度を強固に発現させるために熱可塑性樹脂あ
るいは熱可塑性エラストマーはその一部を炭素数3〜1
0の有機不飽和カルボン酸で変性する必要がある。有機
不飽和カルボン酸としては、例えばアクリル酸、マレイ
ン酸、メタクリル酸、フマール酸、イタコン酸等が好適
である。(c)の金属粉末は低融点金属の分散助剤とし
て作用し、金属成分中の(c)金属粉末の割合を10〜
30容量%、好ましくは15〜25容量%の範囲とする
ことが好ましい。10容量%未満では、分散状態が悪く
なり、また30容量%を越えると流動性が低下するとと
もに脆化しやすくなる。
The fuel cell separator according to the present invention comprises: (a) a thermoplastic resin or a thermoplastic elastomer and a mixture thereof; (b) a low melting point metal having a melting point of 300 ° C. or less; and (c) a metal powder. Mixture of
(Referred to as "mixed material"). By using a specific combination of a thermoplastic resin or a thermoplastic elastomer and a mixture thereof and a metal component for imparting electrical conductivity, a very high level of electrical conductivity and other properties such as mechanical strength are well-balanced. Have been found to be able to be applied.
It is desirable to contain the thermoplastic resin or the thermoplastic elastomer and a mixture thereof in the range of 20 to 80% by volume, preferably 40 to 60% by volume of the whole composition. If the content of the resin component exceeds 80% by volume, the conductivity tends to be difficult to be exhibited. If the content is less than 20% by volume, the fluidity decreases and molding becomes difficult. Further, in order to strongly develop the adhesive strength between the thermoplastic resin or the thermoplastic elastomer and the mixture thereof and the low melting point metal, the thermoplastic resin or the thermoplastic elastomer has a part of which has 3 to 1 carbon atoms.
It needs to be modified with 0 organic unsaturated carboxylic acids. As the organic unsaturated carboxylic acid, for example, acrylic acid, maleic acid, methacrylic acid, fumaric acid, itaconic acid and the like are suitable. The metal powder of (c) acts as a dispersing aid for the low-melting point metal, and the ratio of the metal powder (c) in the metal component is 10 to
It is preferably in the range of 30% by volume, preferably 15 to 25% by volume. If it is less than 10% by volume, the state of dispersion will be poor, and if it exceeds 30% by volume, the fluidity will decrease and the material will be brittle.

【0009】混合材に用いられる(a)熱可塑性樹脂あ
るいは熱可塑性エラストマーおよびこれらの混合物とし
ては、セパレータが使用される環境下に耐えうるもので
あれば良く、耐熱性、耐水性、耐薬品性の観点から、P
Pなどのポリオレフィン樹脂、ABS樹脂、変成PPE
樹脂、PPS樹脂、ポリアセタール樹脂、液晶ポリマー
樹脂などを基質とした樹脂が好適である。
[0009] The thermoplastic resin or thermoplastic elastomer (a) and the mixture thereof used in the mixture may be any as long as they can withstand the environment in which the separator is used, and may have heat resistance, water resistance and chemical resistance. From the point of view of P
Polyolefin resin such as P, ABS resin, modified PPE
A resin using a resin, a PPS resin, a polyacetal resin, a liquid crystal polymer resin, or the like as a substrate is preferable.

【0010】(b)の融点が300℃以下の低融点金属
には各種のものが使用できる。融点の測定方法は示差走
査熱量測定法(DSC)に示差走査熱量測定法(DS
C)ににより測定すればよく、融点が300℃を越える
金属では成形性が劣るという問題がある。具体的にはP
b/Sn、Pb/Sn/Bi、Pb/Sn/Ag、 Pb
/Ag、Sn/Ag、 Sn/Bi、Sn/Cu、Sn/
Zn系から選ばれたはんだ合金が好適に使用できる。
(c)成分の金属粉末は上記低融点金属の分散助剤とな
るものであり、Cu、Ni、Al、Cr及びそれらの合
金粉末が好適に使用でき、その平均粒径が1〜50μm
の範囲のものが好ましい。平均粒径は試料を透過型電子
顕微鏡により撮影し、写真から求めた数平均粒子径であ
る。平均粒径が1μm未満では混合の際のハンドリング
が困難であり、また50μmを越えるものでは分散性が
低下し易い傾向がある。
Various kinds of low melting point metals having a melting point of 300 ° C. or less can be used. The melting point can be measured by the differential scanning calorimetry (DSC).
The measurement may be performed according to C), and there is a problem that a metal having a melting point exceeding 300 ° C. has poor moldability. Specifically, P
b / Sn, Pb / Sn / Bi, Pb / Sn / Ag, Pb
/ Ag, Sn / Ag, Sn / Bi, Sn / Cu, Sn /
A solder alloy selected from Zn-based can be suitably used.
The metal powder of the component (c) serves as a dispersing aid for the low-melting-point metal, and Cu, Ni, Al, Cr and alloy powders thereof can be suitably used, and the average particle size is 1 to 50 μm.
Are preferred. The average particle diameter is a number average particle diameter obtained by photographing a sample with a transmission electron microscope and obtaining the photograph. When the average particle size is less than 1 μm, handling during mixing is difficult, and when the average particle size exceeds 50 μm, the dispersibility tends to decrease.

【0011】セパレータの表面を覆う導電性ポリマー
(e)は、混合物内の低融点金属の腐食を防止する目的
でコーティングされる。加工性などの実用面でポリアニ
リン、ポリピロール、ポリチオフェンが好適であるが、
その他の材料の適用の可能性もある。導電性ポリマーの
その他の素材としては、例えばポリアセチレン、ポリ
(1,6−ヘプタジイン)、ポリ(フェニルアセチレ
ン)、ポリジアセチレン、ポリパラフェニレン、ポリナ
フタレン、ポリアントラセン、ポリピレン、ポリアズレ
ン、ポリフラン、ポリセレノフェン、ポリイソチアナフ
テン、ポリ(3−アルキルチオフェン)、ポリ(3−チ
オフェン−β−エタンスルホン酸)、ポリ(パラフェニ
レンスルフィド)、ポリ(パラフェニレンオキサイ
ド)、ポリビリレンスルフィド、ポリパラフェニレンビ
ニレン、ポリチオフェンビニレン、ポリフェニレンビニ
レンおよびこれらの重合体に含まれる単量対の2種以上
からなる共重合体並びに誘導体からなる群から選ばれる
少なくとも1種である。
[0011] The conductive polymer (e) covering the surface of the separator is coated for the purpose of preventing corrosion of low melting point metals in the mixture. Polyaniline, polypyrrole, and polythiophene are preferable in practical aspects such as processability,
Other materials may be applied. Other materials for the conductive polymer include, for example, polyacetylene, poly (1,6-heptadiyne), poly (phenylacetylene), polydiacetylene, polyparaphenylene, polynaphthalene, polyanthracene, polypyrene, polyazulene, polyfuran, polyselenophene , Polyisothianaphthene, poly (3-alkylthiophene), poly (3-thiophene-β-ethanesulfonic acid), poly (paraphenylene sulfide), poly (paraphenylene oxide), polyvirylene sulfide, polyparaphenylene vinylene , Polythiophene vinylene, polyphenylene vinylene, and at least one member selected from the group consisting of copolymers and derivatives of two or more monomer pairs contained in these polymers.

【0012】本発明の燃料電池セル用セパレータは、上
記混合材の各成分を用い、混合したものを所定の温度で
ニーダや二軸押出機等の混練機により混練後、造粒した
ものを用いる方法が好ましい。混練においては低融点金
属が半溶融状態となる温度が好ましく、マトリックスと
なる樹脂の溶融温度に応じて適切な低融点金属の合金組
成を選択する必要がある。錫−鉛系はんだの場合は分散
助剤が無くとも適切な条件の設定で分散が可能である
が、鉛フリーの低融点合金においては分散助剤となる銅
粉、ニッケル粉等の金属粉末の添加が必要となる。
As the fuel cell separator of the present invention, a mixture obtained by kneading a mixture of the components of the above-mentioned mixture at a predetermined temperature using a kneader such as a kneader or a twin-screw extruder and then granulating the mixture is used. The method is preferred. In kneading, the temperature at which the low melting point metal is in a semi-molten state is preferable, and it is necessary to select an appropriate alloy composition of the low melting point metal according to the melting temperature of the resin serving as the matrix. In the case of tin-lead solder, dispersion can be performed under appropriate conditions without a dispersing aid, but for lead-free low melting point alloys, metal powders such as copper powder, nickel powder, etc. Addition is required.

【0013】上記方法にて得られた低融点合金含有樹脂
の造粒物は、セパレータ形状を有する金型を用いて射出
成形、トランスファー成形、プレス成形等を行うことで
賦形可能である。生産性を考えると、射出成形が有効で
ある。得られた成形品はこのままでもセパレータとして
の機能を果たすが、電極側の耐久性を考えると、電極側
表面に導電性ポリマーをコーティングすることが好まし
い。導電性ポリマーによりセパレータ中の金属成分の電
蝕を防止できる。
The granulated product of the low-melting point alloy-containing resin obtained by the above method can be shaped by performing injection molding, transfer molding, press molding, etc. using a mold having a separator shape. In view of productivity, injection molding is effective. Although the obtained molded article functions as a separator as it is, it is preferable to coat a conductive polymer on the electrode side surface in consideration of durability on the electrode side. The conductive polymer can prevent electrolytic corrosion of the metal component in the separator.

【0014】以上説明したように、本発明の燃料電池セ
ル用セパレータは、樹脂に低融点金属が含有されている
ので高度の導電性を示す。また、通常の熱可塑性樹脂と
同様な成形方法を用いることができるので、流路を有す
る形状とするにあたり切削加工を必要としない。また、
表面が導電性ポリマーで覆われているため金属成分の電
蝕も生じない。従って、本発明の燃料電池セル用セパレ
ータは、セパレータとして必要な高い導電性、耐久性を
備え、かつ生産性に富んだセパレータとなる。
As described above, the fuel cell separator of the present invention exhibits high conductivity because the resin contains a low melting point metal. In addition, since a molding method similar to that of a normal thermoplastic resin can be used, a cutting process is not required for forming a shape having a flow path. Also,
Since the surface is covered with the conductive polymer, there is no occurrence of electrolytic corrosion of the metal component. Therefore, the fuel cell separator of the present invention has high conductivity and durability required as a separator, and has high productivity.

【0015】[0015]

【実施例】以下、実施例について説明するが、本発明は
これに限定されるものではない。 実施例 (a)熱可塑性樹脂(熱可塑性エラストマー)として酸
変成ポリオレフィン(「アドテックスER320P」日
本ポリオレフィン(株)製)を用い、(b)低融点金属
として鉛フリーハンダ(Sn−4Cu−2Ni 融点
固相線225℃−液相線480℃)、(c)金属粉末と
して平均粒径10μmの銅粉を用いた。あらかじめ各原
料粉末の体積比率を(a):(b):(c)=40:4
5:15として物理混合した後、2軸押出機(「2D2
5−S」東洋精機(株)製)を用いて溶融混練後、ペレ
ット化し、はんだ含有樹脂ペレットを作成した。押出条
件は以下の通りである。
The present invention will be described in more detail with reference to the following Examples, but it should not be construed that the present invention is limited thereto. Example (a) An acid-modified polyolefin ("Adtex ER320P" manufactured by Nippon Polyolefin Co., Ltd.) was used as a thermoplastic resin (thermoplastic elastomer), and (b) a lead-free solder (Sn-4Cu-2Ni melting point) as a low melting point metal.
(Solidus line 225 ° C.-liquidus line 480 ° C.), and (c) copper powder having an average particle size of 10 μm was used as the metal powder. The volume ratio of each raw material powder is determined in advance by (a) :( b) :( c) = 40: 4.
After physical mixing at 5:15, a twin screw extruder (“2D2
5-S "(manufactured by Toyo Seiki Co., Ltd.), followed by pelletization to prepare solder-containing resin pellets. Extrusion conditions are as follows.

【0016】 シリンダー温度: 200℃ スクリュ回転数: 20r.p.m. その後、雌型と雄型とを対向させた射出成形用の成形型
に、上記方法で作成した低融点合金含有樹脂ペレットを
以下の条件で射出成形した。
Cylinder temperature: 200 ° C. Screw rotation speed: 20 r. p. m. Thereafter, the resin pellet containing the low melting point alloy prepared by the above method was injection-molded in a molding die for injection molding in which the female mold and the male mold were opposed to each other under the following conditions.

【0017】 金型温度 :40℃ シリンダー温度 :200℃ スクリュ回転数 :50r.p.m. 射出率 :60cm3/秒 射出圧力 :80MPa 背圧 :2MPa 保圧(冷却)時間 :40秒 冷却後、脱型し目的とする全厚み2mmのセパレータ形
状成形品を得た。
Mold temperature: 40 ° C. Cylinder temperature: 200 ° C. Screw rotation speed: 50 r. p. m. Injection rate: 60 cm3 / sec Injection pressure: 80 MPa Back pressure: 2 MPa Holding pressure (cooling) time: 40 seconds After cooling, the mold was removed to obtain a 2 mm-thick separator-shaped molded product of interest.

【0018】導電性ポリマーであるポリアニリンをN,
Nジメチルピロリドンの溶媒に溶かし、上記で得られた
成形品に塗布し、乾燥、加熱して表面に50μmの導電
性ポリマーのコーティング層を施した。ポリアニリンは
以下のように重合した。塩酸水溶液にアニリン入れ、0
℃で攪拌しながら、この中にペルオキソニ硫酸アンモニ
ウム水溶液をゆっくり滴下する。滴下開始数分後には重
合が起こりポリアニリンが得られる。
The conductive polymer polyaniline is converted to N,
It was dissolved in a solvent of N-dimethylpyrrolidone, applied to the molded article obtained above, dried and heated to give a 50 μm conductive polymer coating layer on the surface. Polyaniline was polymerized as follows. Add aniline to hydrochloric acid aqueous solution,
An aqueous solution of ammonium peroxodisulfate is slowly added dropwise thereto while stirring at a temperature of ° C. A few minutes after the start of the dropwise addition, polymerization takes place to obtain polyaniline.

【0019】このセパレータの特性は以下の通りであっ
た。 体積固有抵抗値 :8×10−4Ω・cm ガス透過性 :10−6cc/atm/sec以
下(対ヘリウムガス) 硫酸溶液(pH1)中での重量変化 :ほぼ0%(10
00時間浸漬)
The characteristics of this separator were as follows. Volume resistivity: 8 × 10 −4 Ω · cm Gas permeability: 10 −6 cc / atm / sec or less (relative to helium gas) Weight change in sulfuric acid solution (pH 1): almost 0% (10%)
(Immerse for 00 hours)

【0020】[0020]

【比較例】上記実施例と同様であるが、表面に導電性ポ
リマーを塗布していない成形品について同等の特性評価
を行った。 体積固有抵抗値 :3×10−4Ω・cm ガス透過性 :10−6cc/atm/sec以
下(対ヘリウムガス) 硫酸溶液(pH1)中での重量変化 :−4%(100
0時間浸漬)
Comparative Example The same property evaluation as that of the above-described example was performed on a molded article having no conductive polymer applied to the surface. Volume resistivity: 3 × 10 −4 Ω · cm Gas permeability: 10 −6 cc / atm / sec or less (relative to helium gas) Weight change in sulfuric acid solution (pH 1): −4% (100
(0 hours immersion)

【0021】実施例および比較例から明らかなように本
発明の燃料電池セル用セパレータは導電性、ガス透過性
さらには耐金属腐食性のいずれに関しても優れて性能を
有していることが明らかである。
As is clear from the examples and comparative examples, it is clear that the fuel cell separator of the present invention has excellent performance in all of conductivity, gas permeability and metal corrosion resistance. is there.

【0022】[0022]

【発明の効果】上述したように、本発明の燃料電池セル
用セパレータは、樹脂に低融点金属が含有されているの
で高度の導電性を示す。また通常の熱可塑性樹脂と同様
な射出成形や圧縮成形が可能であるため、流路を有する
形状とするにあたり切削加工を必要としない。この結
果、セパレータとして必要な高度の導電性を備え、かつ
生産性に優れるという利点を有しており、セルを多数積
層してなる燃料電池への利用性が大きい。また、電極側
表面に導電性ポリマーをコーティングしたものは耐薬品
性に関しても優れている。
As described above, the fuel cell separator of the present invention exhibits high conductivity because the resin contains a low melting point metal. In addition, since injection molding and compression molding can be performed in the same manner as a normal thermoplastic resin, cutting processing is not required for forming a shape having a flow path. As a result, the separator has a high degree of conductivity required as a separator and has an advantage of excellent productivity, and is highly applicable to a fuel cell having a large number of stacked cells. Further, the electrode-side surface coated with a conductive polymer is also excellent in chemical resistance.

【図面の簡単な説明】[Brief description of the drawings]

【図1】燃料電池セルの構造を示した断面概略図であ
る。
FIG. 1 is a schematic sectional view showing the structure of a fuel cell unit.

【符号の説明】[Explanation of symbols]

10 …燃料電池セル 11 …電極 12 …電解質膜 20 …セパレータ 21 …ガス流路 22 …冷却水路 30 …導電性ポリマー DESCRIPTION OF SYMBOLS 10 ... Fuel cell 11 ... Electrode 12 ... Electrolyte membrane 20 ... Separator 21 ... Gas flow path 22 ... Cooling water channel 30 ... Conductive polymer

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 電解質膜(12)を挟み込む1対の電極
(11)にそれぞれ接触し、電極からの集電に用いられ
るとともに、上記電極側にガス供給用のガス流路(2
1)が有する燃料電池セル用セパレータ(20)であっ
て、該セパレータの材料が融点300℃以下の低融点金
属、及び融点300℃以上の金属粉末を含有した熱可塑
性樹脂あるいは熱可塑性エラストマーからなり、さらに
該セパレータの表面が導電性ポリマー(30)で覆われ
ていることを特徴とする燃料電池セル用セパレータ。
1. A gas flow path (2) for contacting a pair of electrodes (11) sandwiching an electrolyte membrane (12) to collect current from the electrodes and for supplying gas to the electrodes.
The fuel cell separator (20) according to 1), wherein the material of the separator is a thermoplastic resin or a thermoplastic elastomer containing a low melting point metal having a melting point of 300 ° C. or lower and a metal powder having a melting point of 300 ° C. or higher. And a separator for a fuel cell, wherein the surface of the separator is covered with a conductive polymer (30).
【請求項2】 (a)熱可塑性樹脂あるいは熱可塑性エ
ラストマーおよびこれらの混合物が燃料電池セル用セパ
レータの20〜80容量%であると共に、(b)低融点
金属及び(c)金属粉末を合わせた金属成分中の(c)
金属粉末の割合が10〜30容量%の範囲であることを
特徴とする請求項1記載の燃料電池セル用セパレータ。
2. A fuel composition comprising (a) a thermoplastic resin or a thermoplastic elastomer and a mixture thereof comprising 20 to 80% by volume of a fuel cell separator, (b) a low melting point metal and (c) a metal powder. (C) in metal component
2. The fuel cell separator according to claim 1, wherein the proportion of the metal powder is in the range of 10 to 30% by volume.
【請求項3】 (b)成分の低融点金属が、Pb/S
n、Pb/Sn/Bi、Pb/Sn/Ag、 Pb/A
g、 Sn/Ag、 Sn/Bi、Sn/Cu、Sn/Zn
系から選ばれた低融点合金からなることを特徴とする請
求項1乃至2記載の燃料電池セル用セパレータ。
3. The low melting point metal of component (b) is Pb / S
n, Pb / Sn / Bi, Pb / Sn / Ag, Pb / A
g, Sn / Ag, Sn / Bi, Sn / Cu, Sn / Zn
3. The fuel cell separator according to claim 1, comprising a low melting point alloy selected from the group consisting of:
【請求項4】(d)成分の金属粉末がCu、Ni、A
l、Cr及びそれらの合金粉末からなり、その平均粒径
が1〜50μmの範囲であることを特徴とする請求項1
乃至3記載の燃料電池セル用セパレータ。
4. The metal powder of component (d) is Cu, Ni, A
2. The powder of claim 1, wherein said powder is made of l, Cr or an alloy powder thereof, and has an average particle diameter in the range of 1 to 50 μm.
4. The fuel cell separator according to any one of claims 1 to 3.
【請求項5】(a)熱可塑性樹脂あるいは熱可塑性エラ
ストマーおよびこれらの混合物の一部が酸変成されてお
りカルボキシル基が含有されていることを特徴とする請
求項1乃至4記載の燃料電池セル用セパレータ。
5. The fuel cell according to claim 1, wherein (a) a part of the thermoplastic resin or the thermoplastic elastomer and a mixture thereof is acid-modified and contains a carboxyl group. For separator.
【請求項6】セパレータの表面を覆う導電性ポリマー
(e)が、ポリアニリン、ポリピロール、ポリチオフェ
ンから選ばれてなることを特徴とする請求項1乃至5記
載の燃料電池セル用セパレータ。
6. The fuel cell separator according to claim 1, wherein the conductive polymer (e) covering the surface of the separator is selected from polyaniline, polypyrrole, and polythiophene.
JP2000190778A 2000-06-26 2000-06-26 Separator for fuel battery cell Pending JP2002008685A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000190778A JP2002008685A (en) 2000-06-26 2000-06-26 Separator for fuel battery cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000190778A JP2002008685A (en) 2000-06-26 2000-06-26 Separator for fuel battery cell

Publications (1)

Publication Number Publication Date
JP2002008685A true JP2002008685A (en) 2002-01-11

Family

ID=18690188

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000190778A Pending JP2002008685A (en) 2000-06-26 2000-06-26 Separator for fuel battery cell

Country Status (1)

Country Link
JP (1) JP2002008685A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030061484A (en) * 2002-01-14 2003-07-22 (주)세티 Bipolar Plate for Fuel Cell and Its Method of Making
JP2005259657A (en) * 2004-03-15 2005-09-22 Hitachi Cable Ltd Corrosion resistant and conductive metal material
WO2006052408A2 (en) * 2004-11-11 2006-05-18 General Motors Corporation Electroconductive polymer coating on electroconducte elements in a fuel cell
JP2006172719A (en) * 2004-12-10 2006-06-29 Japan Carlit Co Ltd:The Separator for fuel cell and its manufacturing method
KR100669373B1 (en) 2004-11-25 2007-01-15 삼성에스디아이 주식회사 Metal separator for fuel cell system and method for preparing the same and fuel cell system comprising the same
US8252483B2 (en) 2006-09-29 2012-08-28 Showa Denko K.K. Fuel cell separator having a corrugated electrically conducting flow path
US8252484B2 (en) 2006-09-29 2012-08-28 Showa Denko K.K. Separator for fuel cell having electrically conducting flow path part

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09279040A (en) * 1995-11-29 1997-10-28 Internatl Business Mach Corp <Ibm> Conductive polymer and its precursor
JP2000138066A (en) * 1998-08-25 2000-05-16 Mitsubishi Plastics Ind Ltd Separator for fuel cell

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09279040A (en) * 1995-11-29 1997-10-28 Internatl Business Mach Corp <Ibm> Conductive polymer and its precursor
JP2000138066A (en) * 1998-08-25 2000-05-16 Mitsubishi Plastics Ind Ltd Separator for fuel cell

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030061484A (en) * 2002-01-14 2003-07-22 (주)세티 Bipolar Plate for Fuel Cell and Its Method of Making
JP4696456B2 (en) * 2004-03-15 2011-06-08 日立電線株式会社 Corrosion-resistant conductive composite material for fuel cell separator
JP2005259657A (en) * 2004-03-15 2005-09-22 Hitachi Cable Ltd Corrosion resistant and conductive metal material
JP4796585B2 (en) * 2004-11-11 2011-10-19 ゼネラル・モーターズ・コーポレーション Conductive polymer coatings on conductive elements in fuel cells
JP2008520080A (en) * 2004-11-11 2008-06-12 ゼネラル・モーターズ・コーポレーション Conductive polymer coatings on conductive elements in fuel cells
WO2006052408A3 (en) * 2004-11-11 2009-04-23 Gen Motors Corp Electroconductive polymer coating on electroconducte elements in a fuel cell
US7951510B2 (en) 2004-11-11 2011-05-31 GM Global Technology Operations LLC Electroconductive polymer coating on electroconductive elements in a fuel cell
WO2006052408A2 (en) * 2004-11-11 2006-05-18 General Motors Corporation Electroconductive polymer coating on electroconducte elements in a fuel cell
DE112005002776B4 (en) 2004-11-11 2021-08-19 General Motors Corp. ELECTRICALLY CONDUCTIVE ELEMENT, FUEL CELL AND A METHOD FOR MANUFACTURING AN ELECTRICALLY CONDUCTIVE ELEMENT OF AN ELECTROCHEMICAL FUEL CELL
KR100669373B1 (en) 2004-11-25 2007-01-15 삼성에스디아이 주식회사 Metal separator for fuel cell system and method for preparing the same and fuel cell system comprising the same
JP2006172719A (en) * 2004-12-10 2006-06-29 Japan Carlit Co Ltd:The Separator for fuel cell and its manufacturing method
US8252483B2 (en) 2006-09-29 2012-08-28 Showa Denko K.K. Fuel cell separator having a corrugated electrically conducting flow path
US8252484B2 (en) 2006-09-29 2012-08-28 Showa Denko K.K. Separator for fuel cell having electrically conducting flow path part

Similar Documents

Publication Publication Date Title
KR102479910B1 (en) Conductive flake-reinforced, polymer-stabilized electrode composition and manufacturing method thereof
US6180275B1 (en) Fuel cell collector plate and method of fabrication
KR101762604B1 (en) Positive electrode for secondary battery, and secondary battery
JP5711365B2 (en) Conductive composite material having positive temperature coefficient resistance and overcurrent protection element
KR101310520B1 (en) Electrode material for electrochemical device and composite particle
CN109873166A (en) Current collector, pole piece thereof and electrochemical device
CN111048790B (en) Current collector and preparation method and application thereof
JP2003503822A (en) Improved lithium ion polymer electrolyte and method of manufacturing electrochemical cell
US20120045691A1 (en) Carbon nanotube based electrode materials for high performance batteries
JP2007123192A (en) Current collector and electrode for solid electrolyte secondary battery
KR20110135858A (en) Negative electrode active material for lithium ion secondary battery, and lithium ion secondary battery
EP3425720A1 (en) Fluoride shuttle secondary battery
US10530010B2 (en) Fluoride shuttle secondary battery
JP2002008685A (en) Separator for fuel battery cell
US20030078332A1 (en) Conductive polymer-particle blends
US5824436A (en) Electrically conductive polymeric coating for an electrochemical charge storage device
JP2000348739A (en) Resin composition for fuel cell separator
JP5153993B2 (en) Conductive thermoplastic resin film
US4892797A (en) Bipolar electrode and process for manufacturing same
CN111106354A (en) Lithium battery current collector, preparation method thereof and lithium battery
KR100470906B1 (en) Very low resistance ptc device and continuous manufacturing method thereof
KR101056439B1 (en) Stack for fuel cell and manufacturing method thereof
JP3342544B2 (en) Conductive resin molding
CN219696485U (en) Composite copper foil structure
US11127957B2 (en) Fuel cell separator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070620

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100506

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100907