JP3583036B2 - Non-reciprocal circuit device - Google Patents

Non-reciprocal circuit device Download PDF

Info

Publication number
JP3583036B2
JP3583036B2 JP26369999A JP26369999A JP3583036B2 JP 3583036 B2 JP3583036 B2 JP 3583036B2 JP 26369999 A JP26369999 A JP 26369999A JP 26369999 A JP26369999 A JP 26369999A JP 3583036 B2 JP3583036 B2 JP 3583036B2
Authority
JP
Japan
Prior art keywords
carrier plate
ground conductor
ferrite substrate
reciprocal circuit
disposed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP26369999A
Other languages
Japanese (ja)
Other versions
JP2001085909A (en
Inventor
孝夫 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP26369999A priority Critical patent/JP3583036B2/en
Publication of JP2001085909A publication Critical patent/JP2001085909A/en
Application granted granted Critical
Publication of JP3583036B2 publication Critical patent/JP3583036B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Non-Reversible Transmitting Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、マイクロ波回路などに用いる非可逆回路素子に関する。
【0002】
【従来の技術】
高い周波数を利用する通信機器などに組み込まれるマイクロ波回路は、マルチメディア無線通信などの通信品質を高めるために、アイソレータやサーキュレータなどの非可逆回路素子が使用されている。非可逆回路素子は小型化が要求される反面、非可逆回路素子に接続される半導体素子の効率が向上し、取り扱う電力が増加する傾向にある。また、非可逆回路素子を製造する場合、環境問題の観点から、半田付けやフラックス洗浄工程を避けるために、金属の接合工程における半田レス化が進められている。
【0003】
ここで、従来の非可逆回路素子について図13を参照して説明する。図13はマイクロストリップ型のアイソレータを示し、図(a)は斜視図、図(b)は、図(a)の線X−Yにおける断面図である。
【0004】
図13(a)に示すように、非可逆回路素子は、フェライト基板131やフェライト基板131に密着した線路導体132、線路導体132の反対側に密着した地導体133、地導体133に密着したキャリア板134、線路導体132を介して矢印Y方向に磁界を付与し、フェライト基板131を磁化する磁石(以後の図面では磁石の表示を省略する)135、終端器136などから構成されている。
【0005】
フェライト基板131と終端器136、および、地導体133とキャリア板134は、半田あるいは導電性接着剤などの接合材137で接合されている。この場合、地導体133とキャリア板134は接合材137によって電気的および熱的に接続されている。
【0006】
上記した構成の非可逆回路素子の場合、線路導体132や地導体133は、通常、フェライト基板131に金属蒸着や厚膜焼成によって密着形成される。しかし、近年、銅板を直接接合するDBC(Direct Bond Copper)技術を用い、線路導体132や地導体133をフェライト基板131に直接接合する方法が実用化されている。また、非可逆回路素子は、環境問題の観点から、半田付けやフラックス洗浄工程の回避が望まれ、また、コストを下げるために工程数の軽減が望まれている。
【0007】
次に、従来の他の非可逆回路素子について図14を参照して説明する。図(a)は斜視図、(b)は図(a)の線X−Yにおける断面図で、図13に対応する部分には同一の符号を付し、重複する説明は一部省略する。この例は、キャリア板134を銅で構成し、線路導体132および銅からなるキャリア板134をフェライト基板131の両面にDBC法で直接接合している。
【0008】
この構成の場合、線路導体132およびキャリア板134の接合は1つの工程で同時に行なわれる。そのため、クリーム半田印刷→リフロー→フラックス洗浄のような複雑な工程が不要となる。
【0009】
従来の非可逆回路素子、たとえばキャリア板を後で接合するキャリア板分離型の非可逆回路素子の場合、地導体133およびキャリア板134はそれぞれ個別に表面処理される。しかし、図14のように、フェライト基板131に線路導体132およびキャリア板134を、それぞれDBC法によって一体化する場合は、表面処理が1回で済む利点がある。さらに、半田や導電性接着剤など熱抵抗の大きい材質が接合部分に介在しないため、非可逆回路素子の損失による発熱を効率よくケースなどに放熱でき、耐電力性が増す利点がある。
【0010】
【発明が解決しようとする課題】
従来の非可逆回路素子は、フェライト基板131の厚さに比べキャリア板134の厚さが薄い場合は、フェライト基板131が破損するなどの問題は発生しない。しかし、フェライト基板131との接合面積にも関係するものの、キャリア板134の厚さが厚くなると、フェライト基板131が破損する場合がある。
【0011】
たとえば、フェライト基板131とキャリア板134とをDBC法で接合する方法では、約1000℃で溶融接合し、その後、冷却して固着される。このとき、キャリア板134の熱収縮応力がフェライト基板131の抗折力より大きいと、フェライト基板131が破壊する。
【0012】
ここで、フェライト基板131の破壊状況について説明する。
【0013】
図15は、図13の構造において、厚さが0.1mmの地導体133とキャリア板134とを半田137で接合した場合を示している。この場合、図15で示すように、フェライト基板131に破壊が発生しない。これは、半田137に柔軟性があるため、半田付け程度の温度では熱膨張率差による応力が半田137で吸収されるためと考えられる。
【0014】
図16は、図14の構造において、幅10mm、長さ10mm、厚さ1mmのフェライト基板131を用い、フェライト基板131といろいろな厚さのキャリア板134とをDBC法で直接接合した場合を示している。図16で示すように、キャリア板134の厚さが0.5mmを超えるとフェライト基板131に破壊が発生する。
【0015】
ところで、キャリア板134は、取り扱い易さという観点から、ある程度の厚さが要求される。たとえば、キャリア板134の厚さが薄いと凹凸が生じ易く、ケースとの取付けの際に隙間が生じて非可逆回路素子としての接地が不十分になり、マイクロ波特性たとえば挿入損失が悪化する。また放熱も悪化し、諸特性に温度変化を生じる原因にもなる。なお、フェライト基板131の破壊を防止するために、フェライト基板131を厚くし、機械的強度を高めることが考えられるが、製品の小型化やコストの面からその厚さが制限されている。
【0016】
本発明は、上記の欠点を解決し、フェライト基板と金属導体部分をDBC法で接合する構成において、キャリア板を厚くしてもフェライト基板が破壊しない非可逆回路素子を提供することを目的とする。
【0017】
【課題を解決するための手段】
本発明は、フェライト基板と、このフェライト基板の一方の面に配置された線路導体と、前記フェライト基板の他方の面に配置された地導体と、この地導体と接触して配置されたキャリア板と、前記フェライト基板の片側または両側に配置された磁石とを具備した非可逆回路素子において、銅で形成した前記地導体及び前記キャリア板は、位置が重ならないようにずらして貫通する穴を設け、前記フェライト基板と前記地導体、および前記地導体と前記キャリア板とを、それぞれDBC法で接合したことを特徴としている。
【0018】
【発明の実施の形態】
本発明の実施形態について図1を参照して説明する。図1(a)はキャリア板側から見た斜視図、図1(b)は、図(a)を線X−Yで矢印方向に断面にした断面図である。
【0019】
厚さhのフェライト基板11の一方の面にマイクロストリップ線路12がDBC法で接合され、他方の面には厚さHのキャリア板13がDBC法で接合されている。キャリア板13には微小量の半田または導電性接着剤などの接合材15を用いて終端器14が接続されている。キャリア板13には、エッチングやプレス加工などによって貫通する小さな穴A1が複数設けられている。
【0020】
キャリア板13に設けられる穴Aの径dは、非可逆回路素子の動作周波数や非可逆回路素子の挿入損失、フェライト基板11とキャリア板13との接合面積、発熱量などを考慮し、フェライト基板11が破損しない大きさとなるように、たとえば実験的に決められる。
【0021】
上記した構成によれば、半田は、キャリア板13と終端器14との接続部分だけに使用され、僅かな量に抑えられる。たとえば、従来の厚膜型キャリア板を半田付けで接合する場合(図13)に比べると、半田の使用量は数%以下になる。なお、キャリア板13と終端器14とを導電性接着剤で接合すれば半田の使用量は零にできる。
【0022】
ここで、図1の構成の非可逆回路素子の破壊状況を図2に示す。図2は、フェライト基板11の寸法が、幅10mm、長さ10mm、厚さ(h)1mmの場合で、この寸法のフェライト基板11と複数の穴A1が設けられたいろいろな厚さ(H)のキャリア板13とをDBC法で接合した場合の破壊状況を示している。
【0023】
図2と図16とを対比して分かるように、キャリア板13の厚さ(H)が厚くなってもフェライト基板11に破壊が発生しない。これは、キャリア板13に複数の穴A1を設けたことにより、フェライト基板11とキャリア板13との接合面積が小さくなり、熱膨張率差で生じる応力が小さくなったことによるものと考えられる。したがって、キャリア板13に複数の穴A1を設けた場合、キャリア板13の厚さ(H)を厚くすることができ、非可逆回路素子としての取り扱い強度が増加する。
【0024】
本発明の他の実施形態について図3を参照して説明する。図3(a)はキャリア板側から見た斜視図、図3(b)は図(a)を線X−Yで矢印方向に断面にした断面図で、図1に対応する部分には同じ符号を付し、重複する説明を一部省略する。
【0025】
この実施形態の場合、フェライト基板11とキャリア板13との間に地導体31が設けられ、図3(b)の断面図で示すように、地導体31の部分に貫通する複数の穴B1が設けられ、フェライト基板11と地導体31、地導体31とキャリア板13が、それぞれDBC法で接合されている。
【0026】
図3の構成の非可逆回路素子の破壊状況を図4に示す。図4と図16とを対比して分かるように、この場合も、キャリア板13の厚さ(H)を厚くできる。
【0027】
次に、本発明の他の実施形態について図5を参照して説明する。図5(a)はキャリア板側から見た斜視図、図5(b)は、図(a)を線X−Yで矢印方向に断面にした断面図で、図3に対応する部分には同じ符号を付し、重複する説明を一部省略する。。
【0028】
この実施形態は、フェライト基板11と厚さtの地導体31がDBC法で接合され、同時に、地導体31と穴A1を設けたキャリア板13がDBC法で接合されている。この場合、フェライト基板11に穴のない地導体31が密着して接合されている。そのため、挿入損失が減少し、放熱効果が向上する。また、地導体31が薄く形成され、キャリア板13に穴A1が設けられているため、フェライト基板11は熱膨張率差による残留応力に耐えることができる。
【0029】
図5の構成の非可逆回路素子の破壊状況を図6に示す。図6は、いろいろな厚さ(H)のキャリア板13に対するフェライト基板11の破壊状況を示し、図6と図16とを対比して分かるように、この場合も、キャリア板13の厚さ(H)を厚くできる。
【0030】
次に、フェライト基板11の一方の側に順に接合される地導体31およびキャリア板13の変形例について図7〜図12を参照して説明する。図7〜図12では、図1、3、5と対応する部分には同一の符号を付し重複する説明は一部省略する。
【0031】
図7は、キャリア板13にある深さの複数の窪みA2を設け、キャリア板13の窪みA2を設けた側をフェライト基板11とDBC法で接合している。この場合も、フェライト基板11といろいろな厚さのキャリア板13を接合して破壊状況を測定すると、図2と同じ結果が得られた。これは、キャリア板13に複数の窪みA2を設けたことにより、フェライト基板11とキャリア板13の接合面積が小さくなり、フェライト基板11とキャリア板13との熱膨張率差による残留応力が軽減したことによると考えられる。なお、キャリア板13の窪みA2はエッチングや機械加工で形成できる。
【0032】
図8は、フェライト基板11と地導体31とをDBC法で接合し、複数の窪みA2を設けたキャリア板13と地導体31とをDBC法で接合している。図9は、地導体31およびキャリア板13にそれぞれある深さの複数の窪みB2、A2を設け、フェライト基板11と地導体31、地導体31とキャリア板13を、それぞれ両者の窪みB2、A2の位置が一致するようにDBC法で接合している。図10は、地導体31およびキャリア板13にそれぞれ貫通する複数の穴B1およびある深さの複数の窪みA2を設け、フェライト基板11と地導体31、地導体31とキャリア板13を、それぞれ両者の穴B1および窪みA2の位置をずらせてDBC法で接合している。
【0033】
図7〜図10の場合、下層に位置する地導体31あるいはキャリア板13の裏面に窪みがなく平坦な面になっている。このため、地導体31あるいはキャリア板13をケース(図示せず)などと接合する場合、電気的および機械的に良好な接触が得られる。図10のように、地導体31とキャリア板13の穴B1および窪みA2の位置をずらせた場合は、熱伝導の悪い穴B1および窪みA2の部分が連続しないため、良好な放熱効果が得られる。
【0034】
図11は、地導体31にある深さの複数の窪みB2を設け、キャリア板13に貫通する複数の穴A1を設け、地導体31の窪みB2の位置とキャリア板13の穴A1の位置を一致させて、フェライト基板11と地導体31、および、地導体31とキャリア板13を、それぞれ同時にDBC法で接合している。
【0035】
図12は、地導体31およびキャリア板13にそれぞれ貫通する穴B1、A1を設け、フェライト基板11と地導体31、地導体31とキャリア板13を、それぞれ両者の穴B1、A1の位置が一致するように、同時にDBC法で接合している。この構成の場合、地導体31とキャリア板13の穴B1、A1の位置がずれているため、良好な放熱効果が得られる。
【0036】
図7〜図12のいずれの場合も、キャリア板13の厚さを従来の構造の場合よりも厚くできる。
【0037】
上記した構造によれば、フェライト基板に接合される地導体やキャリア板に貫通する穴、あるいは窪みを設け、それぞれフェライト基板とDBC接合し、あるいは、地導体とキャリア板とをDBC接合している。この場合、キャリア板の厚さを厚くしても、フェライト基板が破壊しない。したがって、放熱や挿入損失などの特性を実用できる範囲に維持しつつ、取付けに必要な機械的強度を有し、かつ、熱膨張率差によってフェライト基板が破壊しない非可逆回路素子を実現できる。また、熱膨張率差などが原因するフェライト基板の破壊が防止されるため、フェライト基板とキャリア板、あるいはフェライト基板と地導体、キャリア板を同時にDBC法で接合できる。このため、工程数が低減し安価な非可逆回路素子を実現できる。また、半田の使用量も微量もしは零の非可逆回路素子を実現できる。
【0038】
上記の実施形態では、アイソレータの場合で説明しているが、この発明はサーキュレータ、あるいは、三導体型の非可逆回路素子についても適用できる。
【0039】
【発明の効果】
本発明によれば、フェライト基板と金属導体部分をDBC法で接合する構成において、キャリア板を厚くしてもフェライト基板が破壊しない非可逆回路素子を実現できる。
【図面の簡単な説明】
【図1】本発明の実施形態を説明するための構造図である。
【図2】本発明の実施形態の特性を説明するための図である。
【図3】本発明の他の実施形態を説明するための構造図である。
【図4】本発明の他の実施形態の特性を説明するための図である。
【図5】本発明の他の実施形態を説明するための構造図である。
【図6】本発明の他の実施形態の特性を説明するための図である。
【図7】本発明の地導体の変形例を説明するための概略の構造図である。
【図8】本発明の地導体およびキャリア板の変形例を説明するための概略の構造図である。
【図9】本発明の地導体およびキャリア板の変形例を説明するための概略の構造図である。
【図10】本発明の地導体およびキャリア板の変形例を説明するための概略の構造図である。
【図11】本発明の地導体およびキャリア板の変形例を説明するための概略の構造図である。
【図12】本発明の地導体およびキャリア板の変形例を説明するための概略の構造図である。
【図13】従来例を説明するための構造図である。
【図14】他の従来例を説明するための構造図である。
【図15】従来例の特性を説明するための図である。
【図16】他の従来例の特性を説明するための図である。
【符号の説明】
11…フェライト基板
12…線路導体
13…キャリア板
14…終端器
15…接合材
A…キャリア板を貫通する穴
d…キャリア板を貫通する穴の径
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a non-reciprocal circuit device used for a microwave circuit or the like.
[0002]
[Prior art]
2. Description of the Related Art A microwave circuit incorporated in a communication device using a high frequency uses a non-reciprocal circuit element such as an isolator or a circulator in order to improve communication quality such as multimedia wireless communication. Although the nonreciprocal circuit device is required to be miniaturized, the efficiency of the semiconductor device connected to the nonreciprocal circuit device is improved, and the power to be handled tends to increase. Further, in the case of manufacturing a non-reciprocal circuit device, in order to avoid soldering and a flux cleaning process, from the viewpoint of environmental problems, a solderless process in a metal joining process is being promoted.
[0003]
Here, a conventional non-reciprocal circuit device will be described with reference to FIG. 13A and 13B show a microstrip type isolator. FIG. 13A is a perspective view, and FIG. 13B is a cross-sectional view taken along line X-Y in FIG.
[0004]
As shown in FIG. 13A, the non-reciprocal circuit device includes a ferrite substrate 131, a line conductor 132 in close contact with the ferrite substrate 131, a ground conductor 133 in close contact with the opposite side of the line conductor 132, and a carrier in close contact with the ground conductor 133. It is composed of a plate 135, a magnet 135 that applies a magnetic field in the direction of the arrow Y through the line conductor 132 to magnetize the ferrite substrate 131 (magnets are omitted in the following drawings) 135, a terminator 136, and the like.
[0005]
The ferrite substrate 131 and the terminator 136, and the ground conductor 133 and the carrier plate 134 are joined by a joining material 137 such as solder or a conductive adhesive. In this case, the ground conductor 133 and the carrier plate 134 are electrically and thermally connected by the joining material 137.
[0006]
In the case of the non-reciprocal circuit device having the above-described configuration, the line conductor 132 and the ground conductor 133 are usually formed in close contact with the ferrite substrate 131 by metal deposition or thick film baking. However, in recent years, a method of directly joining the line conductor 132 and the ground conductor 133 to the ferrite substrate 131 using a DBC (Direct Bond Copper) technique for directly joining a copper plate has been put to practical use. Further, in the case of non-reciprocal circuit devices, it is desired to avoid soldering and flux cleaning steps from the viewpoint of environmental problems, and it is desired to reduce the number of steps in order to reduce costs.
[0007]
Next, another conventional non-reciprocal circuit device will be described with reference to FIG. 13A is a perspective view, and FIG. 13B is a cross-sectional view taken along line X-Y in FIG. 13A. Parts corresponding to those in FIG. 13 are denoted by the same reference numerals, and redundant description is partially omitted. In this example, the carrier plate 134 is made of copper, and the line conductor 132 and the carrier plate 134 made of copper are directly bonded to both surfaces of the ferrite substrate 131 by the DBC method.
[0008]
In the case of this configuration, the joining of the line conductor 132 and the carrier plate 134 is performed simultaneously in one step. Therefore, a complicated process such as cream solder printing → reflow → flux cleaning is not required.
[0009]
In the case of a conventional non-reciprocal circuit device, for example, a carrier plate-separated type non-reciprocal circuit device in which a carrier plate is bonded later, the ground conductor 133 and the carrier plate 134 are individually surface-treated. However, as shown in FIG. 14, when the line conductor 132 and the carrier plate 134 are integrated with the ferrite substrate 131 by the DBC method, respectively, there is an advantage that the surface treatment only needs to be performed once. Furthermore, since a material having high thermal resistance such as solder or conductive adhesive does not intervene in the joint portion, heat generated by loss of the non-reciprocal circuit element can be efficiently radiated to the case and the like, and there is an advantage that power durability is increased.
[0010]
[Problems to be solved by the invention]
In the conventional nonreciprocal circuit device, when the thickness of the carrier plate 134 is smaller than the thickness of the ferrite substrate 131, no problem such as breakage of the ferrite substrate 131 occurs. However, depending on the bonding area with the ferrite substrate 131, when the thickness of the carrier plate 134 is increased, the ferrite substrate 131 may be damaged.
[0011]
For example, in the method of joining the ferrite substrate 131 and the carrier plate 134 by the DBC method, the ferrite substrate 131 is melt-joined at about 1000 ° C., and then cooled and fixed. At this time, if the heat shrinkage stress of the carrier plate 134 is larger than the bending strength of the ferrite substrate 131, the ferrite substrate 131 is broken.
[0012]
Here, the state of destruction of the ferrite substrate 131 will be described.
[0013]
FIG. 15 shows a case where the ground conductor 133 having a thickness of 0.1 mm and the carrier plate 134 are joined by solder 137 in the structure of FIG. In this case, as shown in FIG. 15, no destruction occurs in the ferrite substrate 131. This is presumably because the solder 137 has flexibility, so that the stress due to the difference in the coefficient of thermal expansion is absorbed by the solder 137 at a temperature similar to the soldering.
[0014]
FIG. 16 shows a case in which a ferrite substrate 131 having a width of 10 mm, a length of 10 mm, and a thickness of 1 mm is used in the structure of FIG. 14 and the ferrite substrate 131 and carrier plates 134 of various thicknesses are directly bonded by the DBC method. ing. As shown in FIG. 16, when the thickness of the carrier plate 134 exceeds 0.5 mm, the ferrite substrate 131 is broken.
[0015]
By the way, the carrier plate 134 is required to have a certain thickness from the viewpoint of easy handling. For example, if the thickness of the carrier plate 134 is small, irregularities are likely to occur, and a gap is generated when the carrier plate 134 is attached to the case, so that grounding as a non-reciprocal circuit element becomes insufficient, and microwave characteristics such as insertion loss deteriorate. . In addition, heat radiation is deteriorated, which may cause a temperature change in various characteristics. In order to prevent the destruction of the ferrite substrate 131, it is conceivable to increase the thickness of the ferrite substrate 131 and increase its mechanical strength. However, the thickness is limited in terms of miniaturization and cost of the product.
[0016]
An object of the present invention is to provide a non-reciprocal circuit device which solves the above-mentioned drawbacks and in which a ferrite substrate and a metal conductor portion are joined by a DBC method so that the ferrite substrate is not broken even if the carrier plate is thickened. .
[0017]
[Means for Solving the Problems]
The present invention relates to a ferrite substrate, a line conductor disposed on one surface of the ferrite substrate, a ground conductor disposed on the other surface of the ferrite substrate, and a carrier plate disposed in contact with the ground conductor. And a magnet disposed on one or both sides of the ferrite substrate, in the non-reciprocal circuit device, the ground conductor and the carrier plate formed of copper are provided with holes that are displaced and penetrated so that the positions do not overlap. The ferrite substrate and the ground conductor, and the ground conductor and the carrier plate are each bonded by a DBC method.
[0018]
BEST MODE FOR CARRYING OUT THE INVENTION
An embodiment of the present invention will be described with reference to FIG. FIG. 1A is a perspective view as viewed from the carrier plate side, and FIG. 1B is a cross-sectional view of FIG. 1A taken along line XY in the direction of the arrow.
[0019]
A microstrip line 12 is joined to one surface of a ferrite substrate 11 having a thickness h by a DBC method, and a carrier plate 13 having a thickness H is joined to the other surface by a DBC method. A terminator 14 is connected to the carrier plate 13 using a small amount of bonding material 15 such as solder or conductive adhesive. The carrier plate 13 is provided with a plurality of small holes A1 penetrated by etching or press working.
[0020]
The diameter d of the hole A provided in the carrier plate 13 is determined in consideration of the operating frequency of the non-reciprocal circuit device, the insertion loss of the non-reciprocal circuit device, the joint area between the ferrite substrate 11 and the carrier plate 13, the heat generation amount, and the like. 11 is determined experimentally, for example, so as not to be damaged.
[0021]
According to the above-described configuration, the solder is used only in the connection portion between the carrier plate 13 and the terminator 14, and is suppressed to a small amount. For example, compared to the case where a conventional thick film type carrier plate is joined by soldering (FIG. 13), the amount of solder used is several percent or less. If the carrier plate 13 and the terminator 14 are joined with a conductive adhesive, the amount of solder used can be reduced to zero.
[0022]
Here, FIG. 2 shows a destruction state of the non-reciprocal circuit device having the configuration of FIG. FIG. 2 shows a case where the dimensions of the ferrite substrate 11 are 10 mm in width, 10 mm in length, and 1 mm in thickness (h), and the ferrite substrate 11 of this dimension and various thicknesses (H) in which a plurality of holes A1 are provided. 3 shows a state of destruction when the carrier plate 13 is joined by the DBC method.
[0023]
As can be seen by comparing FIG. 2 and FIG. 16, even when the thickness (H) of the carrier plate 13 increases, the ferrite substrate 11 does not break. This is presumably because the provision of the plurality of holes A1 in the carrier plate 13 reduced the bonding area between the ferrite substrate 11 and the carrier plate 13, and reduced the stress caused by the difference in the coefficient of thermal expansion. Therefore, when the plurality of holes A1 are provided in the carrier plate 13, the thickness (H) of the carrier plate 13 can be increased, and the handling strength as a non-reciprocal circuit device increases.
[0024]
Another embodiment of the present invention will be described with reference to FIG. 3A is a perspective view as viewed from the carrier plate side, and FIG. 3B is a cross-sectional view of FIG. 3A taken along line X-Y in the direction of the arrow, and the same portions as those in FIG. The reference numerals are used, and a duplicate description is partially omitted.
[0025]
In the case of this embodiment, a ground conductor 31 is provided between the ferrite substrate 11 and the carrier plate 13, and a plurality of holes B1 penetrating through the ground conductor 31 are provided as shown in the sectional view of FIG. The ferrite substrate 11 and the ground conductor 31, and the ground conductor 31 and the carrier plate 13 are respectively bonded by the DBC method.
[0026]
FIG. 4 shows a destruction state of the non-reciprocal circuit device having the configuration of FIG. As can be seen by comparing FIG. 4 with FIG. 16, also in this case, the thickness (H) of the carrier plate 13 can be increased.
[0027]
Next, another embodiment of the present invention will be described with reference to FIG. FIG. 5A is a perspective view as viewed from the carrier plate side, and FIG. 5B is a cross-sectional view of FIG. 5A taken along the line XY in the direction of the arrow. The same reference numerals are given, and duplicate description is partially omitted. .
[0028]
In this embodiment, the ferrite substrate 11 and the ground conductor 31 having a thickness t are joined by the DBC method, and at the same time, the ground conductor 31 and the carrier plate 13 provided with the hole A1 are joined by the DBC method. In this case, a ground conductor 31 having no hole is closely bonded to the ferrite substrate 11. Therefore, the insertion loss is reduced, and the heat radiation effect is improved. Further, since the ground conductor 31 is formed thin and the hole A1 is provided in the carrier plate 13, the ferrite substrate 11 can withstand residual stress due to a difference in thermal expansion coefficient.
[0029]
FIG. 6 shows the destruction state of the non-reciprocal circuit device having the configuration shown in FIG. FIG. 6 shows the state of destruction of the ferrite substrate 11 with respect to the carrier plate 13 having various thicknesses (H). As can be seen by comparing FIG. 6 and FIG. H) can be made thicker.
[0030]
Next, modified examples of the ground conductor 31 and the carrier plate 13 which are sequentially joined to one side of the ferrite substrate 11 will be described with reference to FIGS. 7 to 12, parts corresponding to those in FIGS. 1, 3, and 5 are denoted by the same reference numerals, and duplicate description is partially omitted.
[0031]
In FIG. 7, a plurality of depressions A2 having a certain depth are provided in the carrier plate 13, and the side of the carrier plate 13 where the depressions A2 are provided is joined to the ferrite substrate 11 by the DBC method. In this case as well, when the ferrite substrate 11 and the carrier plate 13 having various thicknesses were joined and the state of destruction was measured, the same result as in FIG. 2 was obtained. This is because the bonding area between the ferrite substrate 11 and the carrier plate 13 is reduced by providing the plurality of depressions A2 in the carrier plate 13, and the residual stress due to the difference in the coefficient of thermal expansion between the ferrite substrate 11 and the carrier plate 13 is reduced. Probably because. The depression A2 of the carrier plate 13 can be formed by etching or machining.
[0032]
In FIG. 8, the ferrite substrate 11 and the ground conductor 31 are joined by the DBC method, and the carrier plate 13 provided with the plurality of depressions A2 and the ground conductor 31 are joined by the DBC method. FIG. 9 shows that the ferrite substrate 11 and the ground conductor 31 and the ground conductor 31 and the carrier plate 13 are provided with a plurality of depressions B2 and A2, respectively. Are joined by the DBC method so that the positions of the two coincide. FIG. 10 shows a case where a plurality of holes B1 and a plurality of depressions A2 having a certain depth are provided in the ground conductor 31 and the carrier plate 13, respectively. The positions of the holes B1 and the depressions A2 are shifted and joined by the DBC method.
[0033]
In the case of FIGS. 7 to 10, the back surface of the ground conductor 31 or the carrier plate 13 located in the lower layer has a flat surface without any depression. Therefore, when the ground conductor 31 or the carrier plate 13 is joined to a case (not shown) or the like, good electrical and mechanical contact can be obtained. As shown in FIG. 10, when the positions of the holes B1 and the depressions A2 of the ground conductor 31 and the carrier plate 13 are shifted, a good heat radiation effect is obtained because the holes B1 and the depressions A2 having poor heat conduction are not continuous. .
[0034]
FIG. 11 shows that a plurality of dents B2 having a certain depth are provided in the ground conductor 31 and a plurality of holes A1 penetrating through the carrier plate 13 are provided. The ferrite substrate 11 and the ground conductor 31, and the ground conductor 31 and the carrier plate 13 are simultaneously bonded by the DBC method.
[0035]
FIG. 12 shows holes B1 and A1 penetrating the ground conductor 31 and the carrier plate 13, respectively. The positions of the holes B1 and A1 of the ferrite substrate 11 and the ground conductor 31, and the positions of the holes B1 and A1 of the ground conductor 31 and the carrier plate 13 match. As shown in FIG. In the case of this configuration, since the positions of the holes B1 and A1 of the ground conductor 31 and the carrier plate 13 are shifted, a good heat radiation effect can be obtained.
[0036]
7 to 12, the thickness of the carrier plate 13 can be made larger than that of the conventional structure.
[0037]
According to the above-described structure, a hole or a depression is formed in the ground conductor or the carrier plate to be bonded to the ferrite substrate, and the ground conductor and the carrier plate are DBC bonded to the ferrite substrate, or the ground conductor and the carrier plate are DBC bonded to the ferrite substrate. . In this case, the ferrite substrate does not break even if the thickness of the carrier plate is increased. Therefore, it is possible to realize a nonreciprocal circuit device having the mechanical strength required for mounting while maintaining characteristics such as heat dissipation and insertion loss in a practical range, and in which the ferrite substrate is not broken by a difference in thermal expansion coefficient. In addition, since the destruction of the ferrite substrate due to a difference in thermal expansion coefficient or the like is prevented, the ferrite substrate and the carrier plate, or the ferrite substrate and the ground conductor and the carrier plate can be simultaneously bonded by the DBC method. Therefore, an inexpensive nonreciprocal circuit device with a reduced number of steps can be realized. The amount of solder even trace amounts if Ku can realize non-reciprocal circuit element of zero.
[0038]
In the above embodiment, the case of an isolator has been described, but the present invention is also applicable to a circulator or a three-conductor type non-reciprocal circuit device.
[0039]
【The invention's effect】
According to the present invention, in a configuration in which a ferrite substrate and a metal conductor portion are joined by a DBC method, a nonreciprocal circuit device in which the ferrite substrate is not broken even when the carrier plate is thickened can be realized.
[Brief description of the drawings]
FIG. 1 is a structural diagram for describing an embodiment of the present invention.
FIG. 2 is a diagram for explaining characteristics of the embodiment of the present invention.
FIG. 3 is a structural diagram for explaining another embodiment of the present invention.
FIG. 4 is a diagram for explaining characteristics of another embodiment of the present invention.
FIG. 5 is a structural diagram for explaining another embodiment of the present invention.
FIG. 6 is a diagram for explaining characteristics of another embodiment of the present invention.
FIG. 7 is a schematic structural diagram for explaining a modified example of the ground conductor of the present invention.
FIG. 8 is a schematic structural diagram for explaining a modified example of the ground conductor and the carrier plate of the present invention.
FIG. 9 is a schematic structural diagram for explaining a modified example of the ground conductor and the carrier plate of the present invention.
FIG. 10 is a schematic structural diagram for explaining a modified example of the ground conductor and the carrier plate of the present invention.
FIG. 11 is a schematic structural diagram for explaining a modified example of the ground conductor and the carrier plate of the present invention.
FIG. 12 is a schematic structural diagram for describing a modified example of the ground conductor and the carrier plate of the present invention.
FIG. 13 is a structural diagram for explaining a conventional example.
FIG. 14 is a structural diagram for explaining another conventional example.
FIG. 15 is a diagram for explaining characteristics of a conventional example.
FIG. 16 is a diagram for explaining characteristics of another conventional example.
[Explanation of symbols]
11 Ferrite substrate 12 Line conductor 13 Carrier plate 14 Terminator 15 Bonding material A Hole penetrating the carrier plate d Diameter of hole penetrating the carrier plate

Claims (4)

フェライト基板と、このフェライト基板の一方の面に配置された線路導体と、前記フェライト基板の他方の面に配置された地導体と、この地導体と接触して配置されたキャリア板と、前記フェライト基板の片側または両側に配置された磁石とを具備した非可逆回路素子において、銅で形成した前記地導体及び前記キャリア板は、位置が重ならないようにずらして貫通する穴を設け、前記フェライト基板と前記地導体、および前記地導体と前記キャリア板とを、それぞれDBC法で接合したことを特徴とする非可逆回路素子。A ferrite substrate; a line conductor disposed on one surface of the ferrite substrate; a ground conductor disposed on the other surface of the ferrite substrate; a carrier plate disposed in contact with the ground conductor; In a non-reciprocal circuit device including a magnet disposed on one or both sides of a substrate, the ground conductor and the carrier plate formed of copper are provided with holes that are shifted so as not to overlap with each other, and the ferrite substrate is provided . And a ground conductor, and the ground conductor and the carrier plate are respectively bonded by a DBC method. フェライト基板と、このフェライト基板の一方の面に配置された線路導体と、前記フェライト基板の他方の面に配置された地導体と、この地導体と接触して配置されたキャリア板と、前記フェライト基板の片側または両側に配置された磁石とを具備した非可逆回路素子において、前記地導体及び前記キャリア板は銅で形成し、前記地導体には窪みを設け、前記キャリア板には前記地導体の窪みと位置が重ならないようにずらして貫通する穴を設け、前記フェライト基板と前記地導体、および前記地導体と前記キャリア板とを、それぞれDBC法で接合したことを特徴とする非可逆回路素子。A ferrite substrate; a line conductor disposed on one surface of the ferrite substrate; a ground conductor disposed on the other surface of the ferrite substrate; a carrier plate disposed in contact with the ground conductor; In a non-reciprocal circuit device including a magnet disposed on one or both sides of a substrate, the ground conductor and the carrier plate are formed of copper, the ground conductor is provided with depressions, and the carrier plate is provided with the ground conductor. A hole penetrating the ferrite substrate and the ground conductor, and the ground conductor and the carrier plate are bonded by a DBC method, respectively, so that holes are provided so as to be shifted so as not to overlap with the depressions of the non-reciprocal circuit. element. フェライト基板と、このフェライト基板の一方の面に配置された線路導体と、前記フェライト基板の他方の面に配置された地導体と、この地導体と接触して配置されたキャリア板と、前記フェライト基板の片側または両側に配置された磁石とを具備した非可逆回路素子において、前記地導体及び前記キャリア板は銅で形成し、前記地導体には貫通する穴を設け、前記キャリア板には前記地導体の穴と位置が重ならないようにずらして窪みを設け、前記フェライト基板と前記地導体、および前記地導体と前記キャリア板とを、それぞれDBC法で接合したことを特徴とする非可逆回路素子。A ferrite substrate; a line conductor disposed on one surface of the ferrite substrate; a ground conductor disposed on the other surface of the ferrite substrate; a carrier plate disposed in contact with the ground conductor; in non-reciprocal circuit element and a magnet disposed on one or both sides of the substrate, said ground conductor and said carrier plate is made of copper, a hole through provided on the ground conductor, wherein the said carrier plate A non-reciprocal circuit, wherein a recess is provided so as to be shifted so that the position of the hole does not overlap with the hole of the ground conductor, and the ferrite substrate and the ground conductor, and the ground conductor and the carrier plate are respectively bonded by a DBC method. element. フェライト基板と、このフェライト基板の一方の面に配置された線路導体と、前記フェライト基板の他方の面に配置された地導体と、この地導体と接触して配置されたキャリア板と、前記フェライト基板の片側または両側に配置された磁石とを具備した非可逆回路素子において、で形成した前記地導体及び前記キャリア板は、位置が重ならないようにずらして窪みを設け、前記フェライト基板と前記地導体、および前記地導体と前記キャリア板とを、それぞれDBC法で接合したことを特徴とする非可逆回路素子。A ferrite substrate; a line conductor disposed on one surface of the ferrite substrate; a ground conductor disposed on the other surface of the ferrite substrate; a carrier plate disposed in contact with the ground conductor; In a non-reciprocal circuit device including a magnet disposed on one side or both sides of a substrate, the ground conductor and the carrier plate formed of copper are provided with depressions so that the positions are not overlapped , and the ferrite substrate and the A non-reciprocal circuit device, wherein a ground conductor and the ground conductor and the carrier plate are respectively bonded by a DBC method.
JP26369999A 1999-09-17 1999-09-17 Non-reciprocal circuit device Expired - Fee Related JP3583036B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26369999A JP3583036B2 (en) 1999-09-17 1999-09-17 Non-reciprocal circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26369999A JP3583036B2 (en) 1999-09-17 1999-09-17 Non-reciprocal circuit device

Publications (2)

Publication Number Publication Date
JP2001085909A JP2001085909A (en) 2001-03-30
JP3583036B2 true JP3583036B2 (en) 2004-10-27

Family

ID=17393116

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26369999A Expired - Fee Related JP3583036B2 (en) 1999-09-17 1999-09-17 Non-reciprocal circuit device

Country Status (1)

Country Link
JP (1) JP3583036B2 (en)

Also Published As

Publication number Publication date
JP2001085909A (en) 2001-03-30

Similar Documents

Publication Publication Date Title
EP1950775B1 (en) Monolithic ceramic capacitor
US3982271A (en) Heat spreader and low parasitic transistor mounting
US6518632B1 (en) Ceramic electronic part
KR20070098572A (en) Connecting device for electronic components
US6078101A (en) High-power microwave-frequency hybrid integrated circuit
JP2004022973A (en) Ceramic circuit board and semiconductor module
US5924191A (en) Process for producing a ceramic-metal substrate
JP3583036B2 (en) Non-reciprocal circuit device
US6853088B2 (en) Semiconductor module and method for fabricating the semiconductor module
JP2015015513A (en) Fpc board and connection method thereof, and package for housing electronic component
JPH10144967A (en) Thermoelectric element module for cooling
US6858807B2 (en) Substrate for receiving a circuit configuration and method for producing the substrate
US11295997B2 (en) Semiconductor device manufacturing method and semiconductor device
KR100397161B1 (en) Heat dissipation structure of electronic device
CN112543546B (en) Circuit board with heat dissipation structure and manufacturing method thereof
US20010035798A1 (en) Nonreciprocal circuit device and communication device
JP3210087B2 (en) Non-reciprocal circuit device
JP2004356745A (en) Non-reciprocative circuit element
WO2024080043A1 (en) Antenna module
CN113782498B (en) Power module and power device
JP3100750B2 (en) Ceramic dielectric substrate
JP3510813B2 (en) Hybrid module
JP2000150690A (en) Hybrid module
JPS6220728B2 (en)
JP2004241944A (en) Irreversible circuit element, mounting structure for irreversible circuit element, and communication device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040406

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040607

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040610

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040720

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040727

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070806

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080806

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090806

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090806

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100806

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100806

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110806

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110806

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120806

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120806

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees