JP3581603B2 - Soil modification / improvement method - Google Patents

Soil modification / improvement method Download PDF

Info

Publication number
JP3581603B2
JP3581603B2 JP25769499A JP25769499A JP3581603B2 JP 3581603 B2 JP3581603 B2 JP 3581603B2 JP 25769499 A JP25769499 A JP 25769499A JP 25769499 A JP25769499 A JP 25769499A JP 3581603 B2 JP3581603 B2 JP 3581603B2
Authority
JP
Japan
Prior art keywords
soil
agent
water
slurry
sludge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP25769499A
Other languages
Japanese (ja)
Other versions
JP2001081464A (en
Inventor
光晴 土屋
英男 佐野
勝己 中村
Original Assignee
王子木材緑化株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 王子木材緑化株式会社 filed Critical 王子木材緑化株式会社
Priority to JP25769499A priority Critical patent/JP3581603B2/en
Publication of JP2001081464A publication Critical patent/JP2001081464A/en
Application granted granted Critical
Publication of JP3581603B2 publication Critical patent/JP3581603B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Treatment Of Sludge (AREA)
  • Soil Conditioners And Soil-Stabilizing Materials (AREA)
  • Cultivation Of Plants (AREA)
  • Processing Of Solid Wastes (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、赤土、粘土、ダム・河川・沈殿池等の堆積土を対象原土とし、これを混練機内でスラリー状またはヘドロ状にしたのち添加資材を加えることにより耐水性に優れた土壌に改質・改良する方法に関する。
【0002】
【従来の技術】
沖縄の赤黄色土や関東ロームに代表される赤土は、粒径0.01mm以下の微粒子を体積比率で50%以上含み0.002mm以下の粘土粒子を体積比率で20%以上含んだ微粒子粘性土壌であり、通気・透水性が低いため、栽培土壌に用いる場合には、ピートモス、堆肥などの有機質系土壌改良材や、パーライト、鹿沼土などの無機系土壌改良材を混合し、各種肥料を加えて使用している。また、山土を原土として栽培土壌とする場合には、山土に天然多糖体(グアガム、アルギン酸/その塩等)と天然多糖体の分解酵素を添加し、必要に応じ多孔性鉱物質(パーライト、ゼオライト等)、有機物(堆肥、ピートモス等)、補助成分(肥料成分、微量要素等)を適宜加え、ドラム式造粒機にて造粒したのち乾燥して粒状培土とする方法が知られている(特開平5−227836号)。さらに、特開平9−298950号には、壁土状の含水土壌に転相剤を含まないアクリル系水溶性高分子の逆相乳化重合物を添加し、パン型ミキサーで混練して造粒して苗床用団粒土を製造する方法が開示されている。
一方、河川、湖沼などにおける浚渫埋め立てや建設現場で排出される泥水にカチオン性多糖類(デンプン、グアガムなど)及びアニオン性高分子(ポリアクリル酸ナトルイム、アクリルアミドとアクリル酸との共重合物など)を添加して泥水の圧密性を改善する方法(特開平8−215686号)や、掘削泥土・ヘドロ・スラッジ類にヤシ屑、多糖類系またはアニオン系の水溶性高分子物質を含む汚泥改質剤を用いて固化し、再利用又は廃棄容易な形態に処理するもの(特開平10−36839号)も知られている。
【0003】
【発明が解決しようとする課題】
上記山土を原土とし、天然多糖体と天然多糖体の分解酵素を添加し、必要に応じ多孔性鉱物質、有機物等を加え、ドラム式造粒機にて造粒し乾燥して粒状培土とするものや、壁土状の含水土壌にアクリル系水溶性高分子の逆相乳化重合物を添加し、パン型ミキサーで混練し造粒して得た土壌は、加工時に土壌含水率を概ね55%以上にした場合、ミキサー内での粘性が急速に上昇し、攪拌羽に泥土が多量に付着し均一な攪拌が困難となって、土壌容積含水率と添加資材と原土量の相関が不均一となることから、団粒効果が充分でなく耐水性にも難点があった。また、前記河川、湖沼などにおける浚渫埋め立てや建設現場で排出される泥水を対象原土とするものは、原土を再利用可能な、又は廃棄容易な形態に固化処理するだけで、還元性物質の酸化処理がなされていないことから、植物根系の発育障害や、施肥効果の阻害、アンモニアや硝酸ガス等の植物生理障害を生じる物質を放出するなど、 栽培土壌として造粒・団粒化を図るものではなかった。また、河川や湖沼堆積泥には多くの未分解有機物が含まれ、高含水状態(水分率概ね60%以上)にて、土壌中に通気困難な状態で放置すると、ヘドロ特有の腐敗臭を発するという問題があった。
本発明は、赤土のごとき微粒子粘性土壌、河川・湖沼・沈殿地・堆積土などのシルト質沈殿泥や建設残土等を原土として、耐水性に優れた土壌に改良・改質することを目的とする。
【0004】
【課題を解決するための手段】
上記目的を達成するため、本発明は、赤土のごとき微粒子粘性土壌を混練機にてヘドロ状に混練したのち、団粒化剤、固化剤及び水分調整材を順次添加し混合攪拌して耐水性に優れた土壌に改質・改良するものである。
すなわち、請求項1は、始動後攪拌軸の回転が安定した状態の、せん断装置付き又はせん断構造を有する攪拌羽付き混練機に、対象原土及び添加水分を投入してスラリー状もしくはヘドロ状に混練する第1工程と、前記スラリーもしくはヘドロ状物に団粒化剤と固化剤を添加し、土壌粒子の結合により塑性復元を行う第2工程と、次いで土壌結合による粒状径の調節を行う第3工程とからなるものである。
請求項2は、請求項1記載の処理をより簡易かつ迅速に実施するために、始動後攪拌軸の回転が安定した状態の混練機に、対象原土の含水量に応じた団粒化剤及び水分調整材の添加量を、回帰式に基づき容易に処理できるようにした手法である。すなわち、請求項2は、上記混練機に対象原土の水分が50〜65容積%になるように水を投入し、円筒式スランプテスターにて2〜12cm程度のスランンプとなるようなスラリー状またはへドロ状に練り混ぜる第1工程と;次に、上記スラリーまたはヘドロ状物に、許容誤差±5%以下の回帰式で求められる数量の、水溶性増粘多糖類を主成分とする団粒化剤または団粒化剤と固化剤を添加混練し、土壌粒子間を粘性成分で架橋結合して粗団粒を形成させ、スラリー全体が凝集してスランプが0cmとなるように可塑性を回復させる第2工程と;上記第2工程に続き、許容誤差±5%以下の回帰式で求められる数量の、多孔質低水分有機質を主成分とする水分調整材を添加混練し、余剰水分を吸収させるとともに土壌中の0.2〜2.0mm程度の粗粒径有機質含量を高めることにより、粒状ないし顆粒状に崩壊するようにした第3工程とからなる。
上記請求項2において、赤土および浄水場沈澱土砂を原土とし、団粒化剤としてグアガム、水分調整材としてヤシ髄繊維粉砕物を用いた場合、対象原土の加水後の水分率をX%、原土1000リットル当たりの水分調整材容積をYリットル、団粒化剤重量をZkgとしたときの回帰式は、Y=14.3X−430(X≧50)、及びZ=0.05X−0.5(50≦X≦75)として表せる。
【0005】
請求項3は、請求項2において、土壌粒子の一部が架橋されて強度が十分でないときは、前記第2工程中に、対象原土の乾燥状態における固形分重量に対し0.5〜0.6%または原土(水分率40〜45%程度)の重量に対し、0.25〜0.3%の固化剤または同じく固形分重量に対し3〜10%の補強剤を添加することを特徴とする。
請求項4は、対象とする原土が、(1)赤土、赤黄色土、クロボク土、粘土〔SiC(シルト質埴土)、CL(埴壌土)、SCL(砂質埴壌土)、LiC(軽埴土)〕
(2)ダム、河川、湖沼、沈殿池等のシルト質沈殿泥、堆積土、(3)地下等掘削により発生する粘土、粘性土等の建設残土、(4)砕石洗浄により発生する石粉の沈殿汚泥、(5)上水道の浄水汚泥等から選ばれた1種または2種以上である。
請求項5は、団粒化剤が、グアガム、アルファ澱粉、アルギン酸などの易水溶性増粘多糖類の単体または2〜3種混合物であり、固化剤がアクリル樹脂、酢酸ビニル等の高分子接合剤またはリグニン分解物、天然ゴム系の天然接合剤もしくはセメント、フライアッシュ等の土壌補強剤であり、水分調整材がヤシ髄繊維、ピートモス、パルプ繊維、古紙粉砕物などの吸水性植物繊維であることを特徴する。
請求項6、7は、還元性土壌を原土とする場合に、効率的に酸化処理を施す手法である。請求項6では、対象原土として水中堆積土砂または高地下水域排出土のような還元性粘性土壌を用いる場合に、第1工程としてパーライト等の気泡含量(酸素含有量)の高い無機質資材や、過酸化水素、過酸化カルシウム等の酸化剤を添加し、還元状態を改良するものであり、請求項7では、還元性粘性土壌を用いる場合に、混練機内に送気装置を装着し、第1、第2工程において空気を送風して酸化作用を促進させることを特徴とする。これにより従来埋立て廃棄等にしか利用できなかった廃土を植物の生育可能な状態に改良し、用途の拡大を提供する。また、酸化処理した還元性土壌は、還元反応(腐敗)特有のアンモニアやメタン等の腐敗性臭気ガスの発生が抑制され、粒状化した場合には堆積時に土中への通気性が向上することから、有機物の分解が進行しても好気条件下での分解反応となり、腐敗臭の発生を大幅に抑制できる。
【0006】
【発明の実施形態】
本発明は、混練機に原土及び添加水分を投入したのち団粒化剤または団粒化剤及び固化剤を添加し攪拌混合することで、土壌結合による粒状径の調節と、土質の改質・改良を行うものであるが、まず、改質・改良する対象原土を挙げると下記のとおりである。
(1)赤土、赤黄色土、クロボク土(火山灰土)、粘土〔SiC(シルト質埴土)、CL(埴壌土)、SCL(砂質埴壌土)、LiC(軽埴土)〕
(2)ダム、河川、湖沼、沈殿池等のシルト質沈殿泥、堆積土
(3)地下等掘削により発生する粘土、粘性土等の建設残土
(4)砕石洗浄により発生する石粉の沈殿汚泥
(5)上水道の浄水汚泥等
【0007】
本発明の土壌の改質・改良方法は、混練機を始動後攪拌軸の回転が安定したのち、次の手順で行うものであるが、以下の説明において、「可塑性」とは、水分を含有する土壌(粘土状)を押形(円筒式スランプ試験機等)に圧密充填し、粒状土の場合には非圧密状態で充填し、脱型した際の形状がたもたれる様子を指し、型崩れしない場合には可塑性が高い、変形する場合には可塑性が低い(失う)と表現した。「可塑性回復」とは、スランプテスターの値が0cmであることを示す。「可塑性の低下」とは、粒状化(団粒化)した土壌を押型に軽充填し、脱型したとき、山形に自然崩壊する状態を意味する。
【0008】
〔第1工程〕 混練機に対象原土と水を投入し、原土をスラリー状(へドロ状)に練り混ぜる。この場合のスラリーの水分率は、原土に含まれている水分と加える水分を合計して、全体で50〜65%程度が適当である(原土中の水分を勘案して、加える水分を加減しスランプテスターで水分率の簡易判定を行う)。この際に実施するスランプテストは回帰式への精度向上のため、少なくとも同一条件にて3回以上実施することが望ましい。
〔第2工程〕 次に、上記スラリーに団粒化剤(土壌粒子架橋剤/易水溶性増粘多糖類)及び固化剤(土壌団粒安定剤:高分子接合剤/補強剤)添加する。これらの資材がスラリー内にゆきわたると、土壌粒子間が架橋され、さらにこれらが結合して粗団粒を形成し、スラリー全体が凝集して可塑性(土壌粒子の結合による塑性復元)を帯びる。
固化剤(土壌団粒安定剤/高分子接合剤)は使用しなくても架橋剤の団粒化(架橋)効果は変わらないが、これを使用すると架橋剤による粒子間の結合力を補強し、また耐水性や凍結融解などに対する耐侯性を高める効果を持つ。使用量は高分子接合剤の場合には原土1m当たり2〜4kgを用い、セメント系補強剤の場合には60〜120kgを用いる。
〔第3工程〕 上記混練機の回転を持続しつつ、水分調整材(例えば、粒子径0.2〜2mm程度の粒子を80%以上含む吸収性植物繊維を原土のほぐし容積の25〜65%)を投入し、余剰水分をこれに吸収させるとともに土壌中の有機質粗粒子含量を高めると、粘土状に架橋し粗団粒化した原土は塑性を低下させ、次第に小塊ないし粒状・顆粒状に崩壊(土壌結合による粒状径の調節)する。
【0009】
〔回帰式について〕 前記第2工程及び第3工程では、原土スラリーの含水率(X%)に対応する回帰式により算出した団粒化剤および水分調整材の添加量をそれぞれ投入する。原土1000リットル当たりの団粒化剤/架橋剤(Zkg)の場合、Z=0.05X−0.5(50≦X≦75)、水分調整材(Yリットル)の場合、Y=14.3X−430(X≧50)がそれぞれ代表式として利用できるが、土性及び団粒化剤の変化に伴い以下の手法にて回帰式の補正を行える。まず、スランプ曲線を用いて原土の水分条件を、実用値を中心に±5%上下させたときの添加量を計測し、その値をY=AX+BまたはZ=aX+bからなる1次方程式に代入して回帰式の補正を行う。通常の回帰式と実行値の差異は経済性を考慮した場合に、各水分率で5%以下になるように調節することが望ましい。回帰式による加工管理は、目的形状に即した団粒土を経済的かつ効率的に製造することを可能とし、廃棄物の有効活用の途を広げるものである。
【0010】
図1は、原土スラリーの水分率(%)を横軸にとり、スランプ(cm)と団粒化剤(架橋剤kg)を左縦軸、水分調整材(リットル)を右縦軸にとって、スラリー含水率と添加材量との関係を示すグラフである。図中、Sはスランプ曲線、Yはスラリー水分率に対する水分調整材の回帰直線、Zは同じく団粒化剤(架橋剤)の回帰直線である。
確認手順は、図1中の▲1▼→▲2▼→▲3▼→▲4▼の順にたどって添加資材の量を読み取る。例えば、スランプ10cmの泥土(スラリー)は水分が概ね60%程度であり、泥土1000リットル当たり約2.5kgの団粒化剤(架橋剤)と、440リットルの水分調整材を添加すると、植物栽培に適した粒土分布の団粒化土壌をうることができる。このように、スランプテスターによる原土の水分率と図1の相関図に基づいて添加資材の必要量を決定するため、作業効率の向上を果たすことができる。
【0011】
混練機内部に、主軸の回転と交差する回転軸とせん断羽を持つせん断装置(チョッバー)を備える場合、第2工捏の架橋反応以降にこの機能を用いると、粒径の小さく粒度の揃った製品ができる。次に、必要資材の種類を表1に示す。
【0012】
【表1】

Figure 0003581603
【0013】
〔混練機の概要〕混練機は、原土に剪断を与えながら混合攪拌する機種が用いられ、下記の機種(いずれも大平洋機工株式会社製:千葉県)が好適である。
イ.プロシェアミキサーWB型(チヨツパー付、以下WBと略称する)。この機種は、独自形状のすき型羽根による材料の浮遊拡散混合と高速回転チョッパーによる高速剪断分散の独立した2つの機能を兼ね備えた横一軸円筒ドラム型混合機である。
ロ.スーパーダブルミキサーSD型(チョッパーなし、以下SDと略称する)。この機種は、スクリュー作用と剪断作用を与える羽根を有する2軸形混合機である。
ハ.ターボミキサーTMC型(チョッパー付、以下TMCと略称する)。この機種は、ドラム中央に回転する縦軸の頂部にローターを設け、ローターの先端に混練羽根を吊下げてなる縦一軸円筒ドラム型混合機である。
次に、混練の工程別の所要時間(使用混練機別)を表2に示す。
【0014】
【表2】
Figure 0003581603
【0015】
本試験における土壌の調整方法は、混練機を始動後、攪拌軸の回転が安定したのち、原土及び添加水分を投入した後へドロ状混練する第1工程、土壌架橋材を添加し、土壌粒子の結合による塑性復元を行う第2工程および土壌結合(粒状径)の調節を行う第3工程により実施した。
【0016】
原土の含水量は、105℃に設定した乾燥機内にて1時間の加熱乾燥処理を施し、その後自然冷却した重量減少量を計測し換算にて算出した。改良土壌の分級は、改良土壌を風乾にて、付着水分により土粒が結合しない状態まで乾燥させた後、JIS規格の分級篩を取りつけた回転式振動機(マルチシェーカー)を用い、200rpmの回転振動を10分間加えた時点の分級量の容積比率にて算出した。
耐水性試験は、回転式振動機に蓋付の300ml型広口スチロール瓶を取り付け、15mlに整形した改良土壌の乾燥物を1瓶当り3個投入し、水200mlを加え、22rpmにて所定時間の水中攪拌を行い、精製カオリンけん濁比色計にて計測した。
【0017】
この際の運転方法は、WB(プロシェアーミキサー)の場合、主軸回転を220rpm、チョッパー回転を3000rpmに固定して、第1工程1分、第2工程1分、第3工程1分の計3分を1サイクルとして実施した。
SD(スーパーダブルミキサー)の場合には主軸回転を60rpmとし第1工程1.5分、第2工程1.5分、第3工程2分の計5分を1サイクルとして実施した。TMC(チョッパー付ターボミキサー)では主軸回転を74rpm、チョッパー回転を222rpmとし、第1工程1.5分、第2工程1.5分、第3工程1.5分の計4.5分を1サイクルとして実施した。この際の回転数量は、電流計により常時観察した。この結果、LiC〜LCに相当する土壌は容積水分率50〜60%程度にて、本試験に用いた機械にて高速混練を行うと可塑性が低下しヘドロ状を呈する。連続して土壌架橋剤を添加し混練を続すると、架橋反応により可塑性が回復した土壌となる。
【0018】
この際に主軸回転と交差方向にせん断(チョッー、せん断羽)を行うと粒状にほぐれて植物の生育に適した状態の土壌になる。この際に、せん断力を加える装置の回転速度が高速なほど、早期に造粒される傾向が確認された。
架橋剤による土壌粒子の団粒結合状態は(団粒化による物理性の改良)は、混練過程を経た改良土壌(粒状化した土粒=粗団粒)を清水中に投下攪拌することにより、その崩壊具合や清水の濁度変化により判定できる。
【0019】
本発明が意図する改良効果は、幅20cm×長30cm×深5cm程度のバットに、清水を張り、加工直後の土粒50ml程度を投入し、攪拌棒を用いない状態で小刻みな振動を30秒程度与えた場合に、清水の濁度がカオリン比色計にて10度以下となることが望ましく、風乾により完全乾燥させた場合には、乾燥土粒50mlを300ml程度の清水中に投入し、攪拌振動機にて30分振動後の濁度が10度以下となることが望ましい。
加工直後の振動濁度が10度を上回る場合でも、架橋剤による土壌結合が行われていれば、高次団粒として水中浮遊していることから、原土を同条件で振動させた場合に得られるけん濁液に比べ、静置後の沈降速度が著しく向上している状態が確認される。
このような場合には、乾燥に伴い結合力が増加することから、改良後の粒径が1mm以下の微粒子分であっても、水に溶解せず、かつ粒子間隙があるので水分浸透に支障となりにくい。
【0020】
原土比重が1.8を上回る砕石粉等の微粒子土壌や、細砂含量が30%を上回るような粘性土壌では、土壌単粒子の質量が大きいことから、改良直後には濁度が容易に10度を越えることがあるが、この様な場合には、分子量の大きい馬鈴薯澱粉等をα化した水溶性澱粉を併用することで、これを抑制することができる。また、α化デンプンを用いて土壌の架橋造粒を行った場合には、グアガムに代表される易水溶性増粘多糖類を用いた場合より、大粒の粗団粒が生産される傾向にある。
改良土粒の直径については用途により目的とする粒径組成が異なるが、果菜類などの種子径が3〜8mm程度の中粒種子の播種床には粒径2〜5mm程度の整粒であることが望ましく、同種の育苗や、栽培に用いる培養土には30mm程度以下の土粒が混在し、固層、液層、気層の分布率が約1/3程度分布する構造が望ましい。
【0021】
本実施例では、容積水分率50〜68%程度が適当であり、粘度およびシルトを50%以上含む細砂や同30%以下を含む粗砂であることが望ましい。その場合の改良工程は、原土をヘドロ状にして可塑性を低下させたのち、連続して架橋剤を添加し十分に架橋状態が得られた後に、ヤシ髄繊維やピートモス等を添加し目的粒度に調節する方法により、改良目的に合致する土壌が得られた。
【0022】
【実施例】
原土に団粒化剤(架橋剤)としてグアガム、水分調整材としてヤシ髄粉末、ピートモスを添加し、混合攪拌して団粒化土壌を製造した実施例1ないし17を表3〜表6に示す。なお、混合機の機種を前記したように、WB、SD、TMCで略記した。また、実施例に用いた赤土とは、JIS A1204試験により粗砂5.4%、細砂59%、シルト12.9%、粘土21.9%の組成よりなる砂質埴壌土(SCL)であり、富士川原土とは、粗砂0.1%、細砂12.0%、シルト53.3%、粘土34.6%の組成よりなるシルト質埴土(SiC)である。
【0023】
【表3】
Figure 0003581603
【0024】
【表4】
Figure 0003581603
【0025】
【表5】
Figure 0003581603
【0026】
【表6】
Figure 0003581603
【0027】
原土に団粒化剤(架橋剤)としてグアガム・αデンプン、固化剤としてクリコートC710S・ポリアクリル酸塩、補強剤としてポルトランドセメント、および水分調整材としてヤシ髄粉末・ピートモスを添加し、混合攪拌して団粒化土壌を製造した実施例18〜21を表7に示す。
【0028】
【表7】
Figure 0003581603
【0029】
また、実施例4、10、14ないし17によって得た団粒化土壌の分級結果(容積比率)を表8に示す。
【0030】
【表8】
Figure 0003581603
【0031】
さらに、前記実施例4及び15における水分調整材を王子フファイバーに変更したものを実施例22、23とし、前記実施例4及び15における団粒化剤(架橋剤)をαデンプンに変更したものを実施例24、25として製造した団粒化土壌の分級結果(容積比率)を表9に示す。
【0032】
【表9】
Figure 0003581603
【0033】
なお、常時湛水している農地用沈澱槽から浚渫した赤黄色土に同質の畑土を添加し、水分を概ね60%に調節したのち、実施例4に準じた処理を施したところ、放置土砂から発生する腐敗臭が、処理後1昼夜で感じられなくなった。
また、浚渫直後の原土はパイル表層下2cm程度で還元土壌特有の灰褐色を呈しているが、実施例4に準じた処理を施した土壌では灰褐色から赤褐色への変色が確認された。この変色現象は、浚渫直後の灰褐色を呈するヘドロに過酸化水素水20%溶液を散布した場合に酷似していた。
【0034】
【発明の効果】
本発明は、せん断装置付き又はせん断回転構造型攪拌羽付きの混練機を使用し、原土に水分を加えてスラリ状又はヘドロ状にしたのち、含水分回帰式を用いて算出した量の団粒化剤及び水分調整材を、段階的に添加し混合攪拌して団粒化土壌を得るものであるから、必ずしも乾燥、焼成工程を必要としないし、団粒径が数mm程度の耐水性に優れた土壌を短時間に製造することができる。また、原土は、赤土・赤黒色土・火山灰土・粘土のほか建設残土、ダム・河川・湖沼・沈澱池のシルト質沈殿泥、採石洗浄により発生する石粉の沈殿汚泥等を用いて改良土壌とすることにより、各種圃場の用土や法面緑化基盤材への有効利用を図ってリサイクル化を推進すると共に、汚泥などの最終処分を不要にして経済性を向上させ、最終処分場の延命をはかることができる。
【図面の簡単な説明】
【図1】原土スラリーの含水率と団粒化剤及び水分調整材の添加量との関係を示すグラフである。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention is directed to soil with excellent water resistance by adding red soil, clay, sedimentary soil such as dams, rivers, sedimentation ponds, etc. to a target original soil, making this into a slurry or sludge in a kneading machine, and then adding additional materials. It relates to a method of reforming and improving.
[0002]
[Prior art]
Red soil represented by Okinawa's red-yellow soil and Kanto loam is a fine-grained clay that contains 50% or more by volume of fine particles with a particle size of 0.01 mm or less and 20% or more by volume with clay particles of 0.002 mm or less. When used for cultivation soil, organic soil improvement materials such as peat moss and compost, and inorganic soil improvement materials such as perlite and Kanuma soil are mixed, and various fertilizers are added. Used. When the cultivation soil is used as the hill soil, natural polysaccharides (guar gum, alginic acid / salt, etc.) and a natural polysaccharide degrading enzyme are added to the hill soil, and if necessary, a porous mineral ( A method is known in which perlite, zeolite, etc.), organic matter (compost, peat moss, etc.) and auxiliary components (fertilizer components, trace elements, etc.) are appropriately added, granulated by a drum-type granulator, and then dried to form granular soil. (JP-A-5-227836). Further, JP-A-9-298950 discloses that a reversed-phase emulsion polymer of an acrylic water-soluble polymer containing no phase change agent is added to a humid soil in the form of a wall, and the mixture is kneaded with a pan-type mixer and granulated. A method for producing a seedbed aggregate is disclosed.
On the other hand, cationic polysaccharides (starch, guar gum, etc.) and anionic polymers (polyacrylic acid sodium, copolymers of acrylamide and acrylic acid, etc.) are used in dredged landfills in rivers and lakes, and in muddy water discharged at construction sites. For improving the consolidation of muddy water by adding water (JP-A-8-215686), sludge reforming in which excavated mud, sludge and sludge contain water-soluble polymer substances such as palm waste, polysaccharides or anions. Also known is one that is solidified using an agent and processed into a form that is easy to reuse or dispose (JP-A-10-36839).
[0003]
[Problems to be solved by the invention]
Using the above-mentioned mountain soil as the original soil, natural polysaccharides and natural polysaccharide-decomposing enzymes are added, and porous minerals, organic substances, etc. are added if necessary, and the resulting mixture is granulated by a drum-type granulator and dried to obtain granular soil. And a soil obtained by adding a reverse-phase emulsion polymer of an acrylic water-soluble polymer to a humid soil in the form of a wall, kneading with a pan-type mixer and granulating, has a soil moisture content of approximately 55 at the time of processing. % Or more, the viscosity in the mixer rapidly rises, a large amount of mud adheres to the stirring blades, making uniform stirring difficult, and the correlation between the water content of the soil volume, the added material, and the amount of the original soil is impaired. Because of the uniformity, the aggregation effect was not sufficient and there was a problem in water resistance. In addition, when the target soil is muddy water discharged from landfills or construction sites in the rivers, lakes, and the like, the solidified waste is reprocessed only by solidifying the soil into a reusable or easily disposable form. The plant is not oxidized, so it will granulate and aggregate as cultivated soil, such as by disturbing the growth of the plant root system, impairing the fertilization effect, and releasing substances that cause plant physiological disorders such as ammonia and nitric acid gas. It was not something. In addition, rivers and lakes sediment contain a large amount of undecomposed organic matter, and when left in a highly water-containing state (with a moisture content of about 60% or more) and in a state where it is difficult to ventilate in the soil, a putrid smell peculiar to sludge is emitted. There was a problem.
An object of the present invention is to improve and reform a soil having excellent water resistance by using fine clayey soil such as red soil, silty sedimentary sludge such as rivers, lakes and marshes, sedimentary soils and sedimentary soil, and construction residual soil as the original soil. And
[0004]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides a method of kneading finely viscous soil such as red soil in a kneader in a sludge shape, and then sequentially adding a granulating agent, a solidifying agent, and a moisture adjusting material, and mixing and stirring to obtain water resistance. It is intended to improve and improve soil with excellent quality.
In other words, claim 1 is a state in which the rotation of the stirring shaft is stable after the start, and a kneader with a shearing device or a stirring blade having a shearing structure is charged with the target original soil and the added moisture to form a slurry or sludge. A first step of kneading, a second step of adding a aggregating agent and a solidifying agent to the slurry or sludge, and performing plastic restoration by binding soil particles, and then a second step of adjusting the granular diameter by soil binding. It consists of three steps.
A second aspect of the present invention provides a kneading machine in which the rotation of the stirring shaft is stable after starting, in order to carry out the treatment according to the first aspect more simply and quickly, the aggregating agent according to the water content of the target original soil. This is a method in which the addition amount of the water adjusting material and the amount of the water adjusting material can be easily processed based on a regression equation. That is, in claim 2, water is introduced into the kneader so that the water content of the target soil is 50 to 65% by volume, and the slurry is formed into a slump of about 2 to 12 cm by a cylindrical slump tester. A first step of kneading in a sludge-like state; and then, agglomeration of the slurry or sludge-like substance having a water-soluble thickening polysaccharide as a main component in a quantity determined by a regression equation having an allowable error of ± 5% or less. A kneading agent or an aggregating agent and a solidifying agent are added and kneaded, and the soil particles are cross-linked with a viscous component to form coarse aggregates, and the entire slurry is aggregated to restore the plasticity so that the slump becomes 0 cm. A second step; following the second step, add and knead a water conditioning material having a porous low-moisture organic material as a main component in an amount determined by a regression equation having a tolerance of ± 5% or less to absorb excess water. 0.2 ~ 2.0m in soil with a third step in which the content of the organic material having a coarse particle size of about m is increased so as to disintegrate into granular or granular forms.
In the above claim 2, when the red soil and the sedimentary sediment of the water purification plant are used as the original soil, guar gum is used as the aggregating agent, and the ground pulp fiber is used as the moisture regulator, the water content of the target original soil after water addition is X%. When the volume of the water conditioning material per 1,000 liters of the original soil is Y liters and the weight of the aggregating agent is Z kg, the regression formulas are as follows: Y = 14.3X-430 (X ≧ 50) and Z = 0.05X− 0.5 (50 ≦ X ≦ 75).
[0005]
According to a third aspect, in the second aspect, when a part of the soil particles is crosslinked and the strength is not sufficient, during the second step, the solid content weight of the target original soil in a dry state is 0.5 to 0%. Addition of 0.25 to 0.3% of a solidifying agent or 3 to 10% of a reinforcing agent based on the weight of solid content with respect to the weight of 0.6% or the original soil (water content of about 40 to 45%). Features.
Claim 4 is that the target soil is (1) red soil, red yellow soil, Kuroboku soil, clay [SiC (silt clay soil), CL (soil clay loam), SCL (sandy clay loam soil), LiC (light clay soil). Clay)
(2) Silty sedimentary mud, sedimentary soil such as dams, rivers, lakes, and sedimentation ponds; (3) Construction residual soil such as clay and cohesive soil generated by excavation such as underground; (4) Sedimentation of stone powder generated by crushed stone washing Sludge, and (5) one or more kinds selected from water purification sludge of waterworks.
According to a fifth aspect, the aggregating agent is a simple substance or a mixture of two or three kinds of easily water-soluble thickening polysaccharides such as guar gum, alpha starch, and alginic acid, and the solidifying agent is a polymer conjugate such as an acrylic resin or vinyl acetate. Agent or lignin hydrolyzate, natural rubber-based natural bonding agent or cement, soil reinforced such as fly ash, etc., and the water conditioning material is coconut fiber, peat moss, pulp fiber, or water-absorbing plant fiber such as ground waste paper. It is characterized.
Claims 6 and 7 relate to a method of efficiently performing oxidation treatment when reducing soil is used as the original soil. In the sixth aspect, when reducing viscous soil such as submerged sediment or high groundwater discharge soil is used as the target original soil, an inorganic material having a high bubble content (oxygen content) such as pearlite as the first step; An oxidizing agent such as hydrogen peroxide or calcium peroxide is added to improve the reduction state. In the case of using reducing viscous soil, an air supply device is installed in the kneading machine, In the second step, the oxidizing action is promoted by blowing air. As a result, waste soil, which could only be used for landfill disposal in the past, is improved to a state where plants can grow, thereby providing an expanded use. In addition, in the oxidized reducing soil, the generation of putrefactive odor gas such as ammonia and methane peculiar to the reduction reaction (rot) is suppressed, and when it is granulated, the permeability to the soil at the time of deposition is improved. Therefore, even if the decomposition of the organic matter proceeds, the decomposition reaction occurs under aerobic conditions, and the generation of putrefaction odor can be significantly suppressed.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
The present invention adjusts the grain diameter by soil binding and improves the soil quality by adding the aggregating agent or the aggregating agent and the solidifying agent to the kneading machine and then adding the aggregating agent or the aggregating agent and the solidifying agent to the kneading machine and stirring and mixing.・ Improvements are to be made. First, the target land to be reformed / improved is as follows.
(1) Red soil, red yellow soil, Kuroboku soil (volcanic ash soil), clay [SiC (silt clay soil), CL (clay loam soil), SCL (sandy clay loam soil), LiC (light clay clay)]
(2) Silty sedimentary sludge from dams, rivers, lakes, sedimentation ponds, etc., sedimentary soil (3) Construction residual soil such as clay and cohesive soil generated by excavation underground, etc. (4) Sedimentation of stone powder generated by crushed stone washing ( 5) Water purification sludge of waterworks, etc.
The soil reforming / improving method of the present invention is performed by the following procedure after the rotation of the stirring shaft is stabilized after starting the kneading machine, but in the following description, "plasticity" means that water contains water. The soil (clay-like) to be compacted is pressed into a pressed form (cylindrical slump tester, etc.). In the case of granular soil, it is filled in an unconsolidated state. If not, the plasticity is high, and if it deforms, the plasticity is low (lost). "Plasticity recovery" indicates that the slump tester value is 0 cm. The term “reduced plasticity” refers to a state in which soil that has been granulated (agglomerated) is lightly filled into a pressing mold and, when demolded, naturally collapses into a mountain shape.
[0008]
[First Step] The target raw soil and water are charged into a kneading machine, and the raw soil is kneaded and mixed in a slurry form (sludge form). In this case, the water content of the slurry is suitably about 50 to 65% in total by adding the water contained in the raw soil and the water to be added (in consideration of the water in the raw soil, A simple determination of the moisture content is made with an adjustable slump tester). At this time, it is desirable that the slump test is performed at least three times under the same conditions in order to improve the accuracy of the regression equation.
Second Step] Next, crumb agent to the slurry (soil particles crosslinking agent / readily water-soluble thickening polysaccharides) and solidifying agent: adding (soil crumb stabilizer polymeric binder / reinforcing agent) . When these materials are Yukiwataru in the slurry, is crosslinked between soil particles, further form a coarse crumb by bonding these, Ru tinged entire slurry aggregate plasticity (the plastic recovery by binding soil particles).
The aggregation (cross-linking) effect of the cross-linking agent does not change even without the use of a solidifying agent (soil aggregation stabilizer / polymer binder). In addition, it has the effect of increasing the weather resistance against water resistance and freeze-thaw. Usage using raw soil 1 m 3 per 2~4kg in the case of a polymeric binder, in the case of a cement-based reinforcing agent used 60~120Kg.
[Third step] While maintaining the rotation of the kneading machine, a moisture adjusting material (for example, 25 to 65 of the loosening volume of the original soil contains absorbent plant fibers containing 80% or more of particles having a particle diameter of about 0.2 to 2 mm). %) To absorb the excess water and increase the content of organic coarse particles in the soil, the clay-crosslinked and coarsely agglomerated soil decreases plasticity and gradually becomes small lumps or granules / granules. Disintegrate (adjustment of granular diameter by soil binding).
[0009]
[Regression Formula] In the second step and the third step, the addition amounts of the aggregating agent and the water conditioning material calculated by the regression equation corresponding to the water content (X%) of the raw soil slurry are respectively added. Z = 0.05X-0.5 (50 ≦ X ≦ 75) for the aggregating agent / crosslinking agent (Zkg) per 1,000 liters of the original soil, and Y = 14 for the moisture regulating material (Y liter). 3X-430 (X ≧ 50) can be used as a representative formula, but the regression formula can be corrected by the following method according to the change in soil property and the aggregating agent. First, the amount of addition when the moisture condition of the original soil was raised or lowered by ± 5% around the practical value was measured using a slump curve, and the value was substituted into a linear equation consisting of Y = AX + B or Z = aX + b. To correct the regression equation. It is desirable to adjust the difference between the ordinary regression equation and the execution value so that each moisture percentage is 5% or less in consideration of economy. Processing management based on the regression formula enables economical and efficient production of aggregated soil conforming to the target shape, and expands the effective use of waste.
[0010]
FIG. 1 shows the slurry with the moisture content (%) of the raw soil slurry on the horizontal axis, slump (cm) and agglomerating agent (crosslinking agent kg) on the left vertical axis, and the moisture control material (liter) on the right vertical axis. It is a graph which shows the relationship between a water content and the amount of additive materials. In the figure, S is a slump curve, Y is a regression line of the moisture adjusting material with respect to the slurry moisture content, and Z is a regression line of the aggregating agent (crosslinking agent) .
In the confirmation procedure, the amount of the added material is read in the order of (1) → (2) → (3) → (4) in FIG. For example, mud (slurry) having a slump of 10 cm has a water content of about 60%, and when about 2.5 kg of a granulating agent (crosslinking agent) and 440 liters of a water conditioner are added per 1,000 liters of mud, plant cultivation is performed. It is possible to obtain an aggregated soil having a grain distribution suitable for the soil. As described above, since the required amount of the additive material is determined based on the correlation between the moisture content of the raw soil and the sludge tester in FIG. 1, the working efficiency can be improved.
[0011]
In the case where a shearing device (chobber) having a rotating shaft intersecting with the rotation of the main shaft and a shearing blade is provided inside the kneader, if this function is used after the crosslinking reaction of the second kneading, the particle size becomes small and uniform. Products can be. Next, the types of necessary materials are shown in Table 1.
[0012]
[Table 1]
Figure 0003581603
[0013]
[Outline of kneading machine] As the kneading machine, a model that mixes and agitates while applying shear to the original soil is used, and the following models (all manufactured by Taiyo Kiko Co., Ltd .: Chiba Prefecture) are suitable.
I. Proshare mixer WB type (with chopping, hereinafter abbreviated as WB). This model is a horizontal single-shaft cylindrical drum-type mixer that has two independent functions, that is, floating diffusion mixing of materials by a uniquely shaped plow blade and high-speed shearing and dispersion by a high-speed rotating chopper.
B. Super double mixer SD type (without chopper, hereinafter abbreviated as SD). This model is a twin-shaft mixer having blades that provide a screw action and a shear action.
C. Turbo mixer TMC type (with chopper, abbreviated as TMC hereinafter). This model is a vertical single-shaft cylindrical drum type mixer in which a rotor is provided at the top of a vertical axis rotating at the center of the drum, and kneading blades are suspended at the tip of the rotor.
Next, Table 2 shows the required time for each kneading step (for each kneading machine used).
[0014]
[Table 2]
Figure 0003581603
[0015]
The method of adjusting the soil in this test, after starting the kneading machine, after the rotation of the stirring shaft is stabilized, the first step of kneading in a muddy shape after adding the original soil and added moisture, adding a soil cross-linking material, This was carried out by a second step of performing plastic restoration by binding soil particles and a third step of adjusting soil binding (granular diameter).
[0016]
The water content of the original soil was calculated by performing a heating and drying treatment in a dryer set at 105 ° C. for 1 hour, and then measuring the weight loss after natural cooling. Classification of the improved soil is performed by air-drying the improved soil to a state in which the soil particles do not bind due to attached moisture, and then using a rotary vibrator (multi-shaker) equipped with a JIS standard classification sieve, rotating at 200 rpm. The calculation was based on the volume ratio of the classification amount at the time when the vibration was applied for 10 minutes.
In the water resistance test, a 300 ml wide-mouthed styrene bottle with a lid was attached to a rotary vibrator, and three dried products of the improved soil shaped into 15 ml were charged per bottle, 200 ml of water was added, and a predetermined time was set at 22 rpm. The mixture was stirred in water and measured with a purified kaolin suspension colorimeter.
[0017]
In this case, in the case of a WB (Pro Shear Mixer), the operation method is such that the main shaft rotation is fixed at 220 rpm, the chopper rotation is fixed at 3000 rpm, and the first step is one minute, the second step is one minute, and the third step is one minute. The cycle was carried out for one minute.
In the case of SD (Super Double Mixer), the spindle rotation was 60 rpm, and the first step was 1.5 minutes, the second step was 1.5 minutes, and the third step was 2 minutes. In the TMC (turbo mixer with chopper), the spindle rotation is 74 rpm, the chopper rotation is 222 rpm, and a total of 4.5 minutes for the first step 1.5 minutes, the second step 1.5 minutes, and the third step 1.5 minutes is 1 minute. Performed as a cycle. The number of rotations at this time was always observed with an ammeter. As a result, when the soil corresponding to LiC to LC is kneaded at a high rate of about 50 to 60% by volume with the machine used in this test, the plasticity is reduced and the soil becomes sludge-like. When the continuously added soil crosslinking agent kneaded relay to continue, the soil plasticity has been restored by a crosslinking reaction.
[0018]
The shear spindle rotation and intersecting direction when (chopper over, shear blade) becomes soil condition suitable for the growth of plants loose granular Doing. At this time, it was confirmed that the higher the rotation speed of the device for applying the shearing force, the earlier the granulation was performed.
The aggregated state of soil particles by the cross-linking agent (improvement of physical properties by agglomeration) is achieved by dropping and agitating the improved soil (granulated soil particles = coarse aggregates) that has passed through the kneading process. Judgment can be made based on the degree of collapse and the change in turbidity of fresh water.
[0019]
The improvement effect intended by the present invention is that a fresh water is spread on a bat having a width of about 20 cm, a length of about 30 cm, and a depth of about 5 cm. When given, the turbidity of the fresh water is desirably 10 degrees or less with a kaolin colorimeter, and when completely dried by air drying, 50 ml of dry soil particles are put into about 300 ml of fresh water, It is desirable that the turbidity after 30 minutes of vibration with a stirring vibrator be 10 degrees or less.
Even if the vibration turbidity immediately after processing exceeds 10 degrees, if the soil is bound by the cross-linking agent, it is suspended in water as high-order aggregates. It can be confirmed that the sedimentation speed after standing is significantly improved as compared with the obtained suspension.
In such a case, since the bonding force increases with drying, even the fine particles having an improved particle size of 1 mm or less do not dissolve in water and have a particle gap, which hinders moisture penetration. It is difficult to become.
[0020]
In the case of fine-grained soil such as crushed stone powder with a specific gravity of more than 1.8 or viscous soil with a fine sand content of more than 30%, the turbidity of the soil easily increases immediately after improvement due to the large mass of single soil particles. Although it may exceed 10 degrees, in such a case, it can be suppressed by using a water-soluble starch obtained by pregelatinizing potato starch or the like having a large molecular weight. In addition, when cross-linked granulation of soil is performed using pregelatinized starch, larger coarse aggregates tend to be produced than when a water-soluble thickening polysaccharide represented by guar gum is used. .
Regarding the diameter of the improved soil particles, the target particle size composition differs depending on the application, but the seed diameter of fruit seeds such as fruits and vegetables is about 3 to 8 mm. It is desirable that the seedlings of the same species and the culture soil used for cultivation have a structure in which soil particles of about 30 mm or less are mixed and the distribution rate of a solid layer, a liquid layer, and an air layer is distributed about 1/3.
[0021]
In this embodiment, a volumetric water content of about 50 to 68% is appropriate, and fine sand containing 50% or more of viscosity and silt or coarse sand containing 30% or less of the same is desirable. In this case, after improving the plasticity by making the original soil sludge and reducing the plasticity, a cross-linking agent is continuously added to obtain a sufficiently cross-linked state, and then coconut pulp fibers and peat moss are added to achieve the target particle size. By the method of adjusting to the above, soil meeting the purpose of improvement was obtained.
[0022]
【Example】
Tables 3 to 6 show Examples 1 to 17 in which guar gum was added to the original soil as a coagulant (crosslinking agent) and coconut pulp powder and peat moss were added as water conditioning agents, followed by mixing and stirring to produce coagulated soil. Show. Note that, as described above, the model of the mixer is abbreviated as WB, SD, or TMC. The red soil used in the examples is a sandy clay loam (SCL) having a composition of 5.4% coarse sand, 59% fine sand, 12.9% silt, and 21.9% clay according to JIS A1204 test. Yes, the Fujikawa original soil is a silty clay (SiC) having a composition of coarse sand 0.1%, fine sand 12.0%, silt 53.3%, and clay 34.6%.
[0023]
[Table 3]
Figure 0003581603
[0024]
[Table 4]
Figure 0003581603
[0025]
[Table 5]
Figure 0003581603
[0026]
[Table 6]
Figure 0003581603
[0027]
Add guar gum and α-starch as a flocculant (crosslinking agent), Crycoat C710S and polyacrylate as a solidifying agent, Portland cement as a reinforcing agent, and coconut pulp powder and peat moss as a moisture regulator, and mix and stir in the original soil. Table 7 shows Examples 18 to 21 in which the agglomerated soil was produced.
[0028]
[Table 7]
Figure 0003581603
[0029]
Table 8 shows the classification results (volume ratio) of the aggregated soil obtained in Examples 4, 10, 14 to 17.
[0030]
[Table 8]
Figure 0003581603
[0031]
Further, those in which the water conditioning material in Examples 4 and 15 were changed to Ojifiber are Examples 22 and 23, and the agglomerating agent (crosslinking agent) in Examples 4 and 15 was changed to α starch. Table 9 shows the classification results (volume ratio) of the aggregated soils produced as Examples 24 and 25.
[0032]
[Table 9]
Figure 0003581603
[0033]
In addition, after adding the same quality of field soil to the red-yellow soil dredged from the sedimentation tank for agricultural land that is constantly flooded, and adjusting the water content to approximately 60%, the same treatment as in Example 4 was performed. Decay odor generated from the earth and sand disappeared one day and night after the treatment.
In addition, although the original soil immediately after dredging had a grayish brown characteristic of reduced soil at about 2 cm below the pile surface layer, discoloration from grayish brown to reddish brown was confirmed in soil treated in accordance with Example 4. This discoloration phenomenon was very similar to the case where a 20% solution of hydrogen peroxide solution was sprayed on a grayish brown sludge immediately after dredging.
[0034]
【The invention's effect】
The present invention uses a kneader equipped with a shearing device or a shear rotating structure type stirring blade, and adds water to the original soil to form a slurry or sludge, and then collects the amount calculated using a moisture regression equation. A granulating agent and a moisture regulator are added in stages and mixed and stirred to obtain agglomerated soil. Therefore, drying and firing steps are not necessarily required, and water resistance with an aggregate particle size of about several mm Excellent soil can be manufactured in a short time. In addition, the original soil is improved soil using red soil, red-black soil, volcanic ash soil, clay, construction surplus soil, silty sedimentary sludge from dams, rivers, lakes, sedimentation ponds, sedimentation of stone powder generated by quarry washing, etc. In addition to promoting effective recycling of soil and greening base materials for various fields, recycling is promoted, and final disposal of sludge is not required, improving economic efficiency and extending the life of the final disposal site. Can be measured.
[Brief description of the drawings]
FIG. 1 is a graph showing the relationship between the water content of a raw soil slurry and the amounts of agglomerating agent and moisture regulator added.

Claims (7)

始動後攪拌軸の回転が安定した状態の、せん断装置付き又はせん断構造を有する攪拌羽付き混練機に、対象原土及び添加水分を投入してスラリー状もしくはヘドロ状に混練する第1工程と、前記スラリーもしくはヘドロ状物に団粒化剤と固化剤を添加し、土壌粒子の結合により塑性復元を行う第2工程と、次いで土壌結合による粒状径の調節を行う第3工程とからなる前記原土を栽培土壌に改良する方法In a state where the rotation of the stirring shaft is stable after the start, a kneading machine with a shearing device or a stirring blade having a shearing structure, the first step of adding the target original soil and added moisture and kneading the slurry or sludge, adding solidification agent and crumb agent to said slurry or sludge-like material, a second step of performing plastic restored by binding the soil particles and then and a third step for adjusting the granular size by soil coupling said original A method of improving soil into cultivated soil . 始動後攪拌軸の回転が安定した状態の、せん断装置付き又はせん断構造を有する攪拌羽付き混練機に、対象原土の水分が50〜65容積%になるように水を投入し、円筒式スランプテスターにて2〜12cm程度のスランンプとなるようなスラリー状またはへドロ状に練り混ぜる第1工程と、
次に、上記スラリーまたはヘドロ状物に、許容誤差±5%以下の回帰式で求められる数量の、水溶性増粘多糖類を主成分とする団粒化剤と固化剤を添加混練し、土壌粒子間を粘性成分で架橋結合して粗団粒を形成させ、スラリー全体が凝集してスランプが0cmとなるように可塑性を回復させる第2工程と、
上記第2工程に続き、許容誤差±5%以下の回帰式で求められる数量の、多孔質低水分有機質を主成分とする水分調整材を添加混練し、これに余剰水分を吸収させるとともに土壌中の有機質含量を高めることにより、粒状ないし顆粒状に崩壊するようにした第3工程とからなる前記原土を栽培土壌に改良する方法
Water is introduced into a kneader equipped with a shearing device or a stirring blade having a shearing structure in a state in which the rotation of the stirring shaft is stabilized after the start so that the water content of the target original soil is 50 to 65% by volume, and a cylindrical slump is provided. A first step of kneading in a slurry or sludge like a slump of about 2 to 12 cm with a tester,
Then, to the slurry or sludge-like material, the allowable error ± 5% or less of the quantity sought regression equation, adding kneaded solidifying agent and a water-soluble main component to that group grain agent a polysaccharide thickener, A second step of cross-linking the soil particles with a viscous component to form coarse aggregates, and recovering the plasticity such that the entire slurry is aggregated and the slump becomes 0 cm;
Subsequent to the above-mentioned second step, a quantity of a water conditioner mainly composed of a porous low-moisture organic substance is added and kneaded in an amount determined by a regression equation having a tolerance of ± 5% or less, and excess water is absorbed into the kneader and mixed with soil. A step of improving the raw soil into a cultivated soil, comprising: a third step of disintegrating into granular or granular forms by increasing the organic content of the raw material .
前記第2工程で固化剤を使用する場合において、その使用量を、固化剤が高分子接合剤ある場合には、原土1m当たり2〜4kgとし、セメント系補強剤である場合には、原土1m当たり60〜120kgとすることを特徴とする請求項2に記載の方法In case of using the solidifying agent in the second step, the amount, if when the solidifying agent is a polymer bonding agent, a raw soil 1 m 3 per 2-4 kg, which is a cement-based reinforcing agent, 3. The method according to claim 2, wherein the weight is 60 to 120 kg per m3 of the original soil. 対象とする原土SiC(シルト質埴土)、CL(埴壌土)、SCL(砂質埴壌土)およびLiC(軽埴土)から選ばれた1種または2種以上である請求項1または2に記載の方法The target original soil is one or more selected from SiC (silt clay), CL (clay loam), SCL (sandy clay loam) and LiC (light clay). The method described in . 団粒化剤は、グアガム、アルファ澱粉、アルギン酸などの易水溶性増粘多糖類の単体または2〜3種混合物であり、固化剤はアクリル樹脂、酢酸ビニル等の高分子接合剤またはリグニン分解物、天然ゴム系の天然接合剤もしくはセメント、フライアッシュ等の土壌補強剤であり、水分調整材はヤシ髄繊維、ピートモス、パルプ繊維、古紙粉砕物などの吸水性植物繊維である請求項ないし3のいずれかに記載の方法The aggregating agent is a simple water-soluble thickening polysaccharide such as guar gum, alpha starch, or alginic acid or a mixture of two or three kinds thereof. The solidifying agent is a polymer binder such as an acrylic resin or vinyl acetate or a lignin decomposed product. , natural cement or cement natural rubber, a soil reinforcing agent such as fly ash, moisture control material coconut pith fibers, peat moss, pulp fibers, claims 1 water-absorbing plant fiber, such as waste paper pulverized 3 The method according to any of the above . 対象原土として水中堆積土砂または高地下水域排出土のような還元性粘性土壌を用いる場合に、第1工程としてパーライト等の気泡含量の高い無機質や、過酸化水素、過酸化カルシウム等の酸化剤を添加し、還元状態を改良することを特徴とする請求項1または2のいずれかに記載の方法In the case where reducing viscous soil such as underwater sediment or high groundwater discharge soil is used as the target original soil, as the first step, an inorganic substance having a high bubble content such as pearlite, or an oxidizing agent such as hydrogen peroxide or calcium peroxide is used. It was added, the method according to claim 1 or 2, characterized in that to improve the reduced state. 還元性粘性土壌を用いる場合に、混練機内に送気装置を装着し、第1、第2工程において空気を送風して酸化作用を促進させることを特徴とする請求項6に記載の方法 7. The method according to claim 6, wherein , when the reducing viscous soil is used, an air supply device is installed in the kneader, and air is blown in the first and second steps to promote the oxidizing action.
JP25769499A 1999-09-10 1999-09-10 Soil modification / improvement method Expired - Fee Related JP3581603B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25769499A JP3581603B2 (en) 1999-09-10 1999-09-10 Soil modification / improvement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25769499A JP3581603B2 (en) 1999-09-10 1999-09-10 Soil modification / improvement method

Publications (2)

Publication Number Publication Date
JP2001081464A JP2001081464A (en) 2001-03-27
JP3581603B2 true JP3581603B2 (en) 2004-10-27

Family

ID=17309825

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25769499A Expired - Fee Related JP3581603B2 (en) 1999-09-10 1999-09-10 Soil modification / improvement method

Country Status (1)

Country Link
JP (1) JP3581603B2 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4841757B2 (en) * 2001-06-21 2011-12-21 五洋建設株式会社 Manufacturing method of granular materials consisting of construction sludge, dirt, incineration ash, etc.
JP4767472B2 (en) * 2002-01-17 2011-09-07 株式会社大林組 Purification method of contaminated soil by microorganisms
JP2005075989A (en) * 2003-09-02 2005-03-24 Arumaare Engineering Kk Method for producing artificial soil
JP5007871B2 (en) * 2004-03-29 2012-08-22 東洋建設株式会社 Aggregate soil for improvement of sediment and submerged ground
JP2006307175A (en) * 2005-03-30 2006-11-09 Raito Kogyo Co Ltd Manufacturing method of fiber exposure-type granule, greening material and greening method using the material
JP4748570B2 (en) * 2005-05-24 2011-08-17 株式会社フジタ Mud improvement method and mud improvement material addition rate evaluation method
JP2008133311A (en) * 2006-11-27 2008-06-12 Toyo Constr Co Ltd Method for improving earth and sand and vegetation soil
CN103781347B (en) * 2011-08-09 2016-08-17 罗地亚管理公司 Wettable and unleachable bog moss, preparation method and using method
SG11201601676PA (en) * 2013-09-16 2016-04-28 Nsl Chemicals Ltd Process of preparing a soil conditioner
PL230537B1 (en) * 2014-12-22 2018-11-30 Lubelska Polt Mixture of wastes for the improvement of light soils properties and for the improvement of its productivity properties
KR101930177B1 (en) * 2017-12-27 2018-12-17 경상대학교산학협력단 vegetation basement board for restoring stony mountain development area and preparing method thereof
CN108491978A (en) * 2018-03-29 2018-09-04 中国科学院地球化学研究所 A kind of method that rock weathering soil formation rate in karst calculates
CN112062443A (en) * 2020-08-10 2020-12-11 安徽科清水环境技术有限公司 Ecological dredging sludge on-site rapid curing process
CN112878125A (en) * 2021-03-23 2021-06-01 姚震 Technical scheme of regenerative material for replacing collapsible loess subgrade
CN114315091B (en) * 2021-11-23 2023-01-03 河海大学 Sludge soil chemical dehydration process and treatment system

Also Published As

Publication number Publication date
JP2001081464A (en) 2001-03-27

Similar Documents

Publication Publication Date Title
JP3581603B2 (en) Soil modification / improvement method
CN1784371A (en) Granular fertilizer
CN111903467A (en) Process for improving marine silt for planting soil
JPH0670634A (en) Soil for developing plant growth substrate used for spray construction method
JP2000041479A (en) Treatment of dehydrated cake and culture material made thereof
JPH11315280A (en) Production of vegetation soil by reusing dehydrated cake
JP2002346598A (en) Granulated product of silt-like substance and method for manufacturing the same
CN108558337A (en) The modified method for preparing organic active concrete is improved using mud
JP2717222B2 (en) Filling material for vegetation in pores of alkali-cured material
GB2295146A (en) Agricultural product from waste
JP3475420B2 (en) Artificial soil and method for producing the same
JPH04193749A (en) Production of crushed stone sludge granulated material
JP3828737B2 (en) Planting soil and its manufacturing method
JP4380154B2 (en) Solidification method of mud
JP3875962B2 (en) Revetment or retaining wall using artificial granular material and porous concrete block
JP2004321036A (en) Granular culture soil
JP2969499B2 (en) Method for producing seedling culture soil using dewatered sludge as raw material
JP3927551B2 (en) Planting soil and its manufacturing method
JP3739083B2 (en) Tree planting method
JPH11256154A (en) Soil improvement
JP3695968B2 (en) Ground improvement material and manufacturing method thereof
CN113994855B (en) Application of high-permeability sponge soil in plant maintenance
JP4294557B2 (en) Greening vegetation base material for exposed slope of bedrock and its usage
JP2004135502A (en) Mud solid for plant cultivation and method for producing the same
JP4126727B2 (en) Method for producing granular improved soil

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20031225

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20040218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040707

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040723

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070730

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100730

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110730

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110730

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120730

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130730

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees