JP3580035B2 - Magnetometer - Google Patents

Magnetometer Download PDF

Info

Publication number
JP3580035B2
JP3580035B2 JP19581296A JP19581296A JP3580035B2 JP 3580035 B2 JP3580035 B2 JP 3580035B2 JP 19581296 A JP19581296 A JP 19581296A JP 19581296 A JP19581296 A JP 19581296A JP 3580035 B2 JP3580035 B2 JP 3580035B2
Authority
JP
Japan
Prior art keywords
circuit
frequency
output
detection
excitation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP19581296A
Other languages
Japanese (ja)
Other versions
JPH1038987A (en
Inventor
郁夫 加納
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP19581296A priority Critical patent/JP3580035B2/en
Publication of JPH1038987A publication Critical patent/JPH1038987A/en
Application granted granted Critical
Publication of JP3580035B2 publication Critical patent/JP3580035B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
この発明はフラックスゲートを使用した磁力計に関する。
【0002】
【従来の技術】
従来のフラックスゲート型磁力計には、図5に示すように、検出部1と制御部2からなり、検出部1としてコア3に励振コイル4と検出コイル5を巻回している。制御部2の発振器6で周波数2fの信号を発振し、これを1/2分周器7で周波数fの信号に分周し、励振器8を経て励振コイル4に与えている。また、制御部2において、検出コイル5には、コンデンサ15が並列接続されている。また、この並列回路に、直流分カット用のコンデンサ9が接続され、さらに、このコンデンサ9と交流増幅器11間に高入力インピーダンスのバッファ増幅器16と、2fバンドパスアクティブフィルタ17が接続されている。2fバンドパスアクティブフィルタ17は、オペアンプ、コンデンサ及び抵抗から構成されている。この磁力計では、検出コイル5とコンデンサ15で構成される共振回路が2fの周波数に共振するので、ここでf及び2f以外の高調波成分が減衰され、2fの成分のみが導出される。この2fの信号は、交流増幅器11を経て、同期整流器12で同期整流され、直流増幅器13を経て出力される(実公平6−23980号参照)。
【0003】
【発明が解決しようとする課題】
上記した従来の磁力計では、発振器として水晶発振器が使用されるが、その発振周波数が固定であり、例えばLCRフィルタの使用部品のバラツキによる固有共振周波数のずれに対応できないし、また発振器の回路構成が複雑であり高価となるという問題があった。また、特に水晶発振器は、組立て(例えば、ハンダ付け、洗浄など)に特別な注意が必要である上、電源も発振器部に+5V、その他の回路±15Vの3電源を必要とするという問題もあった。
【0004】
この発明は上記問題点に着目してなされたものであって、高感度で安価に製作でき、組立てが容易な磁力計を提供することを目的としている。
【0005】
【課題を解決するための手段】
この発明の磁力計は、コアに巻回された励振コイル及び検出コイルと、コンパレータとリミッタと積分回路とからなり、コンパレータで基準電圧と積分回路出力とを比較し、その出力をリミッタを介して積分回路に入力して、三角波を発生する三角波発生回路と、この三角波の周波数を2倍に逓倍する倍周波数発生回路と、前記三角波発生回路から出力される三角波を前記励振コイルに通電する励振回路と、外部磁界に応じた電圧を前記検出コイルで導出する検出回路と、この検出回路からの検出信号を受け、固有の共振周波数を励振信号の周波数の2倍の周波数に設定した共振回路と、前記倍周波数発生回路からの信号で、前記共振回路の出力を同期整流する同期整流回路と、オン状態で、前記同期整流回路の出力を前記検出回路にフィードバックするスイッチ回路と、前記スイッチ回路をオフ状態とし、励振周波数を前記共振回路の固有共振周波数に合わせるために、前記積分回路の時定数を調整する時定数調整手段と、を備えている。
【0006】
【発明の実施の形態】
以下、実施の形態により、この発明をさらに詳細に説明する。図1は、この発明の一実施形態フラックスゲート型磁力計を示す回路ブロック図である。この実施形態フラックスゲート型磁力計は、従来のものと同様に、検出部1と制御部2とから構成されている。検出部1は、コア21に、励振コイル22と検出(受信)コイル23が巻回されている。
【0007】
制御回路2には、コンパレータ24と、このコンパレータ24の出力を受けて一定レベルの出力を出すリミッタ25と、このリミッタ25の出力を受けて積分する時定数可変形の積分回路26と、この積分回路26より出力される周波数fの三角波信号を受け、励振コイル22を励振する電流増幅器(励振回路)27と、コンパレータ24と積分回路26の出力を受けて2fの周波数の信号を出力する倍周波数発生回路28と、検出コイル23の受信信号を増幅するプリアンプ(検出回路)29と、固有の共振周波数が2fに設定される共振回路30と、バッファ回路31と、このバッファ回路31から入力される検出信号を倍周波数発生回路28よりの2f周波数の信号により同期整流する同期整流回路32を備えている。積分回路26には、抵抗値を変化することにより時定数を変化させ、出力する三角波の周波数を調整する可変抵抗器VRを備えている。
【0008】
この可変抵抗器VRの抵抗値を、例えば手動で変化させると積分回路26の時定数が変わり、出力される三角波の周波数が変化することになる。
この実施形態磁力計において、コンパレータ24は、一方の入力端にリミッタ25の一定レベルの出力を受け、他方の入力端に積分回路26の出力を受けて、両入力の電圧を比較する。リミッタ25の出力の方が大きい間は、コンパレータ24はハイレベルの出力をリミッタ25に与える。リミッタ25は電源電圧の変動等により、コンパレータ24のハイレベル出力が変動しても、リミット作用により常に一定レベルの出力を出し、積分回路26に与える。積分回路26は時定数回路の時定数に応じた時間で、積分コンデンサを充電してゆく。時間の経過とともに、積分回路26の出力は直線的にレベル上昇してゆく。この積分回路26の出力は、コンパレータ24の一方の入力端に加えられているので、やがてそのレベルがコンパレータ24の他方の入力端、つまりリミッタ25の出力レベルに達すると、コンパレータ25の出力はローレベルとなる。そのため、リミッタ25の出力もローレベルとなり、積分回路26はこれに応答して放電し、積分回路26の出力も次第にローレベルとなり、このローレベル信号がコンパレータ24の一方の入力端に加えられているので、コンパレータ24の出力はやがて再度ハイレベルとなる。そして、前記と同様にして、リミッタ25を介して積分回路26の積分コンデンサを充電する。以上のようにして、一定周波数fの三角波信号が積分回路26より出力される。この三角波信号が電流増幅器27を経て、励振コイル22に与えられ、励振コイル22に通電する。
【0009】
励振コイル22による励磁によって、検出コイル23に外部磁界に応じた電圧が誘起され、この誘起電圧がプリアンプ29で増幅され、共振回路30、バッファ回路31を経て、同期整流回路32に加えられる。共振回路30は、その固有共振周波数を2fに設定してあるので、励振周波数f、その高調周波成分のうち周波数2fの信号成分のみを導出する。そのため、S/N比を大幅に上昇させることができる。同期整流回路32に入力された検出信号は、2f周波数発生回路28からの周波数2fのゲート信号により同期整流されて出力される。なお、この磁力計において常時は、スイッチ33を閉じて同期整流回路32の出力を検出コイル23にフィードバックしている。
【0010】
この磁力計において、共振回路30のLCRの定数のバラツキによって、あるいは経年変化によって固有共振周波数が励振周波数よりずれることがあっても、スイッチ23をオフにしてオープン回路とし、適当な外部磁界(地磁気でも可)を加えた状態で、積分回路26の可変抵抗器を変化させて、バッファ回路31の出力が最大となるようにすれば、励振周波数fを共振回路30の固有の共振周波数に合わすことができ、かつ同期整流回路32へのゲート信号は自動的に励振周波数の2倍となるため、その相関関係は常に保たれるため、最高感度に調整することができる。
【0011】
なお、図1の実施形態磁力計を構成する各回路は、具体的にいかなる回路を使用するかは適宜設計すればよいが、その一例として、図2にコンパレータ24、リミッタ25及び積分回路26の具体例を、図3にプリアンプ29、共振回路30及びバッファ回路31の具体例を、また図4に2f周波数発生回路28及び同期整流回路32の具体例を、それぞれ示している。
【0012】
【発明の効果】
この発明によれば、スイッチ回路をオフ状態とし、積分回路の時定数を調整することによって、励振周波数を共振回路の固有共振周波数に合わせるために常に最大感度が得られる。また、三角波発振回路は、水晶発振器と相違して、コンパレータとリミッタと積分回路で構成するので、安価に制作でき、組立てが容易で、電源も2種で良いという効果がある。
【図面の簡単な説明】
【図1】この発明の一実施形態磁力計を示す回路ブロック図である。
【図2】同実施形態磁力計を構成するコンパレータ、リミッタ及び積分回路の具体例を示す回路接続図である。
【図3】同実施形態磁力計を構成するプリアンプ、共振回路及びバッファ回路の具体例を示す回路接続図である。
【図4】同実施形態磁力計を構成する2f周波数発生回路及び同期整流回路の具体例を示す回路接続図である。
【図5】従来の磁力計を示す回路ブロック図である。
【符号の説明】
21 コア
22 励振コイル
23 検出コイル
24 コンパレータ
25 リミッタ
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a magnetometer using a fluxgate.
[0002]
[Prior art]
As shown in FIG. 5, the conventional fluxgate magnetometer includes a detection unit 1 and a control unit 2, and the excitation coil 4 and the detection coil 5 are wound around a core 3 as the detection unit 1. The oscillator 6 of the control unit 2 oscillates a signal of frequency 2f 0 , divides this into a signal of frequency f 0 by a 分 frequency divider 7, and supplies the signal to the excitation coil 4 via an exciter 8. In the control unit 2, a capacitor 15 is connected to the detection coil 5 in parallel. Also, this parallel circuit is connected to the capacitor 9 of the DC component cutting further includes a buffer amplifier 16 of high input impedance between the AC amplifier 11 and the capacitor 9, 2f 0 bandpass active filter 17 is connected . 2f 0 bandpass active filter 17 includes an operational amplifier, and a capacitor and a resistor. In this magnetometer, the resonance circuit constituted by the detection coil 5 and the capacitor 15 resonates with the frequency of 2f 0, where the harmonic component other than f 0 and 2f 0 is attenuated, only the component of 2f 0 is derived Is done. Signal of 2f 0 is passed through an AC amplifier 11, are synchronous rectification with synchronous rectifiers 12 and is output through a DC amplifier 13 (see actual fair No. 6-23980).
[0003]
[Problems to be solved by the invention]
In the above-mentioned conventional magnetometer, a crystal oscillator is used as an oscillator, but its oscillation frequency is fixed, and it cannot cope with a shift in a natural resonance frequency due to, for example, a variation in parts used in an LCR filter. However, there has been a problem that it is complicated and expensive. In particular, the crystal oscillator requires special attention in assembly (for example, soldering, cleaning, etc.), and also has a problem that a power supply also requires three power supplies of +5 V and other circuits ± 15 V in the oscillator section. Was.
[0004]
The present invention has been made in view of the above problems, and has as its object to provide a magnetometer which can be manufactured with high sensitivity at low cost and which can be easily assembled.
[0005]
[Means for Solving the Problems]
The magnetometer of the present invention includes an excitation coil and a detection coil wound around a core, a comparator, a limiter, and an integration circuit. The comparator compares a reference voltage with an output of the integration circuit, and outputs the output via the limiter. A triangular wave generating circuit that generates a triangular wave by inputting to an integrating circuit, a double frequency generating circuit that doubles the frequency of the triangular wave, and an excitation circuit that supplies a triangular wave output from the triangular wave generating circuit to the excitation coil A detection circuit that derives a voltage corresponding to an external magnetic field with the detection coil, a resonance circuit that receives a detection signal from the detection circuit, and sets a unique resonance frequency to twice the frequency of the excitation signal, the signal from the frequency doubler circuit, fees and synchronous rectifier circuit for synchronous rectification of the output of the resonant circuit, in the oN state, the output of the synchronous rectifier circuit to the detection circuit And a switch circuit for back, the switch circuit off, in order to match the excitation frequency to the natural resonant frequency of the resonant circuit, and a constant adjusting means when adjusting the time constant of the integrating circuit.
[0006]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in more detail with reference to embodiments. FIG. 1 is a circuit block diagram showing a fluxgate magnetometer according to one embodiment of the present invention. The fluxgate magnetometer according to this embodiment includes a detection unit 1 and a control unit 2 as in the conventional case. In the detection unit 1, an excitation coil 22 and a detection (reception) coil 23 are wound around a core 21.
[0007]
The control circuit 2 includes a comparator 24, a limiter 25 that receives the output of the comparator 24 and outputs a constant level, a time-constant variable-type integration circuit 26 that receives and integrates the output of the limiter 25, A current amplifier (excitation circuit) 27 that receives the triangular wave signal of frequency f output from the circuit 26 and excites the excitation coil 22, and a double frequency that receives the outputs of the comparator 24 and the integration circuit 26 and outputs a signal of frequency 2f A generation circuit 28, a preamplifier (detection circuit) 29 for amplifying a reception signal of the detection coil 23, a resonance circuit 30 whose unique resonance frequency is set to 2f, a buffer circuit 31, and input from the buffer circuit 31 There is provided a synchronous rectifier circuit 32 for synchronously rectifying the detection signal with a signal having a frequency of 2f from the frequency doubler 28. The integration circuit 26 includes changing the time constant by changing the resistance value, the variable resistor VR 1 for adjusting the frequency of the output triangle wave.
[0008]
The resistance value of the variable resistor VR 1, for example, manually change the time constant of the integrating circuit 26 is varied, the frequency of the triangular wave output will change.
In this embodiment, the comparator 24 receives the output of the limiter 25 at a certain level at one input terminal, receives the output of the integration circuit 26 at the other input terminal, and compares the voltages of both inputs. While the output of the limiter 25 is larger, the comparator 24 supplies a high-level output to the limiter 25. Even if the high-level output of the comparator 24 fluctuates due to the fluctuation of the power supply voltage or the like, the limiter 25 always outputs a constant level output by the limit operation and supplies the output to the integration circuit 26. The integration circuit 26 charges the integration capacitor for a time corresponding to the time constant of the time constant circuit. As time elapses, the level of the output of the integration circuit 26 rises linearly. Since the output of the integrating circuit 26 is applied to one input terminal of the comparator 24, when the level reaches the other input terminal of the comparator 24, that is, the output level of the limiter 25, the output of the comparator 25 becomes low. Level. Therefore, the output of the limiter 25 also becomes low level, the integration circuit 26 discharges in response thereto, and the output of the integration circuit 26 gradually becomes low level. This low level signal is applied to one input terminal of the comparator 24. Therefore, the output of the comparator 24 goes high again soon. Then, the integration capacitor of the integration circuit 26 is charged via the limiter 25 in the same manner as described above. As described above, the triangular wave signal having the constant frequency f is output from the integration circuit 26. This triangular wave signal is supplied to the excitation coil 22 via the current amplifier 27, and the excitation coil 22 is energized.
[0009]
A voltage corresponding to the external magnetic field is induced in the detection coil 23 by the excitation by the excitation coil 22, and the induced voltage is amplified by the preamplifier 29, and is applied to the synchronous rectification circuit 32 via the resonance circuit 30 and the buffer circuit 31. Since the resonance frequency of the resonance circuit 30 is set to 2f, the resonance circuit 30 derives only the signal component of the frequency 2f among the excitation frequency f and its harmonic components. Therefore, the S / N ratio can be significantly increased. The detection signal input to the synchronous rectification circuit 32 is synchronously rectified by the gate signal of the frequency 2f from the 2f frequency generation circuit 28 and output. In this magnetometer, the switch 33 is always closed and the output of the synchronous rectifier circuit 32 is fed back to the detection coil 23.
[0010]
In this magnetometer, even if the natural resonance frequency deviates from the excitation frequency due to variation in the LCR constant of the resonance circuit 30 or due to aging, the switch 23 is turned off to form an open circuit and an appropriate external magnetic field (geomagnetic If the variable resistor of the integrating circuit 26 is changed so that the output of the buffer circuit 31 is maximized in a state in which the excitation frequency f is added to the resonance circuit 30, the excitation frequency f is adjusted to the inherent resonance frequency of the resonance circuit 30. And the gate signal to the synchronous rectifier circuit 32 automatically becomes twice the excitation frequency, so that the correlation is always maintained, so that the sensitivity can be adjusted to the highest sensitivity.
[0011]
Each circuit constituting the magnetometer of the embodiment shown in FIG. 1 may be designed as appropriate as to what circuit is to be used. As an example, FIG. 2 shows the comparator 24, the limiter 25, and the integrating circuit 26. FIG. 3 shows a specific example of the preamplifier 29, the resonance circuit 30 and the buffer circuit 31, and FIG. 4 shows a specific example of the 2f frequency generation circuit 28 and the synchronous rectification circuit 32.
[0012]
【The invention's effect】
According to the present invention, the switch circuit is turned off and the time constant of the integration circuit is adjusted, so that the maximum sensitivity is always obtained in order to match the excitation frequency with the natural resonance frequency of the resonance circuit. Also, unlike a crystal oscillator, a triangular wave oscillation circuit is composed of a comparator, a limiter, and an integration circuit, so that it can be produced at low cost, is easy to assemble, and has two power supplies.
[Brief description of the drawings]
FIG. 1 is a circuit block diagram showing a magnetometer according to an embodiment of the present invention.
FIG. 2 is a circuit connection diagram showing a specific example of a comparator, a limiter, and an integration circuit that constitute the magnetometer of the embodiment.
FIG. 3 is a circuit connection diagram showing a specific example of a preamplifier, a resonance circuit, and a buffer circuit constituting the magnetometer of the embodiment.
FIG. 4 is a circuit connection diagram showing a specific example of a 2f frequency generation circuit and a synchronous rectification circuit constituting the magnetometer of the embodiment.
FIG. 5 is a circuit block diagram showing a conventional magnetometer.
[Explanation of symbols]
21 core 22 excitation coil 23 detection coil 24 comparator 25 limiter

Claims (1)

コアに巻回された励振コイル及び検出コイルと、
コンパレータとリミッタと積分回路とからなり、コンパレータで基準電圧と積分回路出力とを比較し、その出力をリミッタを介して積分回路に入力して、三角波を発生する三角波発生回路と、
この三角波の周波数を2倍に逓倍する倍周波数発生回路と、
前記三角波発生回路から出力される三角波を前記励振コイルに通電する励振回路と、
外部磁界に応じた電圧を前記検出コイルで導出する検出回路と、
この検出回路からの検出信号を受け、固有の共振周波数を励振信号の周波数の2倍の周波数に設定した共振回路と、
前記倍周波数発生回路からの信号で、前記共振回路の出力を同期整流する同期整流回路と、
オン状態で、前記同期整流回路の出力を前記検出回路にフィードバックするスイッチ回路と、
前記スイッチ回路をオフ状態とし、励振周波数を前記共振回路の固有共振周波数に合わせるために、前記積分回路の時定数を調整する時定数調整手段と、
を備えたことを特徴とする磁力計。
An excitation coil and a detection coil wound around the core,
A triangular wave generating circuit that includes a comparator, a limiter, and an integrating circuit, compares the reference voltage with the output of the integrating circuit, inputs the output to the integrating circuit via the limiter, and generates a triangular wave;
A double frequency generating circuit that doubles the frequency of the triangular wave,
An excitation circuit that energizes the excitation coil with a triangular wave output from the triangular wave generation circuit;
A detection circuit that derives a voltage corresponding to an external magnetic field with the detection coil,
A resonance circuit that receives a detection signal from the detection circuit and sets a unique resonance frequency to twice the frequency of the excitation signal;
A synchronous rectifier circuit for synchronously rectifying an output of the resonance circuit with a signal from the frequency doubler circuit;
In an ON state, a switch circuit that feeds back the output of the synchronous rectification circuit to the detection circuit,
Time constant adjusting means for adjusting the time constant of the integration circuit to turn off the switch circuit and adjust the excitation frequency to the natural resonance frequency of the resonance circuit ,
A magnetometer comprising:
JP19581296A 1996-07-25 1996-07-25 Magnetometer Expired - Fee Related JP3580035B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19581296A JP3580035B2 (en) 1996-07-25 1996-07-25 Magnetometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19581296A JP3580035B2 (en) 1996-07-25 1996-07-25 Magnetometer

Publications (2)

Publication Number Publication Date
JPH1038987A JPH1038987A (en) 1998-02-13
JP3580035B2 true JP3580035B2 (en) 2004-10-20

Family

ID=16347405

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19581296A Expired - Fee Related JP3580035B2 (en) 1996-07-25 1996-07-25 Magnetometer

Country Status (1)

Country Link
JP (1) JP3580035B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4829622B2 (en) * 2005-02-17 2011-12-07 キヤノン株式会社 Switching power supply, electronic device equipped with switching power supply, recording device equipped with switching power supply
JP4809754B2 (en) * 2006-11-20 2011-11-09 コーセル株式会社 Switching power supply

Also Published As

Publication number Publication date
JPH1038987A (en) 1998-02-13

Similar Documents

Publication Publication Date Title
US5428521A (en) Non-contact power supply apparatus
US6215365B1 (en) Inductive proximity sensor oscillator
JPH06101052B2 (en) Coin identification device
JP2007163424A (en) Flux gate type magnetic sensor
JP3580035B2 (en) Magnetometer
US5394048A (en) High-voltage generator
US3983475A (en) Frequency selective detecting system for detecting alternating magnetic fields
JPH08285929A (en) Magnetometer
JP3395281B2 (en) Variable frequency oscillation circuit for switching power supply
EP0788677B1 (en) Transformerless high-voltage generator circuit
US4617533A (en) Circuit arrangement for a blocking oscillator switching power unit
JPH053269Y2 (en)
JPH08271598A (en) Magnetometer
JPH0961506A (en) Magnetic sensor circuit
JPH0643929B2 (en) Vibration type force detector
KR0130418Y1 (en) Electronic type low voltage natrium ballast
US4947139A (en) Very low input power oscillator with improved amplitude stability
JP2002151954A (en) Oscillator
JPH05176550A (en) Inverter apparatus
JPH06233473A (en) Voltage detector for switching type charging circuit
JPH08288983A (en) Ringer circuit
JPH0231913Y2 (en)
JP3353327B2 (en) Coin sorting equipment
JP2002184592A (en) High-frequency powder unit and electrodeless discharge lamp lighting device equipped with the same
KR200143591Y1 (en) A circuit for dc/ac converting

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040406

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040531

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040629

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040712

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080730

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090730

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100730

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100730

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110730

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110730

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120730

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120730

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130730

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees