JPH06233473A - Voltage detector for switching type charging circuit - Google Patents

Voltage detector for switching type charging circuit

Info

Publication number
JPH06233473A
JPH06233473A JP3283493A JP3283493A JPH06233473A JP H06233473 A JPH06233473 A JP H06233473A JP 3283493 A JP3283493 A JP 3283493A JP 3283493 A JP3283493 A JP 3283493A JP H06233473 A JPH06233473 A JP H06233473A
Authority
JP
Japan
Prior art keywords
voltage
circuit
secondary battery
capacitance
piezoelectric vibrator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3283493A
Other languages
Japanese (ja)
Inventor
Teruyoshi Mitsuoka
輝義 光岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Communication Equipment Co Ltd
Original Assignee
Toyo Communication Equipment Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Communication Equipment Co Ltd filed Critical Toyo Communication Equipment Co Ltd
Priority to JP3283493A priority Critical patent/JPH06233473A/en
Publication of JPH06233473A publication Critical patent/JPH06233473A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain high-precision battery voltage-frequency characteristics by using a piezoelectric vibrator in an oscillator circuit. CONSTITUTION:A secondary battery voltage detecting circuit is constituted by connecting a voltage to capacitance converting circuit 11 composed of a variable capacitance diode D1, and an oscillating part 12 with a piezoelectric vibrator Y1 and a capacitor C2. As the piezoelectric vibrator Y1, a quartz vibrator is used, for example. It becomes possible to perform high-stability voltage-frequency conversion by detecting the terminal voltage change of a secondary battery 10 as a change in capacitance of the variable capacitance diode D1, finding the change as a change in oscillation frequency of the oscillating part 12, and using a piezoelectric vibrator Y1. Consequently, it becomes possible to obtain high-precision battery voltage-frequency characteristics.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はスイッチング型充電器に
おいて、簡便な二次側の回路構成であって且つ高精度に
二次電池の電池電圧を検出することができるスイッチン
グ型充電回路の電圧検出装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a switching type charger, which has a simple secondary side circuit configuration and is capable of detecting the battery voltage of a secondary battery with high accuracy. Regarding the device.

【0002】[0002]

【従来の技術】機器の小型化、低価格化の要求が高ま
り、充電器では電池の端子電圧に基づいてスイッチング
を制御するプライマリ制御方式が一般的に用いられてい
る。プライマリ制御方式を用いた充電回路では、電圧測
定、電池の有無、充電状態及び充電の終了等の処理を二
次側で行っているが、これらの処理を極力一次側で行う
ことにより二次側回路の構成を簡単にすることが装置の
低価格化、小型化、高効率化のために好ましい。前述し
た各種処理機能を一次側に配したマイクロコンピュータ
によって行うプライマリ制御方式を用いたスイッチング
型充電器の二次側構成例を第5図に示す。二次電池充電
のための電力は高周波出力トランスTを介して一次側よ
り供給され、二次側ではトランスT出力を整流・平滑化
回路1によって直流に変換した後、定電流回路2を介し
て二次電池3に印加する。一方、二次電池3の状態検出
には、電圧検出回路4を用いて二次電池3の端子電圧を
測定し、これを一次側に設けられた充電制御系に伝達す
る。該充電制御系では供給された二次電池電圧情報に基
づいて電池の有無、充電状態及び充電終了等を判断し、
この情報によりスイッチング回路をオン・オフし、充電
電流を制御するものである。このようなスイッチング型
充電器では電圧検出回路4として電圧制御発振器等を含
むICを使用し、電圧−周波数変換を行うことにより二
次電池電圧値を一次側に伝送し、スイッチング回路を制
御する方式がある。しかしながら、上述したような電圧
検出方式では二次側に設けられる電圧検出回路4にてI
Cを駆動するための補助的な電源を必要とし、電源を供
給する手段及び該電源電圧を安定化するための手段等が
必要となり、装置が大型化且つ高価格になると云う問題
点があった。また、二次側回路に電源を要しない二次電
池の電圧検出回路としては、第6図に示すものが考えら
れ、これは電圧検出回路4として抵抗R1及び可変容量
ダイオードD1から成る電圧容量変換回路5を二次側回
路に設け、一方、発振部6及びコイルL1からなる容量
検出回路7を一次側回路に設けた構成となっており、電
圧容量変換回路5は結合コンデンサC1及びC2を介し
て容量検出回路7と接続している。結合コンデンサC
1、C2は可変容量ダイオードD1の容量に対して十分
に大きな容量値のものであって、且つ必要なアイソレー
ションのための耐圧を有し、また、商用周波数(50H
z〜60Hz)の周波数領域では無視できる程度に容量
が小さいものを用いる。このような構成の容量変換型電
圧検出回路では可変容量ダイオードD1の容量が印加さ
れる電圧に依存することを利用しており、可変容量ダイ
オードD1の容量を検出することにより二次電池3の電
圧を測定するものであり、コイルL1、コンデンサC
1、C2及びダイオードD1の総合インダクタンスの固
有周波数で発振部6が発振し、ダイオードD1の容量変
化、即ち、二次電池の電圧変化に伴って発振周波数が変
動するので、発振部6の出力を測定することにより二次
電池の状態を検知することができる。前記発振部6とし
ては工業標準である555型タイマ集積回路のごときス
イッチング型回路を使用することも可能であるが、状態
の変化によって発振部の入力インピーダンスが大幅に変
化するため可変容量ダイオードD1に印加される電圧が
大きく変動し、高精度の容量測定を行うことが困難であ
る。したがって、入力インピーダンスが変化しない正弦
波または略正弦波発振回路を用いてその周波数を測定す
る方法が好ましいが、LC発振回路等を持ちいた場合、
コイルを使用することになり、素子の安定度、寸法及び
価格的な観点から小型化且つ低価格化を達成することが
困難であると云う問題点があった。
2. Description of the Related Art There is an increasing demand for downsizing and cost reduction of equipment, and a primary control system for controlling switching based on a terminal voltage of a battery is generally used in a charger. In the charging circuit that uses the primary control method, the secondary side performs processing such as voltage measurement, presence / absence of battery, charging status, and termination of charging, but by performing these processing on the primary side as much as possible, the secondary side It is preferable to simplify the circuit configuration in order to reduce the cost of the device, reduce the size, and increase the efficiency. FIG. 5 shows a secondary side configuration example of the switching type charger using the primary control system in which the microcomputer having the above-mentioned various processing functions arranged on the primary side. The power for charging the secondary battery is supplied from the primary side via the high frequency output transformer T, and on the secondary side, the output of the transformer T is converted into direct current by the rectifying / smoothing circuit 1 and then via the constant current circuit 2. It is applied to the secondary battery 3. On the other hand, to detect the state of the secondary battery 3, the voltage detection circuit 4 is used to measure the terminal voltage of the secondary battery 3, and this is transmitted to the charging control system provided on the primary side. In the charge control system, the presence / absence of a battery, the state of charge, the end of charging, etc. are determined based on the supplied secondary battery voltage information,
Based on this information, the switching circuit is turned on / off to control the charging current. In such a switching type charger, an IC including a voltage controlled oscillator or the like is used as the voltage detection circuit 4, and the secondary battery voltage value is transmitted to the primary side by performing voltage-frequency conversion to control the switching circuit. There is. However, in the voltage detection method as described above, the voltage detection circuit 4 provided on the secondary side does not
There is a problem that an auxiliary power source for driving C is required, a means for supplying the power source, a means for stabilizing the power source voltage, etc. are required, and the device becomes large and expensive. . Further, as a voltage detection circuit for a secondary battery which does not require a power source for the secondary side circuit, the one shown in FIG. 6 can be considered. The circuit 5 is provided in the secondary side circuit, while the capacitance detection circuit 7 including the oscillator 6 and the coil L1 is provided in the primary side circuit. The voltage / capacitance conversion circuit 5 includes coupling capacitors C1 and C2. Connected to the capacitance detection circuit 7. Coupling capacitor C
1 and C2 have capacitance values sufficiently larger than the capacitance of the varactor diode D1, have a withstand voltage for necessary isolation, and have a commercial frequency (50H).
In the frequency range (z to 60 Hz), a capacitor having a small capacity that can be ignored is used. The capacitance conversion type voltage detection circuit having such a configuration utilizes that the capacitance of the variable capacitance diode D1 depends on the applied voltage, and the voltage of the secondary battery 3 is detected by detecting the capacitance of the variable capacitance diode D1. To measure the coil L1, the capacitor C
1, the oscillator 6 oscillates at the natural frequency of the total inductance of C2 and the diode D1, and the oscillation frequency fluctuates according to the capacitance change of the diode D1, that is, the voltage change of the secondary battery. By measuring, the state of the secondary battery can be detected. Although it is possible to use a switching type circuit such as a 555 type timer integrated circuit which is an industrial standard as the oscillating section 6, since the input impedance of the oscillating section changes significantly depending on the change of the state, the varactor diode D1 is used. The applied voltage fluctuates greatly and it is difficult to perform highly accurate capacitance measurement. Therefore, it is preferable to measure the frequency using a sine wave or substantially sine wave oscillating circuit in which the input impedance does not change.
Since the coil is used, there is a problem that it is difficult to achieve miniaturization and cost reduction from the viewpoints of stability, size and price of the element.

【0003】[0003]

【発明の目的】本発明は上述した問題点に鑑みなされた
ものであって、二次側に補助的電源を必要とせず、簡易
な構成で小型化及び低価格化を達成することができると
共に高精度の電池電圧−周波数特性を得ることができる
スイッチング型充電回路の電圧検出装置を提供すること
を目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-described problems, and does not require an auxiliary power source on the secondary side, and can achieve miniaturization and cost reduction with a simple structure. An object of the present invention is to provide a voltage detection device for a switching type charging circuit that can obtain highly accurate battery voltage-frequency characteristics.

【0004】[0004]

【発明の概要】この目的を達成するために本発明にかか
る電圧検出装置は、充電すべき二次電池電圧を可変容量
ダイオードを用いて容量に変換し、これを発振周波数と
して一次側にて検出するプライマリ制御スイッチング型
充電器において、発振ループ中に前記可変容量ダイオー
ドと圧電振動子とを備えると共に、前記圧電振動子の一
方の電極を一次側に、他方の電極を二次側に接続するこ
とにより、発振部の電圧−周波数特性を高精度に安定さ
せると共に一次側と二次側とのアイソレーション用に用
いられていたアイソレーション用コンデンサの数を減ら
したことを特徴とする。
SUMMARY OF THE INVENTION In order to achieve this object, a voltage detection device according to the present invention converts a secondary battery voltage to be charged into a capacitance using a variable capacitance diode, and detects this as an oscillation frequency on the primary side. In the primary control switching type charger, the variable capacitance diode and the piezoelectric vibrator are provided in the oscillation loop, and one electrode of the piezoelectric vibrator is connected to the primary side and the other electrode is connected to the secondary side. Thus, the voltage-frequency characteristic of the oscillating unit is stabilized with high accuracy, and the number of isolation capacitors used for isolation between the primary side and the secondary side is reduced.

【0005】[0005]

【実施例】以下、図面に示した実施例に基づいて本発明
を詳細に説明する。第1図は本発明にかかるスイッチン
グ型充電回路の電圧検出方法を実施するための一実施例
を示す図である。二次電池10は図示しないトランス、
整流・平滑回路及び定電流回路を介して充電される。一
方、二次電池電圧検出回路は抵抗R1、可変容量ダイオ
ードD1からなる電圧容量変換回路11と発振部12と
を圧電振動子Y1及びコンデンサC2によって結合した
構成となっている。前記圧電振動子Y1としては、例え
ば、水晶振動子を用いればよい。このように構成した二
次電池電圧検出回路では二次電池10の端子電圧の変化
を可変容量ダイオードD1の容量変化として検出し、該
容量変化を発振部12にて発振周波数の変化として捉え
ると共に、従来発振部に用いられていたコイルの代わり
に圧電振動子Y1を用いることにより安定度の高い電圧
−周波数変換を行うことができる。また、従来用いられ
ていた一次側と二次側とのアイソレーション用コンデン
サC1の代わりに圧電振動子Y1を用いているが、各種
圧電振動子の材料である圧電材料、例えば、水晶やセラ
ミックは本来優れた絶縁性を有しており、とりわけ、結
合係数の小さな圧電振動子を用いれば、交流等価回路に
影響を与えることなくアイソレーションを取ることがで
きる。したがって、発振用誘導器とアイソレーション用
容量器を一個の水晶振動子に置き換えることによりスイ
ッチング型充電回路の部品点数を減らし、装置の小型化
且つ低価格化を実現することが可能である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail below with reference to the embodiments shown in the drawings. FIG. 1 is a diagram showing an embodiment for carrying out a voltage detection method for a switching type charging circuit according to the present invention. The secondary battery 10 is a transformer not shown,
It is charged through the rectifying / smoothing circuit and the constant current circuit. On the other hand, the secondary battery voltage detection circuit has a configuration in which the voltage-capacitance conversion circuit 11 including the resistor R1 and the variable-capacitance diode D1 and the oscillation unit 12 are coupled by the piezoelectric vibrator Y1 and the capacitor C2. A crystal oscillator may be used as the piezoelectric oscillator Y1, for example. In the secondary battery voltage detection circuit configured as described above, a change in the terminal voltage of the secondary battery 10 is detected as a change in the capacitance of the variable capacitance diode D1, and the change in capacitance is captured by the oscillator 12 as a change in the oscillation frequency. By using the piezoelectric vibrator Y1 in place of the coil used in the conventional oscillating unit, highly stable voltage-frequency conversion can be performed. Further, the piezoelectric vibrator Y1 is used in place of the conventionally used primary-side and secondary-side isolation capacitor C1, but piezoelectric materials such as quartz and ceramics, which are materials for various piezoelectric vibrators, are used. Originally, it has excellent insulating properties, and in particular, if a piezoelectric vibrator having a small coupling coefficient is used, isolation can be achieved without affecting the AC equivalent circuit. Therefore, by replacing the oscillating inductor and the isolating capacitor with a single crystal oscillator, it is possible to reduce the number of parts of the switching type charging circuit, and to realize the downsizing and cost reduction of the device.

【0006】第2図は本発明の他の実施例を示す図であ
って、第1図に示した実施例と異なる点は電圧容量変換
回路11の抵抗を可変抵抗分圧器RV1とした点であ
る。即ち、第1図に示した二次電池電圧検出回路では構
成素子の電気特性のばらつきにより電圧−周波数変換特
性が変動する点を考慮したものである。電気特性のばら
つきは一次側及び二次側にも存在するが、通常の設計で
は二次側構成素子のばらつきが主要因であり、特に可変
容量ダイオードのばらつきが大であり、電圧−周波数変
換感度が一定とならないため、可変抵抗分圧器VR1を
用いることにより可変容量ダイオードの容量特性のばら
つきを修正したものである。このように二次電池電圧検
出回路を構成することにより、可変抵抗分圧器RV1に
周波数変換の感度を調整する機能を持たせ、小型、低価
格であって且つ高精度に二次電池の電池電圧を監視する
ことができる。また充電回路にマイクロコンピュータ等
を使用した制御回路を用いれば、感度を調整する際に充
電電流の供給を中断させることが可能であり、感度調整
中は可変抵抗分圧器RV1の両端に基準電圧源を接続し
て、所定の電圧値で所望の発振周波数且つ周波数変化率
となるように可変抵抗分圧器RV1を調整すればよい。
FIG. 2 is a diagram showing another embodiment of the present invention, and is different from the embodiment shown in FIG. 1 in that the resistance of the voltage-capacitance conversion circuit 11 is a variable resistance voltage divider RV1. is there. That is, the secondary battery voltage detection circuit shown in FIG. 1 takes into consideration the fact that the voltage-frequency conversion characteristics fluctuate due to variations in the electrical characteristics of the constituent elements. Although there are variations in the electrical characteristics on the primary side and the secondary side as well, in the normal design, variations in the components on the secondary side are the main cause, and variations in the varactor diode are particularly large, and voltage-frequency conversion sensitivity is high. Is not constant, the variation of the capacitance characteristic of the variable capacitance diode is corrected by using the variable resistance voltage divider VR1. By configuring the secondary battery voltage detection circuit in this manner, the variable resistance voltage divider RV1 has a function of adjusting the sensitivity of frequency conversion, and the battery voltage of the secondary battery is small in size, low in price, and highly accurate. Can be monitored. If a control circuit using a microcomputer or the like is used for the charging circuit, it is possible to interrupt the supply of the charging current when adjusting the sensitivity, and during adjustment of the sensitivity, a reference voltage source is provided across the variable resistance voltage divider RV1. And the variable resistance voltage divider RV1 may be adjusted so that a desired oscillation frequency and a desired frequency change rate can be obtained at a predetermined voltage value.

【0007】一方、電圧−周波数変換特性のオフセット
項のばらつきに対しては第3図に示す如く周波数オフセ
ットを調整するように回路を構成すればよい。即ち、同
図に示す如く可変容量ダイオードD1の一端に可変容量
器CV1及び抵抗R2を設け、周波数オフセット調整中
は二次電池の代わりに基準電圧源を接続し、所定の電圧
にて所定の周波数となるように前記可変容量器CV1を
調整すればよく、また、電圧容量変換回路11の抵抗R
1を第2図に示したように可変抵抗分圧器とすることに
より、一次側及び二次側構成素子の電気的特性のばらつ
きによる電圧−周波数変換特性を一定の値とすることが
可能であり、高精度に二次電池の電圧を検出することが
できる。
On the other hand, for variations in the offset term of the voltage-frequency conversion characteristic, the circuit may be configured to adjust the frequency offset as shown in FIG. That is, as shown in the figure, a variable capacitor CV1 and a resistor R2 are provided at one end of a variable capacitance diode D1, a reference voltage source is connected instead of the secondary battery during frequency offset adjustment, and a predetermined voltage is used at a predetermined frequency. The variable capacitor CV1 may be adjusted so that
By using 1 as a variable resistance voltage divider as shown in FIG. 2, it is possible to make the voltage-frequency conversion characteristic a constant value due to variations in the electrical characteristics of the primary side and secondary side constituent elements. The voltage of the secondary battery can be detected with high accuracy.

【0008】さらに前述したような可変容量器及び可変
抵抗分圧器を用いずに高精度の二次電池電圧検出回路を
構成することも可能である。即ち、可変容量器及び可変
抵抗分圧器は機械的にその値を変化させるものであり、
振動等の外部要因に対して不安定であるため、第4図に
示すように較正のためのメモリを制御部に具えた充電回
路としてもよい。第4図において13はスイッチング制
御部、14は書き込み可能型読み出し専用メモリ、例え
ばPROMや電池等でバックアップされたRAMであ
る。このように構成した充電回路において、制御部13
にモード指定信号を印加し、指定されたモード、例えば
Oボルト較正モードを指定した場合には二次側に設けら
れた可変容量ダイオードD1の両端に設定電圧0ボルト
を印加してその際に発振部12より出力される発振周波
数をメモリ14に書き込む。またVn 較正モードを指定
した場合には設定電圧としてVn を印加し、その際に発
振部12より出力される発振周波数をメモリ14に書き
込み記録する。制御部13に運用モード信号が入力され
ると、メモリ14に記録された発振周波数データ及び発
振部12より供給される信号に基づいて制御部13は電
圧−周波数変換特性を補正し、高精度に二次電池電圧を
検出することが可能であり、構成部品点数を増加させる
ことなく、高精度の電圧検出を行うことができる。
Further, it is possible to construct a highly accurate secondary battery voltage detection circuit without using the variable capacitor and variable resistance voltage divider as described above. That is, the variable capacitor and the variable resistance voltage divider mechanically change their values,
Since it is unstable with respect to external factors such as vibration, a charging circuit having a memory for calibration in the control unit may be used as shown in FIG. In FIG. 4, 13 is a switching controller, and 14 is a writable read-only memory, such as a RAM backed up by a PROM or a battery. In the charging circuit configured as described above, the control unit 13
When a specified mode, for example, an O volt calibration mode is specified, a set voltage of 0 V is applied across the variable capacitance diode D1 provided on the secondary side to oscillate at that time. The oscillation frequency output from the unit 12 is written in the memory 14. When the V n calibration mode is designated, V n is applied as the set voltage, and the oscillation frequency output from the oscillator 12 at that time is written and recorded in the memory 14. When the operation mode signal is input to the control unit 13, the control unit 13 corrects the voltage-frequency conversion characteristic based on the oscillation frequency data recorded in the memory 14 and the signal supplied from the oscillation unit 12, and highly accurately. The secondary battery voltage can be detected, and highly accurate voltage detection can be performed without increasing the number of constituent parts.

【0009】[0009]

【発明の効果】本発明は上述した如く構成し且つ機能す
るものであるから、スイッチング型充電回路の二次側に
おいて回路駆動用の電源を必要とせず、また発振回路に
誘導器(コイル)を用いる代わりに圧電振動子を用いて
いるために高安定度の電圧−周波数変換特性を得ること
ができ、さらには従来必要であった一次側及び二次側ア
イソレーション用のコンデンサを1個に低減することが
でき、装置の小型化及び低価格化を達成する上で著しい
効果を発揮する。
Since the present invention is constructed and functions as described above, a power source for driving the circuit is not required on the secondary side of the switching type charging circuit, and an inductor (coil) is provided in the oscillation circuit. Since a piezoelectric vibrator is used instead, a highly stable voltage-frequency conversion characteristic can be obtained, and the number of capacitors for the primary side and secondary side isolation that was conventionally required is reduced to one. It is possible to achieve a significant effect in achieving downsizing and cost reduction of the device.

【0010】[0010]

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る二次電池電圧測定回路の一実施例
を示す図。
FIG. 1 is a diagram showing an embodiment of a secondary battery voltage measuring circuit according to the present invention.

【図2】本発明に係る二次電池電圧測定回路の他の実施
例を示す図。
FIG. 2 is a diagram showing another embodiment of the secondary battery voltage measuring circuit according to the present invention.

【図3】本発明に係る二次電池電圧測定回路の他の実施
例を示す図。
FIG. 3 is a diagram showing another embodiment of the secondary battery voltage measuring circuit according to the present invention.

【図4】本発明に係る二次電池電圧測定回路の他の実施
例を示す図。
FIG. 4 is a diagram showing another embodiment of the secondary battery voltage measuring circuit according to the present invention.

【図5】従来より用いられている制御機能を一次側回路
に有するプライマリ制御スイッチング型充電器の二次側
の回路構成を示す図。
FIG. 5 is a diagram showing a circuit configuration on the secondary side of a primary control switching type charger having a conventionally used control function in a primary side circuit.

【図6】一次側回路と二次側回路とのアイソレーション
のために容量器を用いる方法を示す図。
FIG. 6 is a diagram showing a method of using a capacitor for isolation between a primary side circuit and a secondary side circuit.

【符号の説明】[Explanation of symbols]

1・・・整流・平滑回路 2・・・定電流発生回路 3、10・・・二次電池 4・・・電圧検出回路 5、11・・・電圧容量変換回路 6、12・・・発振部 7・・・容量検出回路 13・・・制御部 14・・・書き込み可能型読み出し専用メモリ C1、C2、・・・コンデンサ D1・・・可変容量ダイオード R1、R2・・・抵抗 Y1・・・水晶振動子 RV1・・・可変抵抗分圧器 CV1・・・可変容量器 1 ... Rectification / smoothing circuit 2 ... Constant current generation circuit 3, 10 ... Secondary battery 4 ... Voltage detection circuit 5, 11 ... Voltage capacity conversion circuit 6, 12 ... Oscillation section 7 ... Capacitance detection circuit 13 ... Control unit 14 ... Writable read-only memory C1, C2, ... Capacitor D1 ... Variable capacitance diode R1, R2 ... Resistor Y1 ... Crystal Resonator RV1 ・ ・ ・ Variable resistance voltage divider CV1 ・ ・ ・ Variable capacitor

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】充電すべき二次電池電圧を可変容量ダイオ
ードを用いて容量に変換し、これを発振周波数として一
次側にて検出するプライマリ制御スイッチング型充電器
において、発振ループ中に前記可変容量ダイオードと圧
電振動子とを備えると共に、前記圧電振動子の一方の電
極を一次側に、他方の電極を二次側に接続したことを特
徴とする二次電池電圧検出装置。
1. A primary control switching type charger, wherein a secondary battery voltage to be charged is converted into a capacity by using a variable capacity diode and is detected as an oscillation frequency on a primary side, wherein the variable capacity is included in an oscillation loop. A secondary battery voltage detection device comprising a diode and a piezoelectric vibrator, wherein one electrode of the piezoelectric vibrator is connected to the primary side and the other electrode is connected to the secondary side.
JP3283493A 1993-01-28 1993-01-28 Voltage detector for switching type charging circuit Pending JPH06233473A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3283493A JPH06233473A (en) 1993-01-28 1993-01-28 Voltage detector for switching type charging circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3283493A JPH06233473A (en) 1993-01-28 1993-01-28 Voltage detector for switching type charging circuit

Publications (1)

Publication Number Publication Date
JPH06233473A true JPH06233473A (en) 1994-08-19

Family

ID=12369856

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3283493A Pending JPH06233473A (en) 1993-01-28 1993-01-28 Voltage detector for switching type charging circuit

Country Status (1)

Country Link
JP (1) JPH06233473A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014060850A (en) * 2012-09-18 2014-04-03 Shindengen Electric Mfg Co Ltd Switching power supply
JP2014523606A (en) * 2011-06-10 2014-09-11 コミシリア ア レネルジ アトミック エ オ エナジーズ オルタネティヴズ A device that monitors the voltage output of a cell in an electrochemical generator
WO2019079226A1 (en) * 2017-10-16 2019-04-25 Neapco Intellectual Property Holdings, Llc Battery cell monitoring system
US11264653B2 (en) 2017-10-16 2022-03-01 Neapco Intellectual Property Holdings, Llc Battery cell monitoring system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014523606A (en) * 2011-06-10 2014-09-11 コミシリア ア レネルジ アトミック エ オ エナジーズ オルタネティヴズ A device that monitors the voltage output of a cell in an electrochemical generator
JP2014060850A (en) * 2012-09-18 2014-04-03 Shindengen Electric Mfg Co Ltd Switching power supply
WO2019079226A1 (en) * 2017-10-16 2019-04-25 Neapco Intellectual Property Holdings, Llc Battery cell monitoring system
US11223074B2 (en) 2017-10-16 2022-01-11 Neapco Intellectual Property Holdings, Llc Battery cell monitoring system
US11264653B2 (en) 2017-10-16 2022-03-01 Neapco Intellectual Property Holdings, Llc Battery cell monitoring system

Similar Documents

Publication Publication Date Title
JP2001145355A (en) Stand-by power reducing circuit for electric equipment
US5525936A (en) Temperature-compensated oscillator circuit
WO2015186581A1 (en) Electric power transmission system
US5874864A (en) Crystal oscillating device and method of adjusting said crystal oscillating device
JP3772350B2 (en) Power supply
JPH06233473A (en) Voltage detector for switching type charging circuit
JP3821156B2 (en) Power supply
JPS62228126A (en) Gas pressure gauge
JPH06233474A (en) Voltage detector for switching type charging circuit
JPH0575445A (en) Device and method for correcting fluctuation of oscillation frequency of cpu
JP2002090480A (en) Clock signal supply device and its control method
US4617533A (en) Circuit arrangement for a blocking oscillator switching power unit
JPH05103430A (en) Battery charging circuit
EP0449601A2 (en) Crystal oscillator for use in timepiece of battery-powered portable apparatus
JP2004245804A (en) Electric charge sensor
JPH06197465A (en) Method and apparatus for detecting voltage of switching-type charging circuit
JPH053269Y2 (en)
JPS58155424A (en) Temperature controlling device
JP3412240B2 (en) Signal pen circuit
JPH05218740A (en) Oscillation circuit provided with crystal vibrator
JPH07147771A (en) Piezoelectric transformer high-voltage generator
RU2269384C2 (en) Ultrasound generator
JPH07271496A (en) Signal pen circuit
JPS6232692B2 (en)
JPH0579797A (en) Electronic delay electric detonator