JP3579885B2 - Electrode structure for fuel cell and manufacturing method thereof - Google Patents

Electrode structure for fuel cell and manufacturing method thereof Download PDF

Info

Publication number
JP3579885B2
JP3579885B2 JP2000265407A JP2000265407A JP3579885B2 JP 3579885 B2 JP3579885 B2 JP 3579885B2 JP 2000265407 A JP2000265407 A JP 2000265407A JP 2000265407 A JP2000265407 A JP 2000265407A JP 3579885 B2 JP3579885 B2 JP 3579885B2
Authority
JP
Japan
Prior art keywords
electrode
catalyst layer
electrode catalyst
electrolyte membrane
slurry
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000265407A
Other languages
Japanese (ja)
Other versions
JP2002075383A (en
Inventor
薫 福田
洋一 浅野
長之 金岡
信広 齋藤
昌昭 七海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2000265407A priority Critical patent/JP3579885B2/en
Priority to CA002356008A priority patent/CA2356008C/en
Priority to US09/942,123 priority patent/US6720106B2/en
Publication of JP2002075383A publication Critical patent/JP2002075383A/en
Application granted granted Critical
Publication of JP3579885B2 publication Critical patent/JP3579885B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

【0001】
【発明の属する技術分野】
本発明は、燃料電池に用いられる燃料電池用電極構造体およびその製造方法に関する。より詳しく述べると、電極触媒層と電解膜とが一体成形された燃料電池用電極構造体およびその製造方法に関する。
【0002】
【従来の技術】
燃料電池システムは、水素を燃料ガスとして燃料電池の水素極側に供給するとともに、酸素を含有する酸化ガスを燃料電池の酸素極側に供給して発電を行う燃料電池を中核としたシステムである。この燃料電池システムの中核をなす燃料電池は、化学エネルギーを直接電気エネルギーに変換するものであり、高い発電効率を有することや有害物質の排出量が極めて少ないこと等から最近注目されている。
【0003】
先ず、燃料電池を構成する燃料電池単セルについて図1を参照して説明を行う。
図1に示すように、燃料電池単セルCEは、電解膜Mの水素極側と酸素極側の両側に設けられた電極触媒層1(1、1)から構成された燃料電池用電極構造体MEAの両側に各々拡散層2、2、セパレータ3、3を積層され、構成されている。なお、水素極側の部材には数字の後に添え字Hを附し、酸素極側の部材には数字の後に添え字Oを附し、水素極・酸素極の区別を行わない場合には数字の後に添え字を附さないものとする。
【0004】
電解膜Mとしては固体高分子膜、例えばプロトン(イオン)交換膜であるパーフロロカーボンスルホン酸膜が一般に使われている。この電解膜Mは、固体高分子中にプロトン交換基を多数持ち、飽和含水することにより常温で20Ω/cmプロトン以下の低い比抵抗を示し、プロトン導伝性電解質として機能する。このように燃料電単セルCEに固体高分子膜を用いることから、該単セルCEを積層して構成される燃料電池は、固体高分子型燃料電池と呼ばれている。
【0005】
電極触媒層1としては、各々白金等の酸化・還元触媒機能を有する触媒金属をカーボン等の担体に担持させた触媒粒子をイオン(プロトン)導電性樹脂に分散させて構成されている。
【0006】
また、拡散層2としては、セパレータ3の表面の流路4と接触して設けられ、電子を電極触媒層1とセパレータ3との間で伝達させる機能および各々燃料ガス(水素ガス)および酸化ガス(空気)を拡散して電極触媒層1に供給する機能を有しており、一般にカーボンペーパー、カーボンクロス、カーボンフェルト等のカーボン系の材料から形成されている。
セパレータ3は、気密性及び熱伝導率の優れた材料から構成され、燃料ガス、酸化ガスおよび冷媒を分断する機能を有するとともに、流路4を持ち、そして電子伝達機能を有している。
【0007】
この燃料電池単セルCEは、セパレータ3の酸素極側ガス流路4に供給空気が通流され、セパレータ3の水素極側ガス流路4に供給水素Hが供給されると、水素極側で水素が電極触媒層1における触媒の触媒作用でイオン化してプロトンが生成し、生成したプロトンは、電解膜M中を移動して酸素極側に到達する。そして、酸素極側に到達したプロトンは、電極触媒層1中の触媒の存在下、供給空気の酸素から生成した酸素イオンと直ちに反応して水を生成する。生成した水及び未使用の酸素を含む供給空気は、排出空気として燃料電池FCの酸素極側の出口から排出される(排出空気は多量の水分を含む)。また、水素極側では水素がイオン化する際に電子eが生成するが、この生成した電子eは、モータなどの外部負荷を経由して酸素極側に達する構成となっている(図1の矢印参照)。
このような燃料電池単セルCEは、数百枚積層して燃料電池として、例えば車両等に搭載されて使用される。
【0008】
【発明が解決しようとする課題】
従来、このような構成の燃料電池単セルCEにおいて、電極触媒層1は、電解膜Mに電極触媒層1を貼付した後に、ホットプレス等により熱圧着して構成していた。しかしながら、このような方法で構成された電極触媒層1は、電極触媒層1と電解膜Mとの界面において電極触媒層C1の凹凸により食い込みは有するが、接着界面はほぼ平坦である。
従って、例えば車両等に搭載して燃料電池を使用する場合には、燃料電池は、外気温(冬季における氷点下の温度)から車両走行時における約85℃以上の温度サイクルを有しているが、高温下で運転する等の高温環境下においては接着強度が十分に得られず、剥離現象を起こす場合があり、また、このような温度サイクルにおいて電解膜と電極触媒層の界面が疲労し、耐久性の点で改善する余地があった。
【0009】
従って、本発明の課題は、電解膜Mと電極触媒層1との界面の剥離を防止して、かつ氷点下から約85℃以上の温度サイクルにおいても耐久性の高い燃料電池用電極構造体を提供することである。
本発明の別の課題は、かかる耐久性の高い燃料電池用電極構造体を効率よく製造する燃料電池用電極構造体の製造方法を提供することである。
【0010】
【課題を解決するための手段】
本発明者等は、前記従来技術の実状に鑑み鋭意検討を重ねた結果、一対の電極触媒層とそれらの電極触媒層に挟まれる電解膜から構成され、少なくとも一方の面の前記電極触媒層の触媒が前記電解膜に侵入して前記電極触媒層と電解膜とが一体形成することによって前記課題を解決できることを見出して、本発明を完成するに至った。
【0011】
すなわち、本発明は、一対の電極触媒層とそれらの電極触媒層に挟まれる電解膜から構成され、少なくとも一方の面の前記電極触媒層の触媒が前記電解膜に侵入深さ5μm〜20μmの範囲内で侵入して前記電極触媒層と前記電解膜とを一体形成した燃料電池用電極構造体であって、
前記触媒を極性溶媒に溶解した後、イオン導伝性高分子溶液に分散させて粘度5,000〜25,000 mPa・Sのスラリーを調製し、
このようにして調製したスラリーを前記電解膜の少なくとも一方の面に直接塗布した後、前記スラリー中に溶媒が残存した状態で、1.5〜2.5MPaの圧力条件、120〜180℃の温度条件及び30〜60秒の時間条件でホットプレスして、前記触媒のうちの一部を前記電解膜へ侵入させて電極触媒層を前記電解膜と一体形成したことを特徴とするものである(請求項1)。このように構成することにより、電極触媒層が形成される際に、電極触媒層と電解膜とが両者の境界面で組成が連続的に変化して一体形成され、電解膜と電極触媒層との界面における剥離が発生せず、また所定の温度サイクルにおいても電極構造体の耐久性が増加することが可能となる。なお、極性溶媒は、電解膜を溶解する性質を有するものである。この構成では、電解膜に触媒が侵入する他、電解膜の上にイオン導伝性高分子及び触媒が肉盛りされて電極触媒層が形成される。
【0012】
また、本発明は、前記燃料電池用電極構造体において、前記電解膜のイオン交換容量をAとし、前記形成した電極触媒層のイオン交換容量をBとし、前記ホットプレスする前における前記電解膜の厚みをC(μm)とし、前記ホットプレスした後における前記電解膜の前記触媒が侵入していない部分の厚みをD(μm)として下記式(1):
(A−B)/(C−D)・・・(1)
で計算された前記電極触媒層と前記電解膜との界面におけるイオン交換密度傾斜係数が3.5×103meq/g/cm以下であることが好ましい(請求項2)。
このように電極触媒層と電解膜との一体部分を規定することによって、耐久性はより確実なものとなる。
【0014】
本発明の電極構造体の製造方法は、一対の電極触媒層とそれらの電極触媒層に挟まれる電解膜から構成され、少なくとも一方の面の前記電極触媒層の触媒が前記電解膜に侵入深さ5μm〜20μmの範囲内で侵入して前記電極触媒層と前記電解膜とを一体形成した燃料電池用電極構造体の製造方法であって、
前記電極触媒層を構成する触媒を極性溶媒に溶解した後、イオン導伝性高分子溶液に分散させて粘度5,000〜25,000 mPa・Sのスラリーを調製し、
このようにして調製したスラリーを前記電解膜の少なくとも一方の面に直接塗布した後、前記スラリー中に溶媒が残存した状態で、1.5〜2.5MPaの圧力条件、120〜180℃の温度条件及び30〜60秒の時間条件でホットプレスして、前記触媒のうちの一部を前記電解膜へ侵入させて電極触媒層を前記電解膜と一体形成することを特徴とする(請求項)。
このように構成することによって、耐久性の優れた電極構造体を容易・かつ確実に製造することが可能となる。
【0015】
また、前記電解膜に直接塗布した前記スラリー中の極性溶媒を20mg/cm2〜100 mg/cm2の量で残存した状態でホットプレスして前記触媒粒子を電解膜へ侵入させることが好ましい(請求項)。
このように構成することによって、さらに優れた耐久性を有する電極構造体を容易・かつ確実に製造することが可能となる。
【0016】
【発明の実施の形態】
以下、本発明の実施の形態を添付図面を参照して詳細に説明するが、本発明はこれらの実施の形態に限定されるものではない。
図1は、本発明が適用される燃料電池単セルの概略を示す概略図であり、図2は、本発明の燃料電池用電極構造体(以下「電極構造体」という)の断面図であり、図3は、触媒粒子の構成を示す模式図であり、図4は、本発明の電極構造体の製造の様子を示す模式図である。
【0017】
[電極構造体(燃料電池単セル)の構成]
図1に示す通り、一実施形態の電極構造体MEAは、電解膜Mと電解膜Mの両側に積層された電極触媒層1とから主として構成され、このようにして構成された電極構造体MEAの両側に拡散層2およびセパレータ3が積層されて燃料電池単セルCEが構成されている。このような燃料電池単セルCEが多数積層されて燃料電池が形成される。
【0018】
電極構造体MEAの電解膜Mとして、例えばプロトン(イオン)交換膜であるパーフロロカーボンスルホン酸膜が一般に使われている。この電解膜Mは、前述の通り固体高分子中にプロトン交換基を多数持ち、飽和含水することにより常温で20Ω/cmプロトン以下の低い比抵抗を示し、プロトン導伝性電解質として機能するものである。なお、本発明において使用できる電解膜Mは、燃料電池単セルCEにおいて使用されているものであればこれに限定されるものではない。
【0019】
また、この一実施形態での電極構造体MEAにおける電極触媒層1は、イオン(プロトン)導電性樹脂に触媒金属を担持した担体から構成される触媒粒子(図3参照)を分散させて構成されている。
この際に、通常触媒金属として白金族金属、一般には白金が担体として、カーボンに担持されて形成されている。しかしながら、本発明においては、燃料電池の触媒として使用可能であればこれらに限定されるものではない。
また、撥水効果および貯水効果を高めるため、あるいは電極触媒層2が拡散層3に食い込むのを防止する目的で図示しない下地層を拡散層2とセパレータ3との間に設けてもよい。下地層は、カーボンブラック粉末とテフロン粉末からあるいはカーボンブラック粉末と電解質溶液から構成される。
【0020】
電極構造体MEAでは、図2に示す通り、電極触媒層1における触媒粒子の一部が所定の距離だけ電解膜Mの両側に侵入した構成を有していることを特徴とする。すなわち、従来の電極構造体のように電解膜と電極触媒層との間に明確な界面を有するのではなく、触媒(電極触媒層1を構成する材料)が電解膜Mの一部に所定の度合いで侵入し、電解膜Mと電極触媒層1とが一体形成されている。
この際の、触媒(触媒粒子)の電解膜Mへの侵入の度合いは、電解膜Mのイオン交換容量をAとし、電極触媒層1のイオン交換容量をBとし(該イオン交換容量は電解膜Mに触媒粒子が侵入していないとした場合におけるもの)、加圧下で加熱する前の電解膜の厚みをC(μm)とし、両側から侵透した触媒粒子間の距離をDw(μm)として下記式(1):
(A−B)/(C−Dw)/2・・・(1)
で計算された電極触媒層1と電解膜Mとの界面におけるイオン交換密度傾斜係数として表すことができる。なお、距離Dwは、電解膜Mにおける触媒粒子が侵入していない部分の厚みである。
【0021】
すなわち、電極触媒層1が電解膜Mに長さ(C−Dw)/2だけ侵入した際の、単位長さ当りのイオン交換容量の増分として示す。
本発明において、このようなイオン交換密度傾斜係数が3.5×10meq/g/cm以下であることが好ましいことが実験的に見出された。すなわち、イオン交換密度傾斜係数が3.5×10meq/g/cmを超えた場合には、電極触媒層1と電解膜Mの一体形成が不充分であり(つまり両者1,Mが渾然一体となって形成されている部分〔グラデェーション部分〕が少なく)、電極触媒層1と電解膜Mの剥離防止という観点から好ましくない。
【0022】
また、電極触媒層1が電解膜Mへの侵入の度合いを決定する別の尺度として、触媒粒子の電解膜への侵入深さ(すなわち、(C−Dw)/2そのもの)が挙げられる。このような電解膜Mへの侵入深さは、5μm〜20μmの範囲内であることが好ましい。触媒粒子の電解膜Mへの侵入が浅過ぎると、電極触媒層1と電解膜Mの剥離防止という観点から好ましくない。一方、侵入が深すぎると、電解膜Mの性能を低下する。
【0023】
本発明におにて、このような構造を達成するために、電極触媒層1を、触媒粒子とイオン導伝性高分子電解膜とから構成される電極触媒層スラリーを電解膜に直接塗布した後、加圧下に加熱を行って前記触媒粒子のうちの一部を前記電解膜に侵入させて電解膜と一体形成を行っている。
すなわち、本発明において、電極触媒層1を、触媒粒子を極性溶媒に溶解した後、イオン導伝性高分子溶液に分散させたスラリーを調製し、このようにして調製したスラリーを電解膜Mに所定の厚みで直接塗布する。次いで、加圧下に加熱を行って前記触媒粒子のうちの一部を前記電解膜に侵入させて電極触媒層1と電解膜Mとを一体形成する。
【0024】
この際に使用する溶媒は、スラリー中の触媒粒子を電解膜Mに侵入するために使用されるものであり、電解膜Mに可溶な極性溶媒が使用される。本発明において使用できる極性溶媒は、電解膜Mと電極触媒層1とが一体成形可能であれば特に制限されないが、例えばジメチルアセトアミド(沸点:165.5℃)、ジメチルホルムアミド(沸点:153℃)、ジメチルスルホキシド(沸点:189℃)、トリエチルホスフェート(沸点:115℃)、N−メチルピロリドン(沸点:202℃)等が挙げられ、これらを単独であるいは二種類以上の混合物として使用できる。
また、高分子イオン交換成分として、従来燃料電池に使用されているものであれば特に限定されるものではないが、例えばポリエーテルエテールケトン、ポリエーテルスルホン、ポリスルホン、ポリエーテルイミド、ポリフェニレンスルフィド、ポリフェニレンオキシド等が挙げられ、これらを単独であるいは二種類以上の混合物として使用することができる。
【0025】
本発明において、スラリーを塗布する際に前記スラリーを電解膜Mの片面に塗布して、加圧下に加熱して(ホットプレス)して片面づつ一体的に積層することも可能であるが、電極構造体MEAが熱歪等により湾曲する可能性があるので、電解膜Mの両面にスラリーを塗布して電解膜Mと電極触媒層1を一体成形することが好ましい。
この際の加圧圧力、加熱温度、ホットプレス時間は、使用する溶媒、スラリー粘度等により適宜選択されるが、代表的には1.5〜2.5MPa(15〜25kgf/cm)の圧力、及び120〜180℃の温度で30〜60秒間ホットプレスするのが好ましい。
この際に、前記溶媒は、20mg/cm以上の量で残存させると、前記条件と相俟ってホットプレス時のスラリー中の残存溶媒による電解膜Mの表面の溶解を可能ならしめ、触媒の電解膜Mへの侵入を容易にし、該触媒をある程度の深さに押し込むことが可能となるので好ましい。
【0026】
なお、この際のスラリーの粘度は、電解膜Mに直接塗布する操作を行うことができ、本発明に規定する所定の電極触媒層1を形成することができる範囲内であれば特に制限されないが、好ましくは5,000〜25,000mPa・秒の範囲内である。すなわち、スラリー粘度が5,000mPa・秒未満であるとホットプレスした際にスラリー漏れが起こる可能性があり、逆にスラリー粘度が25,000mPa・秒を超えるとスラリーの取扱いが困難になる場合がある。
【0027】
このようにして、本発明において電極構造体MEAにおける電解層Mと一体成形することによって電解膜Mと電極触媒層1の界面の圧着強度を高め、高温時の熱応力により発生するこれらの界面の剥離や温度サイクルによる冷熱剥離を防止することが可能となる。
【0028】
(電極構造体の製造)
以下、図4を参照して一実施形態の電解膜Mと電極触媒層1が一体成形された電極構造体MEAの製造方法について述べる。
電極構造体MEAを製造するに当たって、まず触媒粒子を、電解膜Mを可溶な極性溶媒に溶解し、そしてイオン導伝性高分子溶液に分散させて粘度が5,000〜25,000mPa・秒となるようにスラリーを形成する。
次いで、このようにして調製されたスラリーを図4(a)に示す通り、所定量、電解膜Mに直接塗布を行う。
なお、所望に応じてカーボンブラック粉末とテフロン粉末からあるいはカーボンブラック粉末と電解質溶液(イオン導伝性高分子溶液)から構成される下地層形成用スラリーを電極触媒層形成用のスラリーの上に重ねて塗布して下地層を形成することも可能である。
【0029】
図4(b)〜図4(e)は、図4(a)の一部を拡大した断面図であり、本発明により触媒層1が電解膜Mと一体成形される様子を示すものである。
図4(b)に示す通り、まず塗布した電極触媒形成用のスラリー中の電解膜Mを可溶な極性溶媒が電解膜Mを溶かしはじめる。
次いで、図4(c)に示す通り、極性溶媒が電解膜の一部を溶解する。
次いで、図4(d)に示す通り、電極触媒形成用スラリーの上からホットプレスを行うと、電解膜を極性溶媒が溶解した部分に触媒粒子Catが侵入する。この際に極性溶媒(有機溶媒)を20mg/cm以上の量で残存させた状態からホットプレスを行うことが好ましい。
このようにしてホットプレスを行った後、温度・圧力を開放すると、図4(e)に示す通りに、電解膜Mと電極触媒層1とを一体成形した電極構造体MEAが形成される。
このように、簡単な工程で所望とする耐久性の高い電極構造体MEAを製造することが可能となる。なお、本発明では、電解膜Mの上に肉盛りされた状態で電極触媒層1が形成されるが、両者(電解膜M,電極触媒層1)の境界部分は渾然一体になっている。
【0030】
【実施例】
以下、本発明を実施例に基づいて詳細に説明するが本発明は以下の実施例に限定されるものではない。
[実施例1]
極性溶媒可溶の電解質成分(PE;イオン導伝性高分子物質)を触媒粒子(Cat)に対して質量比PE/Cat=0.4となる割合で混合して、溶媒(N−メチルピロリドン)を粘度が5,000mPa・秒となるように添加してスラリーを調製した。このようにして調製されたスラリーを極性溶媒量の残量(残存溶媒量)が100mg/cmとなるまで乾燥し、次いでホットプレスを行って、電極触媒層1と電解膜Mとを一体形成して本発明の電極構造体MEAを得た。得られた電極構造体MEAの物性を表1、図5および図6に示す。
なお、表1において、触媒の侵入深さは走査型電子顕微鏡(SEM)により実測して求め、そして傾斜密度は同様に両側から侵入した触媒(触媒粒子)間の平均距離を求め、前記(1)式により算出したものである。
また、冷熱剥離率は、−40℃で30分間、90℃で30分間の冷間環境と熱間環境を100サイクル繰り返し行い、表面の剥離状態を画像処理した。数値は、単位観察面積中の剥離面積を換算し求め、クロスリーク量(ガス透過性cc/cm・分)は燃料電池単セルに試料を組み付けた後に、これを水没させ、試料ガスをガス供給口より供給し、膜試料を通して、ガス排出口から排出してきた試料ガス量を測定し、求めた。
【0031】
[実施例2〜実施例9および比較例1]
スラリーの粘度および残存溶媒量を表1に示す通りに変更した以外は実施例1を繰り返した。結果を表1、図5および図6に示す。
【0032】
【表1】

Figure 0003579885
【0033】
表1および図5に示す通り、電極触媒層1と電解膜Mとを一体成形した電極構造体MEAは、良好な冷熱剥離率およびクロスリーク量(ガス透過性cc/cm・分)を示し、特に触媒粒子の侵入深さ5〜20μm(密度傾斜係数859.00〜3436.00)の範囲のものが特に好ましいことが分かる。一方、電極触媒層と電解膜が一体成形されていない比較例1では冷熱剥離率が著しく劣っているのが分かる。
ちなみに、侵入深さが浅いと、密度傾斜係数が大きくなり、冷熱剥離率も大きくなる傾向にあることが分かる。逆に侵入深さが深いと、密度傾斜係数が小さくなり冷熱剥離率も小さくなる傾向にあることが分かる。また、触媒の侵入深さを深くするには、スラリーの粘度が小さい方がよいことが分かる。同時に、触媒の侵入深さを深くするには、残存溶媒が多い方がよいことが分かる。
また、図6に示す通り、本発明の電極構造体MEAは比較例1の電極構造体と比較して測定した全ての電流密度範囲で端子電圧が高いことが分かる。従って、本発明の電極構造体MEAは、従来の電極構造体と比較して耐久性が優れているだけでなく、より高い電力を供給することができる。
【0034】
【発明の効果】
以上説明した通り、本発明の電極構造体は、触媒粒子の電解膜への侵入深さが5μm〜20μmの範囲内とすることができ、電極触媒層が形成される際に、電極触媒層と電解膜とが両者の境界面で組成が連続的に変化して一体形成される。したがって、電解膜と電極触媒層との界面における剥離が発生せず、また所定の温度サイクルにおいても電極構造体の耐久性が増加することが可能となる(請求項1)。なお、電解膜と電極触媒層を一体形成した電極構造体を含む燃料電池単セルは、電極構造体において電解膜と電極触媒層の界面における剥離が発生せず、燃料電池全体の耐久性を向上させることが可能となる。しかも、この燃料電池は、従来技術のものと比較して高い出力を得ることができる。また、電極触媒層と電解膜との界面におけるイオン交換密度傾斜係数が3.5×103meq/g/cm以下とすると、より高い耐久性が得られる(請求項2)
のように優れた電極構造体は、電極触媒層を構成する触媒粒子を極性溶媒に溶解した後、イオン導伝性高分子溶液に分散させて粘度5,000〜25,000mPa・秒のスラリーを調製し、このようにして調製したスラリーを電解膜に直接塗布し、1.5〜2.5MPaの圧力条件、120〜180℃の温度条件及び30〜60秒の時間条件でホットプレスして触媒を電解膜へ侵入させて電極触媒層を電解膜と一体形成することにより容易に製造することができる(請求項)。また、電解膜に直接塗布した触媒粒子分散イオン導伝性高分子の有機溶媒を20mg/cm2〜100mg/cm2の量で残存した状態でホットプレスして触媒粒子を電解膜へ侵入させるとさらに優れた耐久性を有する電極構造体を容易・かつ確実に製造することが可能となる(請求項)。
【図面の簡単な説明】
【図1】本発明が適用される燃料電池単セルの概略を示す概略図である。
【図2】本発明の電極構造体(燃料電池用電極構造体)の断面図である
【図3】触媒粒子の構成を示す模式図である。
【図4】本発明の電極構造体の製造の様子を示す模式図である。
【図5】本発明および比較例における電極触媒層の侵入深さとガス透過性および冷熱剥離率の関係を示すグラフである。
【図6】本発明および比較例における電流密度と端子電圧の関係を示すグラフである。
【符号の説明】
FC 燃料電池
MEA 電極構造体(燃料電池用電極構造体)
M 電解膜
1 電極触媒層
2 拡散層
3 セパレータ
4 流路[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a fuel cell electrode structure used for a fuel cell and a method for manufacturing the same. More specifically, the present invention relates to a fuel cell electrode structure in which an electrode catalyst layer and an electrolyte membrane are integrally formed, and a method for manufacturing the same.
[0002]
[Prior art]
The fuel cell system is a fuel cell system that supplies hydrogen as a fuel gas to the hydrogen electrode side of the fuel cell and supplies an oxidizing gas containing oxygen to the oxygen electrode side of the fuel cell to generate electric power. . Fuel cells, which form the core of this fuel cell system, convert chemical energy directly into electric energy, and have recently been receiving attention because of their high power generation efficiency and extremely low emission of harmful substances.
[0003]
First, a single fuel cell constituting a fuel cell will be described with reference to FIG.
As shown in FIG. 1, the fuel cell unit cell CE has a fuel cell electrode composed of electrode catalyst layers 1 ( 1H , 1O ) provided on both sides of the electrolyte membrane M on the hydrogen electrode side and the oxygen electrode side. Diffusion layers 2 H , 2 O and separators 3 H , 3 O are laminated on both sides of the structure MEA, respectively. The member on the hydrogen electrode side has a suffix H after the numeral, and the member on the oxygen electrode side has a suffix O after the numeral. Is not followed by a subscript.
[0004]
As the electrolyte membrane M, a solid polymer membrane, for example, a perfluorocarbon sulfonic acid membrane which is a proton (ion) exchange membrane is generally used. The electrolyte membrane M has a large number of proton exchange groups in the solid polymer, shows a low specific resistance of 20 Ω / cm proton or less at room temperature by containing saturated water, and functions as a proton conductive electrolyte. Since a solid polymer membrane is used for the fuel cell unit CE as described above, a fuel cell configured by stacking the unit cells CE is called a solid polymer fuel cell.
[0005]
The electrode catalyst layer 1 is configured by dispersing catalyst particles each having a catalyst metal having an oxidation / reduction catalytic function such as platinum supported on a carrier such as carbon in an ionic (proton) conductive resin.
[0006]
Further, the diffusion layer 2 is provided in contact with the flow path 4 on the surface of the separator 3 to transfer electrons between the electrode catalyst layer 1 and the separator 3, as well as a fuel gas (hydrogen gas) and an oxidizing gas. It has a function of diffusing (air) and supplying it to the electrode catalyst layer 1, and is generally formed of a carbon-based material such as carbon paper, carbon cloth, and carbon felt.
The separator 3 is made of a material having excellent airtightness and thermal conductivity, has a function of separating a fuel gas, an oxidizing gas and a refrigerant, has a flow path 4, and has an electron transfer function.
[0007]
In this single fuel cell CE, when supply air flows through the oxygen electrode side gas flow path 4 O of the separator 3 O and supply hydrogen H 2 is supplied to the hydrogen electrode side gas flow path 4 H of the separator 3 H. On the hydrogen electrode side, hydrogen is ionized by the catalytic action of the catalyst in the electrode catalyst layer 1H to generate protons, and the generated protons move through the electrolytic film M and reach the oxygen electrode side. Then, protons reach the oxygen electrode side, the presence of a catalyst of the electrode catalyst layer 1 in O, immediately react to form water and generate oxygen ions from oxygen in the feed air. The supply air containing the generated water and unused oxygen is discharged from the outlet on the oxygen electrode side of the fuel cell FC as exhaust air (the exhaust air contains a large amount of moisture). On the hydrogen electrode side, electrons e are generated when hydrogen is ionized, and the generated electrons e reach the oxygen electrode side via an external load such as a motor (FIG. 1). Arrow)).
Hundreds of such fuel cell single cells CE are stacked and used as a fuel cell, for example, mounted on a vehicle or the like.
[0008]
[Problems to be solved by the invention]
Conventionally, in the fuel cell unit CE having such a configuration, the electrode catalyst layer 1 is formed by attaching the electrode catalyst layer 1 to the electrolytic film M and then performing thermocompression bonding using a hot press or the like. However, the electrode catalyst layer 1 formed by such a method has a bite due to the unevenness of the electrode catalyst layer C1 at the interface between the electrode catalyst layer 1 and the electrolytic film M, but the bonding interface is almost flat.
Therefore, for example, when a fuel cell is used by being mounted on a vehicle or the like, the fuel cell has a temperature cycle of about 85 ° C. or more from the outside temperature (the temperature below the freezing point in winter) to the time when the vehicle is running. In a high-temperature environment such as operating at a high temperature, the adhesive strength may not be sufficient, and a peeling phenomenon may occur. There was room for improvement in terms of gender.
[0009]
Accordingly, an object of the present invention is to provide a fuel cell electrode structure which prevents separation at the interface between the electrolyte membrane M and the electrode catalyst layer 1 and has high durability even at a temperature cycle of about 85 ° C. or more from below freezing. It is to be.
Another object of the present invention is to provide a method for manufacturing a fuel cell electrode structure that efficiently manufactures such a highly durable fuel cell electrode structure.
[0010]
[Means for Solving the Problems]
The present inventors have conducted intensive studies in view of the state of the prior art, and as a result, have been formed of a pair of electrode catalyst layers and an electrolytic membrane sandwiched between those electrode catalyst layers, at least one surface of the electrode catalyst layer The inventors have found that the above problem can be solved by a catalyst penetrating into the electrolytic membrane to integrally form the electrode catalyst layer and the electrolytic membrane, and have completed the present invention.
[0011]
That is, the present invention comprises a pair of electrode catalyst layers and an electrolytic film sandwiched between the electrode catalyst layers, and the catalyst of the electrode catalyst layer on at least one surface has a penetration depth of 5 μm to 20 μm into the electrolytic film. An electrode structure for a fuel cell in which the electrode catalyst layer and the electrolyte membrane are integrally formed by penetrating inside ,
After dissolving the catalyst in a polar solvent, it is dispersed in an ion-conducting polymer solution to prepare a slurry having a viscosity of 5,000 to 25,000 mPa · S,
After directly applying the slurry prepared in this manner to at least one surface of the electrolytic membrane, with the solvent remaining in the slurry, a pressure condition of 1.5 to 2.5 MPa, a temperature of 120 to 180 ° C. and pressed at the time the conditions of temperature and 30 to 60 seconds, which pre Symbol electrode catalyst layer by entering the pre-Symbol electrolyte membrane a part of the catalyst is characterized in that it has the electrolyte membrane and integrally formed (Claim 1). With this configuration, when the electrode catalyst layer is formed, the composition of the electrode catalyst layer and the electrolytic film is continuously changed at the boundary between the two, and the electrode catalyst layer and the electrolytic film are integrally formed. No separation occurs at the interface of the electrode structure, and the durability of the electrode structure can be increased even at a predetermined temperature cycle. Incidentally, the polar solvent has a property of dissolving the electrolytic membrane. In this configuration, in addition to the catalyst entering the electrolyte membrane, the electrode conductive layer is formed by depositing the ion-conductive polymer and the catalyst on the electrolyte membrane.
[0012]
Further, according to the present invention, in the fuel cell electrode structure, the ion exchange capacity of the electrolytic membrane is A, the ion exchange capacity of the formed electrode catalyst layer is B, and the electrolytic membrane before hot pressing is formed. The thickness is C (μm), and the thickness of a portion of the electrolyte membrane after the hot pressing where the catalyst has not penetrated is D (μm), and the following formula (1):
(AB) / (CD) (1)
It is preferable that the ion exchange density gradient coefficient at the interface between the electrode catalyst layer and the electrolytic membrane calculated in (1) is 3.5 × 10 3 meq / g / cm or less (claim 2).
By thus defining the integral part of the electrode catalyst layer and the electrolytic membrane, the durability can be further ensured.
[0014]
Method for producing a conductive electrode structure of the present invention is composed of an electrolyte membrane sandwiched between a pair of electrode catalyst layers and their electrode catalyst layer, the catalyst of the electrode catalyst layer of at least one surface of deep penetration into the electrolyte membrane A method for producing an electrode structure for a fuel cell, wherein the electrode catalyst layer and the electrolyte membrane are integrally formed by penetrating within a range of 5 μm to 20 μm ,
After dissolving the catalyst constituting the electrode catalyst layer in a polar solvent, the slurry is dispersed in an ion-conducting polymer solution to prepare a slurry having a viscosity of 5,000 to 25,000 mPa · S,
After directly applying the slurry prepared in this way to at least one surface of the electrolytic membrane, with the solvent remaining in the slurry, a pressure condition of 1.5 to 2.5 MPa, a temperature of 120 to 180 ° C. Hot pressing under conditions and a time period of 30 to 60 seconds to cause a part of the catalyst to penetrate into the electrolyte membrane to form an electrode catalyst layer integrally with the electrolyte membrane (claim 3 ). ).
With this configuration, it is possible to easily and reliably manufacture an electrode structure having excellent durability.
[0015]
Further, it is preferable that the catalyst particles enter the electrolyte membrane by hot pressing while the polar solvent in the slurry directly applied to the electrolyte membrane in an amount of 20 mg / cm 2 to 100 mg / cm 2 remains ( Claim 4 ).
With this configuration, it is possible to easily and surely manufacture an electrode structure having more excellent durability.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings, but the present invention is not limited to these embodiments.
FIG. 1 is a schematic view schematically showing a fuel cell unit cell to which the present invention is applied, and FIG. 2 is a cross-sectional view of a fuel cell electrode structure (hereinafter, referred to as “electrode structure”) of the present invention. , FIG. 3 is a schematic diagram showing the configuration of the catalyst particles, and FIG. 4 is a schematic diagram showing the manner of manufacturing the electrode structure of the present invention.
[0017]
[Configuration of electrode structure (single cell of fuel cell)]
As shown in FIG. 1, the electrode structure MEA of one embodiment mainly includes an electrolytic film M and an electrode catalyst layer 1 stacked on both sides of the electrolytic film M, and the electrode structure MEA thus configured. The diffusion layer 2 and the separator 3 are stacked on both sides of the fuel cell unit to constitute a fuel cell single cell CE. A large number of such fuel cell single cells CE are stacked to form a fuel cell.
[0018]
As the electrolyte membrane M of the electrode structure MEA, for example, a perfluorocarbon sulfonic acid membrane which is a proton (ion) exchange membrane is generally used. As described above, the electrolyte membrane M has a large number of proton exchange groups in the solid polymer, exhibits a low specific resistance of 20 Ω / cm proton or less at room temperature by being saturated with water, and functions as a proton conductive electrolyte. is there. The electrolyte membrane M that can be used in the present invention is not limited to this, as long as it is used in the fuel cell unit cell CE.
[0019]
In addition, the electrode catalyst layer 1 in the electrode structure MEA according to the embodiment is configured by dispersing catalyst particles (see FIG. 3) composed of a carrier in which a catalyst metal is supported on an ionic (proton) conductive resin. ing.
At this time, a platinum group metal, generally platinum, is usually supported on carbon as a carrier and formed as a catalyst metal. However, the present invention is not limited to these as long as it can be used as a catalyst for a fuel cell.
In addition, a base layer (not shown) may be provided between the diffusion layer 2 and the separator 3 for the purpose of enhancing the water repellency and the water storage effect, or for preventing the electrode catalyst layer 2 from biting into the diffusion layer 3. The underlayer is composed of a carbon black powder and a Teflon powder or a carbon black powder and an electrolyte solution.
[0020]
The electrode structure MEA is characterized in that, as shown in FIG. 2, a part of the catalyst particles in the electrode catalyst layer 1 has a configuration in which the catalyst particles penetrate a predetermined distance on both sides of the electrolytic film M. That is, instead of having a clear interface between the electrolytic membrane and the electrode catalyst layer as in a conventional electrode structure, a catalyst (a material constituting the electrode catalyst layer 1) is applied to a part of the electrolytic membrane M by a predetermined amount. The electrolyte membrane M and the electrode catalyst layer 1 are integrally formed.
At this time, the degree of penetration of the catalyst (catalyst particles) into the electrolytic membrane M is determined by setting the ion exchange capacity of the electrolytic membrane M to A and the ion exchange capacity of the electrode catalyst layer 1 to B (the ion exchange capacity is the electrolytic membrane M). M), the thickness of the electrolyte membrane before heating under pressure is defined as C (μm), and the distance between the permeated catalyst particles from both sides is defined as Dw (μm). The following equation (1):
(AB) / (C-Dw) / 2 (1)
Can be expressed as an ion exchange density gradient coefficient at the interface between the electrode catalyst layer 1 and the electrolytic membrane M calculated by Note that the distance Dw is the thickness of a portion of the electrolyte membrane M where the catalyst particles have not penetrated.
[0021]
That is, when the electrode catalyst layer 1 penetrates into the electrolytic membrane M by the length (C−Dw) / 2, it is shown as an increment of the ion exchange capacity per unit length.
In the present invention, it has been experimentally found that such an ion exchange density gradient coefficient is preferably 3.5 × 10 3 meq / g / cm or less. That is, when the ion exchange density gradient coefficient exceeds 3.5 × 10 3 meq / g / cm, the integral formation of the electrode catalyst layer 1 and the electrolytic membrane M is insufficient (that is, both 1 and M are completely mixed). The portion (gradation portion) formed integrally is small), which is not preferable from the viewpoint of preventing separation of the electrode catalyst layer 1 and the electrolytic film M.
[0022]
Another measure for determining the degree of penetration of the electrode catalyst layer 1 into the electrolyte membrane M is the depth of penetration of catalyst particles into the electrolyte membrane (that is, (C−Dw) / 2 itself). It is preferable that the depth of penetration into the electrolytic film M is in the range of 5 μm to 20 μm. If the penetration of the catalyst particles into the electrolyte membrane M is too shallow, it is not preferable from the viewpoint of preventing the electrode catalyst layer 1 and the electrolyte membrane M from peeling off. On the other hand, if the penetration is too deep, the performance of the electrolytic film M is reduced.
[0023]
In the present invention, in order to achieve such a structure, the electrode catalyst layer 1 is formed by directly applying an electrode catalyst layer slurry composed of catalyst particles and an ion-conductive polymer electrolyte membrane to the electrolyte membrane. Thereafter, heating is performed under pressure to cause a part of the catalyst particles to penetrate into the electrolyte membrane to form an integral part with the electrolyte membrane.
That is, in the present invention, the electrode catalyst layer 1 is prepared by dissolving the catalyst particles in a polar solvent, and then preparing a slurry in which the slurry is dispersed in an ion-conductive polymer solution. Apply directly at a predetermined thickness. Next, heating is performed under pressure to cause a part of the catalyst particles to penetrate into the electrolyte membrane to form the electrode catalyst layer 1 and the electrolyte membrane M integrally.
[0024]
The solvent used at this time is used to allow the catalyst particles in the slurry to enter the electrolytic membrane M, and a polar solvent soluble in the electrolytic membrane M is used. The polar solvent that can be used in the present invention is not particularly limited as long as the electrolyte membrane M and the electrode catalyst layer 1 can be integrally formed. For example, dimethylacetamide (boiling point: 165.5 ° C.), dimethylformamide (boiling point: 153 ° C.) Dimethyl sulfoxide (boiling point: 189 ° C.), triethyl phosphate (boiling point: 115 ° C.), N-methylpyrrolidone (boiling point: 202 ° C.), and the like, and these can be used alone or as a mixture of two or more.
The polymer ion exchange component is not particularly limited as long as it is conventionally used in fuel cells.For example, polyether ether ketone, polyether sulfone, polysulfone, polyetherimide, polyphenylene sulfide, Examples thereof include polyphenylene oxide, which can be used alone or as a mixture of two or more.
[0025]
In the present invention, when the slurry is applied, the slurry may be applied to one surface of the electrolytic film M, heated under pressure (hot pressing), and integrally laminated one by one. Since the structure MEA may be bent due to thermal strain or the like, it is preferable to apply slurry to both surfaces of the electrolytic film M and integrally mold the electrolytic film M and the electrode catalyst layer 1.
The pressurizing pressure, the heating temperature, and the hot pressing time at this time are appropriately selected depending on the solvent to be used, the viscosity of the slurry, and the like. Typically, the pressure is 1.5 to 2.5 MPa (15 to 25 kgf / cm 2 ). And hot pressing at a temperature of 120 to 180 ° C. for 30 to 60 seconds.
At this time, when the solvent is allowed to remain in an amount of 20 mg / cm 2 or more, it becomes possible to dissolve the surface of the electrolytic film M with the remaining solvent in the slurry at the time of hot pressing in combination with the above conditions, Of the catalyst into the electrolytic membrane M, and the catalyst can be pushed into a certain depth.
[0026]
The viscosity of the slurry at this time is not particularly limited as long as the operation of directly applying the slurry to the electrolytic membrane M can be performed and the predetermined electrode catalyst layer 1 defined in the present invention can be formed. , Preferably in the range of 5,000 to 25,000 mPa · s. That is, if the slurry viscosity is less than 5,000 mPa · sec, there is a possibility that the slurry will leak when hot-pressed, and if the slurry viscosity exceeds 25,000 mPa · sec, the slurry may be difficult to handle. is there.
[0027]
As described above, in the present invention, the pressure-bonding strength at the interface between the electrolytic film M and the electrode catalyst layer 1 is increased by integrally molding with the electrolytic layer M in the electrode structure MEA. It becomes possible to prevent peeling and cold peeling due to temperature cycling.
[0028]
(Manufacture of electrode structure)
Hereinafter, a method for manufacturing the electrode structure MEA in which the electrolytic membrane M and the electrode catalyst layer 1 of one embodiment are integrally formed will be described with reference to FIG.
In producing the electrode structure MEA, first, the catalyst particles are dissolved in a polar solvent in which the electrolyte membrane M is soluble, and then dispersed in an ion-conductive polymer solution to have a viscosity of 5,000 to 25,000 mPa · sec. A slurry is formed so that
Next, a predetermined amount of the slurry thus prepared is directly applied to the electrolytic film M as shown in FIG.
If necessary, a slurry for forming an underlayer composed of a carbon black powder and a Teflon powder or a carbon black powder and an electrolyte solution (an ion-conductive polymer solution) is overlaid on the slurry for forming an electrode catalyst layer. To form an underlayer.
[0029]
FIGS. 4B to 4E are cross-sectional views in which a part of FIG. 4A is enlarged, and show how the catalyst layer 1 is integrally formed with the electrolytic membrane M according to the present invention. .
As shown in FIG. 4 (b), first, a polar solvent that is soluble in the applied electrolyte catalyst slurry in the electrode catalyst forming slurry starts to dissolve the electrolyte membrane M.
Next, as shown in FIG. 4C, the polar solvent dissolves a part of the electrolyte membrane.
Then, as shown in FIG. 4D, when hot pressing is performed from above the slurry for forming the electrode catalyst, the catalyst particles Cat enter the portion where the polar solvent is dissolved in the electrolytic membrane. At this time, it is preferable to perform hot pressing in a state where the polar solvent (organic solvent) is left in an amount of 20 mg / cm 2 or more.
When the temperature and the pressure are released after performing the hot pressing in this way, an electrode structure MEA in which the electrolytic film M and the electrode catalyst layer 1 are integrally formed is formed as shown in FIG.
Thus, it becomes possible to manufacture the desired highly durable electrode structure MEA by a simple process. In the present invention, the electrode catalyst layer 1 is formed so as to be overlaid on the electrolytic film M, but the boundary between the two (the electrolytic film M and the electrode catalyst layer 1) is completely integrated.
[0030]
【Example】
Hereinafter, the present invention will be described in detail based on examples, but the present invention is not limited to the following examples.
[Example 1]
A polar solvent-soluble electrolyte component (PE; ion conductive polymer material) is mixed with the catalyst particles (Cat) at a ratio of PE / Cat = 0.4 with respect to the catalyst particles (Cat), and the solvent (N-methylpyrrolidone) ) Was added so as to have a viscosity of 5,000 mPa · s to prepare a slurry. The slurry thus prepared is dried until the remaining amount of the polar solvent (remaining solvent amount) becomes 100 mg / cm 2, and then hot pressed to integrally form the electrode catalyst layer 1 and the electrolytic film M. Thus, an electrode structure MEA of the present invention was obtained. Table 1, FIG. 5 and FIG. 6 show the physical properties of the obtained electrode structure MEA.
In Table 1, the penetration depth of the catalyst was determined by actual measurement with a scanning electron microscope (SEM), and the gradient density was similarly determined by calculating the average distance between the catalysts (catalyst particles) penetrating from both sides. ) Expression.
The thermal peeling rate was determined by repeating a cold environment and a hot environment at −40 ° C. for 30 minutes and 90 ° C. for 30 minutes for 100 cycles, and image-processed the surface peeling state. Numerical values are obtained by converting the peeled area in the unit observation area. The cross leak amount (gas permeability cc / cm 2 · min) is determined by assembling the sample into a single cell of the fuel cell, and then submerging the sample gas. The amount of sample gas supplied from the supply port and discharged from the gas discharge port through the membrane sample was measured and obtained.
[0031]
[Examples 2 to 9 and Comparative Example 1]
Example 1 was repeated except that the viscosity of the slurry and the amount of the remaining solvent were changed as shown in Table 1. The results are shown in Table 1, FIG. 5 and FIG.
[0032]
[Table 1]
Figure 0003579885
[0033]
As shown in Table 1 and FIG. 5, the electrode structure MEA in which the electrode catalyst layer 1 and the electrolytic film M were integrally formed exhibited a good thermal exfoliation rate and a good cross leak rate (gas permeability cc / cm 2 · min). In particular, it is found that the catalyst particles having a penetration depth of 5 to 20 μm (density gradient coefficient 859.0 to 3436.00) are particularly preferable. On the other hand, in Comparative Example 1 in which the electrode catalyst layer and the electrolyte membrane were not integrally formed, it can be seen that the thermal delamination rate was extremely poor.
By the way, it can be seen that when the penetration depth is small, the density gradient coefficient tends to increase, and the thermal delamination rate tends to increase. Conversely, it can be seen that when the penetration depth is large, the density gradient coefficient tends to decrease, and the thermal delamination rate tends to decrease. In addition, it can be seen that the lower the viscosity of the slurry, the better the depth of penetration of the catalyst. At the same time, it can be seen that in order to increase the depth of penetration of the catalyst, it is better to have more residual solvent.
In addition, as shown in FIG. 6, it can be seen that the electrode structure MEA of the present invention has a high terminal voltage in all the current density ranges measured as compared with the electrode structure of Comparative Example 1. Therefore, the electrode structure MEA of the present invention not only has excellent durability compared with the conventional electrode structure, but also can supply higher power.
[0034]
【The invention's effect】
As described above, in the electrode structure of the present invention , the penetration depth of the catalyst particles into the electrolyte membrane can be in the range of 5 μm to 20 μm, and when the electrode catalyst layer is formed, The composition of the electrolyte membrane and the electrolyte film is continuously changed at the interface between them, and the electrolyte membrane is integrally formed. Therefore, separation does not occur at the interface between the electrolytic membrane and the electrode catalyst layer, and the durability of the electrode structure can be increased even in a predetermined temperature cycle (claim 1). The fuel cell unit cell including the electrode structure in which the electrolyte membrane and the electrode catalyst layer are integrally formed does not cause separation at the interface between the electrolyte membrane and the electrode catalyst layer in the electrode structure, thereby improving the durability of the entire fuel cell. It is possible to do. In addition, this fuel cell can obtain a higher output than that of the prior art. Further, when the ion exchange density gradient coefficient at the interface between the electrode catalyst layer and the electrolytic membrane is 3.5 × 10 3 meq / g / cm or less, higher durability can be obtained (Claim 2) .
Excellent electrode structure as this is, after dissolving the catalyst particles constituting the electrode catalyst layer in a polar solvent, is dispersed in ion-conducting polymer solution viscosity 5,000~25,000MPa · sec slurry Is prepared, and the slurry thus prepared is directly applied to the electrolyte membrane, and hot-pressed under a pressure condition of 1.5 to 2.5 MPa, a temperature condition of 120 to 180 ° C., and a time condition of 30 to 60 seconds. The electrode catalyst layer can be easily manufactured by forming the electrode catalyst layer integrally with the electrolyte membrane by infiltrating the catalyst into the electrolyte membrane (claim 3 ). Further, when the hot-pressed catalyst particles to penetrate into the electrolyte membrane in a state in which the organic solvent of the catalyst particle dispersed ion conducting polymer that is applied directly to the electrolyte membrane remained in an amount of 20mg / cm 2 ~100mg / cm 2 Furthermore, it is possible to easily and reliably manufacture an electrode structure having excellent durability (claim 4 ).
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing an outline of a single fuel cell to which the present invention is applied.
FIG. 2 is a cross-sectional view of an electrode structure (electrode structure for a fuel cell) of the present invention. FIG. 3 is a schematic view showing a configuration of catalyst particles.
FIG. 4 is a schematic view showing a state of manufacturing the electrode structure of the present invention.
FIG. 5 is a graph showing the relationship between the penetration depth of an electrode catalyst layer, gas permeability, and the thermal delamination rate in the present invention and a comparative example.
FIG. 6 is a graph showing a relationship between a current density and a terminal voltage in the present invention and a comparative example.
[Explanation of symbols]
FC fuel cell MEA electrode structure (electrode structure for fuel cell)
M electrolyte membrane 1 electrode catalyst layer 2 diffusion layer 3 separator 4 flow path

Claims (4)

一対の電極触媒層とそれらの電極触媒層に挟まれる電解膜から構成され、少なくとも一方の面の前記電極触媒層の触媒が前記電解膜に侵入深さ5μm〜20μmの範囲内で侵入して前記電極触媒層と前記電解膜とを一体形成した燃料電池用電極構造体であって、
前記触媒を極性溶媒に溶解した後、イオン導伝性高分子溶液に分散させて粘度5,000〜25,000 mPa・Sのスラリーを調製し、
このようにして調製したスラリーを前記電解膜の少なくとも一方の面に直接塗布した後、前記スラリー中に溶媒が残存した状態で、1.5〜2.5MPaの圧力条件、120〜180℃の温度条件及び30〜60秒の時間条件でホットプレスして、前記触媒のうちの一部を前記電解膜へ侵入させて電極触媒層を前記電解膜と一体形成したことを特徴とする燃料電池用電極構造体。
It is composed of a pair of electrode catalyst layers and an electrolytic film sandwiched between the electrode catalyst layers, and the catalyst of the electrode catalyst layer on at least one surface penetrates into the electrolytic film at a depth of 5 μm to 20 μm in the range of 5 μm to 20 μm. An electrode structure for a fuel cell in which an electrode catalyst layer and the electrolyte membrane are integrally formed,
After dissolving the catalyst in a polar solvent, it is dispersed in an ion-conducting polymer solution to prepare a slurry having a viscosity of 5,000 to 25,000 mPa · S,
After directly applying the slurry prepared in this manner to at least one surface of the electrolytic membrane, with the solvent remaining in the slurry, a pressure condition of 1.5 to 2.5 MPa, a temperature of 120 to 180 ° C. and pressed at the time the conditions of temperature and 30 to 60 seconds, a fuel cell, characterized in that the by entering the pre-Symbol electrolyte membrane part electrode catalyst layer of the catalyst was the electrolyte membrane and integrally formed Electrode structure.
前記電解膜のイオン交換容量をAとし、前記形成した電極触媒層のイオン交換容量をBとし、前記ホットプレスする前における前記電解膜の厚みをC(μm)とし、前記ホットプレスした後における前記電解膜の前記触媒が侵入していない部分の厚みをD(μm)として下記式(1):
(A−B)/(C−D)・・・(1)
で計算された前記電極触媒層と前記電解膜との界面におけるイオン交換密度傾斜係数が3.5×103meq/g/cm以下であることを特徴とする、請求項1に記載の燃料電池用電極構造体。
The ion exchange capacity of the electrolytic membrane is A, the ion exchange capacity of the formed electrode catalyst layer is B, the thickness of the electrolytic membrane before the hot pressing is C (μm), and the thickness after the hot pressing is The thickness of a portion of the electrolyte membrane where the catalyst has not penetrated is represented by the following formula (1) as D (μm):
(AB) / (CD) (1)
2. The fuel cell according to claim 1, wherein the ion exchange density gradient coefficient at the interface between the electrode catalyst layer and the electrolyte membrane, calculated by the following, is 3.5 × 10 3 meq / g / cm or less. Electrode structure.
一対の電極触媒層とそれらの電極触媒層に挟まれる電解膜から構成され、少なくとも一方の面の前記電極触媒層の触媒が前記電解膜に侵入深さ5μm〜20μmの範囲内で侵入して前記電極触媒層と前記電解膜とを一体形成した燃料電池用電極構造体の製造方法であって、
前記電極触媒層を構成する触媒を極性溶媒に溶解した後、イオン導伝性高分子溶液に分散させて粘度5,000〜25,000 mPa・Sのスラリーを調製し、
このようにして調製したスラリーを前記電解膜の少なくとも一方の面に直接塗布した後、前記スラリー中に溶媒が残存した状態で、1.5〜2.5MPaの圧力条件、120〜180℃の温度条件及び30〜60秒の時間条件でホットプレスして、前記触媒のうちの一部を前記電解膜へ侵入させて電極触媒層を前記電解膜と一体形成する
ことを特徴とする燃料電池用電極構造体の製造方法。
It is composed of a pair of electrode catalyst layers and an electrolytic film sandwiched between the electrode catalyst layers, and the catalyst of the electrode catalyst layer on at least one surface penetrates into the electrolytic film at a depth of 5 μm to 20 μm in the range of 5 μm to 20 μm. A method for producing a fuel cell electrode structure in which an electrode catalyst layer and the electrolyte membrane are integrally formed,
After dissolving the catalyst constituting the electrode catalyst layer in a polar solvent, the slurry is dispersed in an ion-conducting polymer solution to prepare a slurry having a viscosity of 5,000 to 25,000 mPa · S,
After directly applying the slurry prepared in this way to at least one surface of the electrolytic membrane, with the solvent remaining in the slurry, a pressure condition of 1.5 to 2.5 MPa, a temperature of 120 to 180 ° C. Hot pressing under conditions and a time condition of 30 to 60 seconds to allow a part of the catalyst to penetrate into the electrolytic membrane to form an electrode catalyst layer integrally with the electrolytic membrane. The method of manufacturing the structure.
前記電解膜に直接塗布した前記スラリー中の極性溶媒を20mg/cm2〜100 mg/cm2の量で残存した状態でホットプレスして前記電解膜へ侵入させることを特徴とする請求項に記載の燃料電池用電極構造体の製造方法。To claim 3, characterized in that to penetrate the polar solvent of the slurry was applied directly to the electrolyte membrane by hot pressing while remaining in an amount of 20mg / cm 2 ~100 mg / cm 2 to the electrolyte membrane The manufacturing method of the fuel cell electrode structure according to the above.
JP2000265407A 2000-09-01 2000-09-01 Electrode structure for fuel cell and manufacturing method thereof Expired - Fee Related JP3579885B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2000265407A JP3579885B2 (en) 2000-09-01 2000-09-01 Electrode structure for fuel cell and manufacturing method thereof
CA002356008A CA2356008C (en) 2000-09-01 2001-08-28 Membrane electrode assembly for fuel cell and method for producing the same
US09/942,123 US6720106B2 (en) 2000-09-01 2001-08-30 Membrane electrode assembly for fuel and process for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000265407A JP3579885B2 (en) 2000-09-01 2000-09-01 Electrode structure for fuel cell and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2002075383A JP2002075383A (en) 2002-03-15
JP3579885B2 true JP3579885B2 (en) 2004-10-20

Family

ID=18752678

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000265407A Expired - Fee Related JP3579885B2 (en) 2000-09-01 2000-09-01 Electrode structure for fuel cell and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3579885B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100480782B1 (en) 2002-10-26 2005-04-07 삼성에스디아이 주식회사 Membrane and electrode assembly of full cell, production method of the same and fuel cell employing the same
US20040107869A1 (en) 2002-12-10 2004-06-10 3M Innovative Properties Company Catalyst ink
JP2006228534A (en) * 2005-02-16 2006-08-31 Nissan Motor Co Ltd Forming method of electrode for solid polymer fuel cell, and electrode structure of the same
JP2007141528A (en) * 2005-11-15 2007-06-07 Hitachi Maxell Ltd Paste for electrode of fuel cell, and fuel cell
JP2009080974A (en) * 2007-09-25 2009-04-16 Toyota Motor Corp Fuel cell

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05166520A (en) * 1991-12-13 1993-07-02 Honda Motor Co Ltd Manufacture of cathode electrode catalyst layer of fuel cell
JP3100754B2 (en) * 1992-05-20 2000-10-23 三菱電機株式会社 Method for manufacturing electrochemical device using solid polymer electrolyte membrane
JPH07147162A (en) * 1992-06-30 1995-06-06 Toyota Central Res & Dev Lab Inc Manufacture of jointed body of electrolytic film and electrode
JP3262408B2 (en) * 1993-05-18 2002-03-04 ペルメレック電極株式会社 Gas electrode manufacturing method
JP3326254B2 (en) * 1993-11-09 2002-09-17 株式会社豊田中央研究所 Fuel cell
JP3549241B2 (en) * 1994-04-22 2004-08-04 ジャパンゴアテックス株式会社 Electrode for polymer solid electrolyte fuel cell and joined body thereof with polymer solid electrolyte
JP3423799B2 (en) * 1994-11-24 2003-07-07 トヨタ自動車株式会社 Method for forming reaction layer of fuel cell
JP3256649B2 (en) * 1995-08-29 2002-02-12 三菱電機株式会社 Method for manufacturing polymer electrolyte fuel cell and polymer electrolyte fuel cell
US5879828A (en) * 1997-10-10 1999-03-09 Minnesota Mining And Manufacturing Company Membrane electrode assembly
JP2001118581A (en) * 1999-10-20 2001-04-27 Asahi Glass Co Ltd Method for manufacturing gas-spreading electrode for solid polymer electrolyte type fuel cell

Also Published As

Publication number Publication date
JP2002075383A (en) 2002-03-15

Similar Documents

Publication Publication Date Title
JP3555999B2 (en) Method for producing polymer solid electrolyte / electrode assembly for polymer electrolyte fuel cell
JP4898394B2 (en) Method for manufacturing stacked fuel cell
EP1624514B1 (en) Membrane electrode complex and solid polymer type fuel cell using it
JP6717748B2 (en) Gas diffusion base material
JP5004489B2 (en) FUEL CELL CELL AND METHOD FOR PRODUCING THE SAME
JP2004192950A (en) Solid polymer fuel cell and its manufacturing method
JPH1092439A (en) Gas diffusion electrode based on polyether sulfone carbon blend
JP2009176610A (en) Porous body for gas diffusion layer, its manufacturing method, membrane-electrode assembly for fuel cell, and fuel cell
WO2008029811A1 (en) Gas diffusion electrode, its forming method, and film-electrode junction
WO2007124011A2 (en) Methods of making components for electrochemical cells
JP3604078B2 (en) Electrode structure for fuel cell and manufacturing method thereof
JP3579886B2 (en) Electrode structure for fuel cell and manufacturing method thereof
JP2004220843A (en) Membrane electrode assembly
JP2005032681A (en) Junction body of electrolyte film for fuel cell and electrode, as well as its manufacturing method
US6720106B2 (en) Membrane electrode assembly for fuel and process for producing the same
JP3579885B2 (en) Electrode structure for fuel cell and manufacturing method thereof
JP2010129309A (en) Gas diffusion layer for fuel cell, and manufacturing method thereof
JP2010015908A (en) Substrate for gas diffusion electrode and method for manufacturing the same, and membrane-electrode assembly
JP2008300347A (en) Method of manufacturing five-layer mea with electrical conductivity improved
JP5391968B2 (en) Gas diffusion layer for polymer electrolyte fuel cell and method for producing the same
JP5777595B2 (en) Fuel cell, carbon composite structure, and manufacturing method thereof
EP4261955A1 (en) Electrode catalyst layer, membrane electrode assembly, and solid polymer fuel cell
JP5601315B2 (en) Fuel cell and manufacturing method thereof
JP6027187B2 (en) Fuel cell and carbon composite structure
JP4898568B2 (en) Catalyst layer and membrane-electrode assembly

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040331

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040531

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040707

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040709

R150 Certificate of patent or registration of utility model

Ref document number: 3579885

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080730

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090730

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100730

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100730

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110730

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110730

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120730

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120730

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130730

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140730

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees