JP6027187B2 - Fuel cell and carbon composite structure - Google Patents

Fuel cell and carbon composite structure Download PDF

Info

Publication number
JP6027187B2
JP6027187B2 JP2015105339A JP2015105339A JP6027187B2 JP 6027187 B2 JP6027187 B2 JP 6027187B2 JP 2015105339 A JP2015105339 A JP 2015105339A JP 2015105339 A JP2015105339 A JP 2015105339A JP 6027187 B2 JP6027187 B2 JP 6027187B2
Authority
JP
Japan
Prior art keywords
carbon
network layer
network
composite structure
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015105339A
Other languages
Japanese (ja)
Other versions
JP2015186923A (en
Inventor
▲えん▼▲しゅく▼ 陳
▲えん▼▲しゅく▼ 陳
姿嫻 韓
姿嫻 韓
淑▲けい▼ 鄭
淑▲けい▼ 鄭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Industrial Technology Research Institute ITRI
Original Assignee
Industrial Technology Research Institute ITRI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Industrial Technology Research Institute ITRI filed Critical Industrial Technology Research Institute ITRI
Priority to JP2015105339A priority Critical patent/JP6027187B2/en
Publication of JP2015186923A publication Critical patent/JP2015186923A/en
Application granted granted Critical
Publication of JP6027187B2 publication Critical patent/JP6027187B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Treatment Of Fiber Materials (AREA)
  • Laminated Bodies (AREA)
  • Nonwoven Fabrics (AREA)
  • Inert Electrodes (AREA)

Description

本発明は燃料電池、炭素複合構造、およびその作製方法に関する。   The present invention relates to a fuel cell, a carbon composite structure, and a manufacturing method thereof.

燃料電池は、2つの触媒層、2つのガス拡散層、2つのバイポーラプレート、2つの電流コレクタ、および2つのエンドプレートの間に挟みこまれたプロトン伝導膜からなる。燃料電池(FC)のプロトン伝導膜により分けられた2つの側面は、それぞれ、アノード(水素、改質ガスまたはメタノール)およびカソード(酸素または空気)となる。酸化反応がアノードで進行し、化学的還元反応がカソードで進行する。水素(またはメタノール)がアノードの触媒層(例えば白金またはその合金)に接触すると、水素はプロトンと電子とに解離する。電子は、(アノードとカソードとを連結している)電気的ブリッジ(electrical bridge)を通ってアノードからカソードへと流れる。プロトンは、アノードからプロトン伝導膜を通り抜けてカソードに達する。留意すべきは、プロトン伝導膜は湿潤膜(wet film)であり、水分子を伴うプロトンはそれを通り抜けることができるが、その他の空気分子は通り抜けられないという点である。カソードの触媒は酸素と電気的ブリッジからの電子とを結合して酸素イオンを形成することができる。酸素イオンはプロトン伝導膜を通り抜けたプロトンと反応し、水分子が形成される。上述した反応は電気化学的酸化および還元反応である。   The fuel cell consists of a proton conducting membrane sandwiched between two catalyst layers, two gas diffusion layers, two bipolar plates, two current collectors, and two end plates. The two sides separated by the proton conducting membrane of the fuel cell (FC) are the anode (hydrogen, reformed gas or methanol) and the cathode (oxygen or air), respectively. An oxidation reaction proceeds at the anode and a chemical reduction reaction proceeds at the cathode. When hydrogen (or methanol) contacts the anode catalyst layer (eg, platinum or an alloy thereof), the hydrogen dissociates into protons and electrons. The electrons flow from the anode to the cathode through an electrical bridge (connecting the anode and cathode). Protons pass from the anode through the proton conducting membrane to the cathode. It should be noted that the proton conducting membrane is a wet film, and protons with water molecules can pass through it but other air molecules cannot pass through it. The cathode catalyst can combine oxygen and electrons from the electrical bridge to form oxygen ions. Oxygen ions react with protons that have passed through the proton conducting membrane to form water molecules. The reactions described above are electrochemical oxidation and reduction reactions.

電気化学反応を利用するプロトン交換膜燃料電池(PEMFC)またはメタノール直接型燃料電池(DMFC)は、高効率、無公害、高速応答などの特性を有する。かかる燃料電池は、電気的ブリッジの電圧を高めるために直列接続することができ、また、電流を増大させるためには、燃料電池の電極反応面積が増大され得る。酸素(通常は空気)が無尽蔵に供給されることより、電力がデバイスに継続的に供給され得る。よって、燃料電池は小型システム電源として用いることができ、また大型発電所、分散電源もしくは移動可能な電源として設計することも可能である。   A proton exchange membrane fuel cell (PEMFC) or a methanol direct fuel cell (DMFC) using an electrochemical reaction has characteristics such as high efficiency, no pollution, and high-speed response. Such fuel cells can be connected in series to increase the voltage of the electrical bridge, and to increase the current, the electrode reaction area of the fuel cell can be increased. By supplying inexhaustible oxygen (usually air), power can be continuously supplied to the device. Thus, the fuel cell can be used as a small system power source, and can also be designed as a large power plant, a distributed power source or a movable power source.

米国特許第7144476号明細書US Pat. No. 7,144,476 米国特許第7838138号明細書U.S. Pat. No. 7,838,138 米国特許第7790304号明細書US Pat. No. 7,790,304 米国特許第7785748号明細書US Pat. No. 7,785,748 米国特許第7608334号明細書US Pat. No. 7,608,334 米国特許第7517604号明細書US Pat. No. 7,517,604 米国特許出願公開第2004/0167014号明細書US Patent Application Publication No. 2004/0167014 米国特許出願公開第2005/0100498号明細書US Patent Application Publication No. 2005/0100498 米国特許出願公開第2006/0222840号明細書US Patent Application Publication No. 2006/0222840 米国特許出願公開第2007/0065699号明細書US Patent Application Publication No. 2007/0065699 米国特許出願公開第2007/0238010号明細書US Patent Application Publication No. 2007/0238010 米国特許出願公開第2007/0243446号明細書US Patent Application Publication No. 2007/0243446 米国特許出願公開第2008/0020261号明細書US Patent Application Publication No. 2008/0020261 米国特許出願公開第2008/0280164号明細書US Patent Application Publication No. 2008/0280164 米国特許出願公開第2009/0325030号明細書US Patent Application Publication No. 2009/0325030 米国特許出願公開第2010/0297526号明細書US Patent Application Publication No. 2010/0297526 米国特許出願公開第2010/0297904号明細書US Patent Application Publication No. 2010/0297904 米国特許出願公開第2011/0000615号明細書US Patent Application Publication No. 2011/0000615 台湾特許第I353398号明細書Taiwan Patent No. I353398 Specification 台湾特許出願公開第200937703号明細書Taiwan Patent Application Publication No. 200937703 Specification 中国特許第1764752号明細書Chinese Patent No. 1764752 Specification

ガス拡散層を形成する主な方法は抄紙プロセスであり、炭素繊維紙を熱可塑性樹脂中に浸漬し、ホットプレスし、熱炭化(thermal carbonized)させてから、適した大きさにカットして、ガス拡散層を形成するというものである。従来の方法において、燃料電池のガス拡散層は炭化樹脂(carbonized resin)を炭素繊維に接着することにより形成される。しかし、この従来の方法は複雑であるため、製造コストを高め、かつ電池の性能を低下させてしまう。   The main method of forming the gas diffusion layer is a papermaking process, where carbon fiber paper is immersed in a thermoplastic resin, hot pressed, thermally carbonized, then cut to a suitable size, A gas diffusion layer is formed. In the conventional method, the gas diffusion layer of the fuel cell is formed by adhering carbonized resin to carbon fiber. However, since this conventional method is complicated, the manufacturing cost is increased and the performance of the battery is lowered.

本発明の一実施形態は、炭素ナノ繊維網層(carbon nano fiber net layer)であって細孔の細孔径(pore size)が100nmから2.5μmである炭素ナノ繊維網層、および炭素ナノ繊維網層上の炭素マイクロ繊維網層を含む炭素複合構造を提供する。   An embodiment of the present invention relates to a carbon nanofiber network layer having a pore size of 100 nm to 2.5 μm, and a carbon nanofiber network. A carbon composite structure comprising a carbon microfiber network layer on a network layer is provided.

本発明の一実施形態は、炭素複合構造を作製する方法であって、酸化ポリマーナノ繊維網および酸化マイクロ繊維網を提供する工程、酸化ナノ繊維網および酸化マイクロ繊維網を積層して積層構造を形成する工程、積層構造を樹脂中に含浸する工程、樹脂を酸化する工程、ならびに、酸化ナノ繊維網、酸化マイクロ繊維網、および酸化した樹脂を炭化して炭素複合構造を形成する工程、を含む方法を提供する。   One embodiment of the present invention is a method for producing a carbon composite structure, the method comprising providing an oxidized polymer nanofiber network and an oxidized microfiber network, and stacking an oxidized nanofiber network and an oxidized microfiber network to form a stacked structure. A step of forming, a step of impregnating a laminated structure in a resin, a step of oxidizing a resin, and a step of carbonizing an oxidized nanofiber network, an oxidized microfiber network, and an oxidized resin to form a carbon composite structure. Provide a method.

本発明の一実施形態は、2つのエンドプレートの間に配置されるプロトン伝導膜を含む燃料電池を提供する。触媒層、ガス拡散層、バイポーラプレート、および電流コレクタが、プロトン伝導膜とエンドプレートとの間に順次配置され、前記ガス拡散層は、炭素複合構造を形成する、細孔の細孔径が100nmから2.5μmである炭素ナノ繊維網層およびその上に積層される炭素マイクロ繊維網層を含む。   One embodiment of the present invention provides a fuel cell that includes a proton conducting membrane disposed between two end plates. A catalyst layer, a gas diffusion layer, a bipolar plate, and a current collector are sequentially disposed between the proton conducting membrane and the end plate, and the gas diffusion layer forms a carbon composite structure. A carbon nanofiber network layer having a thickness of 2.5 μm and a carbon microfiber network layer laminated thereon are included.

2層からなる炭素複合構造は、単層の炭素ナノ繊維網または単層の炭素マイクロ繊維網と比較してより高い導電率を有する。また、2層からなる炭素複合構造は単層の炭素ナノ繊維網に比べて細孔径分布(pore size distribution)がより低かった。   A two-layer carbon composite structure has a higher electrical conductivity than a single-layer carbon nanofiber network or a single-layer carbon microfiber network. In addition, the two-layer carbon composite structure had a lower pore size distribution than the single-layer carbon nanofiber network.

以下の詳細な説明および実施例により、そして、添付の図面を参照することにより、本発明はより十分に理解される。   The invention will be more fully understood by the following detailed description and examples, and by reference to the accompanying drawings.

本発明の一実施形態における燃料電池の断面図を示す。1 is a cross-sectional view of a fuel cell according to an embodiment of the present invention. 本発明の一実施形態における炭素複合構造の断面SEM写真を示す。The cross-sectional SEM photograph of the carbon composite structure in one Embodiment of this invention is shown.

以下の発明の詳細な説明においては、本発明を説明する目的で、開示される実施形態が十分に理解されるよう、多数の具体的詳細が示されている。しかしながら、これら具体的詳細が無くとも1つまたは複数の実施形態が実施され得ることは明らかである。他の例においては、図面を簡単にするべく、周知の構造およびデバイスは概略的に示してある。   In the following detailed description, for the purposes of illustrating the present invention, numerous specific details are set forth in order to provide a thorough understanding of the disclosed embodiments. It may be evident, however, that one or more embodiments may be practiced without these specific details. In other instances, well-known structures and devices are schematically shown in order to simplify the drawing.

本発明は炭素複合構造を形成する方法を提供する。先ず、酸化マイクロ繊維網が提供される。一実施形態において、Toray−090およびSGL−35ECなどの市販の炭素マイクロ繊維網が熱酸化され、酸化マイクロ繊維網が形成される。別の実施形態では、マイクロスケールの直径を有する酸化炭素マイクロ繊維を、ニードルパンチ、抄紙、または製織することにより、不織布、紙、または織布を形成して酸化マイクロ繊維網とする。一実施形態では、酸化マイクロ繊維網は熱プレスにさらにより薄型にされる。   The present invention provides a method of forming a carbon composite structure. First, an oxidized microfiber network is provided. In one embodiment, commercially available carbon microfiber networks such as Toray-090 and SGL-35EC are thermally oxidized to form an oxidized microfiber network. In another embodiment, carbon oxide microfibers having a microscale diameter are needle punched, paper-made, or woven to form a nonwoven fabric, paper, or woven fabric into an oxidized microfiber network. In one embodiment, the oxidized microfiber network is made even thinner for hot pressing.

次いで、ポリアクリロニトリル(PAN)などのポリマー、ピッチ、またはフェノール化合物を極性溶媒中に溶解してポリマー溶液を形成する。ポリマーを溶解するために適切な極性溶媒としてはN,N−ジメチルホルムアミド、N,N−ジメチルエチルアミン、ジメチルスルホキシドが挙げられる。ポリマー溶液の濃度は約5wt%から30wt%である。その後、ポリマー溶液は紡糸され、網のように積み重ねられた複数のポリマーナノ繊維が形成される。このポリマーナノ繊維の直径は約100nmから800nmである。紡糸方法としては静電紡糸(electrostatic spinning)または溶液紡糸であってもよい。静電紡糸は約20kVから50kVの電圧で行なわれ、溶液紡糸はノズルの空気圧を約1kg/cm2から5kg/cm2に設定して行なわれる。電圧をより高める、ノズルの空気圧をより高める、またはポリマー溶液の濃度をより低めることによって、より小さな直径を有するナノ繊維が得られる。 A polymer such as polyacrylonitrile (PAN), pitch, or phenolic compound is then dissolved in a polar solvent to form a polymer solution. Suitable polar solvents for dissolving the polymer include N, N-dimethylformamide, N, N-dimethylethylamine, dimethyl sulfoxide. The concentration of the polymer solution is about 5 wt% to 30 wt%. The polymer solution is then spun to form a plurality of polymer nanofibers stacked like a net. The diameter of the polymer nanofiber is about 100 nm to 800 nm. The spinning method may be electrostatic spinning or solution spinning. Electrospinning is performed at a voltage of about 20 kV to 50 kV, and solution spinning is performed with the nozzle air pressure set to about 1 kg / cm 2 to 5 kg / cm 2 . By increasing the voltage, increasing the air pressure of the nozzle, or decreasing the concentration of the polymer solution, nanofibers with smaller diameters are obtained.

ポリマーナノ繊維網は、酸化ナノ繊維網を形成するために熱酸化される。酸化ナノ繊維網および酸化マイクロ繊維網は積層され、そしてその後、接着のために樹脂中に含浸される。樹脂としては、フェノール樹脂、エポキシ樹脂、またはこれらの組み合わせであってもよい。含浸の工程が省かれた場合、酸化ナノ繊維網および酸化マイクロ繊維網の積層体(stack)は薄い層に裂け易くなり、電池の性能が低下する。一実施形態では、酸化ナノ繊維網および酸化マイクロ繊維網は積層され、そしてその後、フェノール樹脂中に含浸される。その後、フェノール樹脂は酸化され、そして、積層体は窒素下、高温で熱炭化される。これにより、酸化ナノ繊維網、酸化マイクロ繊維網および酸化フェノール樹脂が炭化して、炭素複合構造が形成される。炭化工程の熱源としては、マイクロ波または高温炉が挙げられる。   The polymer nanofiber network is thermally oxidized to form an oxidized nanofiber network. The oxidized nanofiber network and oxidized microfiber network are laminated and then impregnated into the resin for adhesion. The resin may be a phenol resin, an epoxy resin, or a combination thereof. If the impregnation step is omitted, the stack of oxidized nanofiber network and oxidized microfiber network is easily broken into thin layers, and the performance of the battery is degraded. In one embodiment, the oxidized nanofiber network and oxidized microfiber network are laminated and then impregnated in a phenolic resin. Thereafter, the phenolic resin is oxidized and the laminate is thermally carbonized at a high temperature under nitrogen. As a result, the oxidized nanofiber network, the oxidized microfiber network, and the oxidized phenol resin are carbonized to form a carbon composite structure. As a heat source for the carbonization step, a microwave or a high temperature furnace can be used.

別の実施形態では、酸化ナノ繊維網を市販の炭素マイクロ繊維網上に直接積層してから、フェノール樹脂中に含浸してもよい。その後、フェノール樹脂を酸化し、そして、酸化積層体を窒素下、高温で炭化させて、2層からなる炭素複合構造が形成される。   In another embodiment, the oxidized nanofiber network may be laminated directly onto a commercially available carbon microfiber network and then impregnated into the phenolic resin. Thereafter, the phenol resin is oxidized, and the oxidized laminate is carbonized at a high temperature under nitrogen to form a two-layer carbon composite structure.

ポリマーナノ繊維網を約200℃から350℃の温度で約1時間から4時間、熱的に酸化する。フェノール樹脂を約150℃から250℃の温度で約1時間から4時間、酸化する。炭素複合構造は、炭素ナノ繊維網および炭素マイクロ繊維網の2層積層構造である。一実施形態において、炭素ナノ繊維網層の炭素ナノ繊維の直径は100nmから800nmであり、そして、炭素ナノ繊維網層の細孔の細孔径(pore size)は約100nmから2.5μmである。炭素ナノ繊維網の厚さは約10μmから100μmまたは約30μmから80μmである。直径が過度に小さい炭素ナノ繊維は、熱収縮係数が過度に大きいために、接着に困難がある。直径が過度に大きい炭素ナノ繊維は、炭素ナノ繊維網に過度の大きな細孔を有させる。炭素ナノ繊維網の過度に小さな細孔は、メタノールを移動させることができない。一方、過度に大きい細孔は、メタノールを遮断することができない。過度に薄い炭素ナノ繊維網は破損し易く、そして、過度に厚い炭素ナノ繊維網は過度に小さな細孔を有する。   The polymer nanofiber network is thermally oxidized at a temperature of about 200 ° C. to 350 ° C. for about 1 to 4 hours. The phenolic resin is oxidized at a temperature of about 150 ° C. to 250 ° C. for about 1 to 4 hours. The carbon composite structure is a two-layer laminated structure of a carbon nanofiber network and a carbon microfiber network. In one embodiment, the carbon nanofiber diameter of the carbon nanofiber network layer is from 100 nm to 800 nm, and the pore size of the pores of the carbon nanofiber network layer is from about 100 nm to 2.5 μm. The thickness of the carbon nanofiber network is about 10 μm to 100 μm or about 30 μm to 80 μm. Carbon nanofibers having an excessively small diameter are difficult to bond due to an excessively large thermal shrinkage coefficient. Carbon nanofibers with an excessively large diameter cause the carbon nanofiber network to have excessively large pores. The excessively small pores in the carbon nanofiber network cannot move methanol. On the other hand, excessively large pores cannot block methanol. An excessively thin carbon nanofiber network is prone to breakage, and an excessively thick carbon nanofiber network has excessively small pores.

一実施形態において、炭素マイクロ繊維網層の炭素マイクロ繊維の直径は約2μmから10μmまたは約2μmから8μmであり、そして、炭素マイクロ繊維網層の細孔の細孔径は約3μmから12μmである。炭素マイクロ繊維網の厚さは約100μmから600μmである。炭素マイクロ繊維網層は炭素繊維が交絡している3次元構造を有し、かかる炭素繊維間の導電網(electrically conductive net)は、炭素マイクロ繊維網層の導電性を大幅に高めることができる。   In one embodiment, the carbon microfiber diameter of the carbon microfiber network layer is about 2 μm to 10 μm or about 2 μm to 8 μm, and the pore diameter of the pores of the carbon microfiber network layer is about 3 μm to 12 μm. The thickness of the carbon microfiber network is about 100 μm to 600 μm. The carbon microfiber network layer has a three-dimensional structure in which carbon fibers are entangled, and the electrically conductive net between the carbon fibers can greatly increase the conductivity of the carbon microfiber network layer.

一実施形態において、2層積層構造中の炭素ナノ繊維網および炭素マイクロ繊維網の厚さ比は約1〜10:10〜60または2〜6:25〜35である。   In one embodiment, the thickness ratio of the carbon nanofiber network and the carbon microfiber network in the two-layer laminate structure is about 1-10: 10-60 or 2-6: 25-35.

以下に、当業者に容易に理解されるよう、添付の図面を参照にして例示的な実施形態を詳細に説明する。本発明の発明概念は、本明細書に記載されるこれら例示的な実施形態に限定されることなく、様々な形式で具体化され得る。記載を明確にするため、周知の部分についての説明は省かれており、また全体を通して、類似する参照番号は類似する要素を示すものとする。   Hereinafter, exemplary embodiments will be described in detail with reference to the accompanying drawings so that those skilled in the art can easily understand them. The inventive concept of the invention is not limited to these exemplary embodiments described herein, but may be embodied in various forms. For clarity of description, descriptions of well-known portions have been omitted, and like reference numerals refer to like elements throughout.

実施例1(炭素マイクロ繊維網の製造)
6μmから7μmの直径を有するPANの酸化繊維(SHINKONG SYNTHETIC FIBER社により市販されている)にニードルパンチを施して不織布とした。不織布の厚さは3mm、坪量は300g/m2であった。この不織布を窒素下、加熱速度10℃/分で1500℃まで加熱し、これにより不織布の酸化繊維を炭化させて炭素マイクロ繊維網を形成した。炭素マイクロ繊維網の表面抵抗は299mΩ/□、体積抵抗は7mΩ・cm、導電率は133S/cm、耐圧性(pressure durability)は100kg/cm2、細孔径分布は3μmから12μmであった。
Example 1 (Production of carbon microfiber network)
A PAN oxide fiber (commercially available from SHINKONG SYNTHETIC FIBER) having a diameter of 6 μm to 7 μm was needle punched into a nonwoven fabric. The nonwoven fabric had a thickness of 3 mm and a basis weight of 300 g / m 2 . The nonwoven fabric was heated to 1500 ° C. at a heating rate of 10 ° C./min under nitrogen, thereby carbonizing the oxidized fibers of the nonwoven fabric to form a carbon microfiber network. The surface resistance of the carbon microfiber network was 299 mΩ / □, the volume resistance was 7 mΩ · cm, the conductivity was 133 S / cm, the pressure durability was 100 kg / cm 2 , and the pore size distribution was 3 μm to 12 μm.

実施例2(炭素マイクロ繊維網の製造)
6μmから7μmの直径を有するPANの酸化繊維(SHINKONG SYNTHETIC FIBER社により市販されている)にニードルパンチを施して不織布とした。不織布の厚さは3mm、坪量は300g/m2であった。この不織布を熱プレスにより薄くして、厚さ1.5mmのより緻密な不織布とした。薄くされた不織布を窒素下、加熱速度10℃/分で1500℃まで加熱し、これにより薄くされた不織布の酸化繊維を炭化させて炭素マイクロ繊維網を形成した。炭素マイクロ繊維網の表面抵抗は246mΩ/□、体積抵抗は6mΩ・cm、導電率は162S/cm、耐圧性は100kg/cm2、細孔径分布は3μmから10μmであった。炭素マイクロ繊維網の厚さは約300±10μmであった。
Example 2 (Production of carbon microfiber network)
A PAN oxide fiber (commercially available from SHINKONG SYNTHETIC FIBER) having a diameter of 6 μm to 7 μm was needle punched into a nonwoven fabric. The nonwoven fabric had a thickness of 3 mm and a basis weight of 300 g / m 2 . This nonwoven fabric was thinned by hot pressing to obtain a denser nonwoven fabric having a thickness of 1.5 mm. The thinned nonwoven fabric was heated to 1500 ° C. at a heating rate of 10 ° C./min under nitrogen, whereby the oxidized fibers of the thinned nonwoven fabric were carbonized to form a carbon microfiber network. The surface resistance of the carbon microfiber network was 246 mΩ / □, the volume resistance was 6 mΩ · cm, the conductivity was 162 S / cm, the pressure resistance was 100 kg / cm 2 , and the pore size distribution was 3 μm to 10 μm. The thickness of the carbon microfiber network was about 300 ± 10 μm.

実施例3(炭素ナノ繊維網の製造)
ポリアクリロニトリル(Tong-Hwa Synthetic Fiber社により市販されている)13gをジメチルアセトアミド(DMAc)87g中に溶解してポリアクリロニトリル溶液を作製した。このポリアクリロニトリル溶液を、印加電圧39.5kVで静電紡糸により紡糸し、ポリマーナノ繊維網を形成させた。このポリマーナノ繊維の直径は200nmから700nmであった。ポリマーナノ繊維網を酸素下、280℃の温度で180分間酸化し、酸化ナノ繊維網を得た。この酸化ナノ繊維網を窒素下、加熱速度10℃/分で1500℃まで加熱して炭化させた。これにより酸化ナノ繊維は炭化され、炭素ナノ繊維網が形成された。炭素ナノ繊維網の厚さは38μmから44μm、表面抵抗は9Ω/cm2、体積抵抗は0.05Ω・cm、導電率は13S/cm、耐圧性は10kg/cm2、細孔系分布は1μmから2μmであった。実施例2の薄くされた炭素マイクロ繊維網に比べ、実施例3の炭素ナノ繊維網は、体積抵抗が著しく低く、機械的強度および耐圧性がより低かった。
Example 3 (Production of carbon nanofiber network)
A polyacrylonitrile solution was prepared by dissolving 13 g of polyacrylonitrile (commercially available from Tong-Hwa Synthetic Fiber) in 87 g of dimethylacetamide (DMAc). This polyacrylonitrile solution was spun by electrostatic spinning at an applied voltage of 39.5 kV to form a polymer nanofiber network. The diameter of this polymer nanofiber was 200 nm to 700 nm. The polymer nanofiber network was oxidized under oxygen at a temperature of 280 ° C. for 180 minutes to obtain an oxidized nanofiber network. The oxidized nanofiber network was carbonized by heating to 1500 ° C. at a heating rate of 10 ° C./min under nitrogen. As a result, the oxidized nanofibers were carbonized to form a carbon nanofiber network. The carbon nanofiber network has a thickness of 38 μm to 44 μm, a surface resistance of 9 Ω / cm 2 , a volume resistance of 0.05 Ω · cm, a conductivity of 13 S / cm, a pressure resistance of 10 kg / cm 2 , and a pore distribution of 1 μm. To 2 μm. Compared to the thinned carbon microfiber network of Example 2, the carbon nanofiber network of Example 3 had significantly lower volume resistance and lower mechanical strength and pressure resistance.

実施例4(炭素ナノ繊維網および炭素マイクロ繊維網の複合構造の製造)
6μmから7μmの直径を有するPANの酸化繊維(SHINKONG SYNTHETIC FIBER社により市販されている)にニードルパンチを施して不織布とした。不織布の厚さは3mm、坪量は300g/m2であった。この不織布を熱プレスにより薄くして、厚さ1.5mmのより緻密な不織布とした。
Example 4 (Production of composite structure of carbon nanofiber network and carbon microfiber network)
A PAN oxide fiber (commercially available from SHINKONG SYNTHETIC FIBER) having a diameter of 6 μm to 7 μm was needle punched into a nonwoven fabric. The nonwoven fabric had a thickness of 3 mm and a basis weight of 300 g / m 2 . This nonwoven fabric was thinned by hot pressing to obtain a denser nonwoven fabric having a thickness of 1.5 mm.

ポリアクリロニトリル(Tong-Hwa Synthetic Fiber社により市販されている)13gをジメチルアセトアミド(DMAc)87g中に溶解してポリアクリロニトリル溶液を作製した。このポリアクリロニトリル溶液を、印加電圧39.5kVで静電紡糸により紡糸し、ポリマーナノ繊維網を形成させた。このポリマーナノ繊維の直径は200nmから700nmであった。ポリマーナノ繊維網を酸素下、270℃の温度で180分間酸化させ、酸化ナノ繊維網を得た。この酸化ナノ繊維網の厚さは59μmから64μmであった。   A polyacrylonitrile solution was prepared by dissolving 13 g of polyacrylonitrile (commercially available from Tong-Hwa Synthetic Fiber) in 87 g of dimethylacetamide (DMAc). This polyacrylonitrile solution was spun by electrostatic spinning at an applied voltage of 39.5 kV to form a polymer nanofiber network. The diameter of this polymer nanofiber was 200 nm to 700 nm. The polymer nanofiber network was oxidized under oxygen at a temperature of 270 ° C. for 180 minutes to obtain an oxidized nanofiber network. The thickness of the oxidized nanofiber network was 59 μm to 64 μm.

酸化ナノ繊維網および薄くされた不織布を積層し、そしてその後、フェノール樹脂中に含浸した。この積層構造を酸素下、200℃の温度で加熱して、フェノール樹脂を酸化させた。この酸化積層構造を窒素下、加熱速度10℃/分で1500℃まで加熱し、これによって酸化ナノ繊維網、不織布および酸化フェノール樹脂を炭化させ、炭素複合構造を形成させた。炭素ナノ繊維網の厚さは38μmから44μm、炭素マイクロ繊維網の厚さは約300±10μmであった。炭素複合構造の表面抵抗は213mΩ/cm2、体積抵抗は5mΩ・cm、導電率は190S/cm、耐圧性は100kg/cm2、細孔径分布は1μmから1.5μmであった。図2の断面SEM写真に示されるように、炭素ナノ繊維網21および炭素マイクロ繊維網23は積層され炭素複合構造20が形成された。 The oxidized nanofiber network and thinned nonwoven were laminated and then impregnated in phenolic resin. This laminated structure was heated at a temperature of 200 ° C. under oxygen to oxidize the phenol resin. This oxidized laminated structure was heated to 1500 ° C. at a heating rate of 10 ° C./min under nitrogen, thereby carbonizing the oxidized nanofiber network, the nonwoven fabric and the oxidized phenol resin to form a carbon composite structure. The thickness of the carbon nanofiber network was 38 μm to 44 μm, and the thickness of the carbon microfiber network was about 300 ± 10 μm. The carbon composite structure had a surface resistance of 213 mΩ / cm 2 , a volume resistance of 5 mΩ · cm, a conductivity of 190 S / cm, a pressure resistance of 100 kg / cm 2 , and a pore size distribution of 1 μm to 1.5 μm. As shown in the cross-sectional SEM photograph of FIG. 2, the carbon nanofiber network 21 and the carbon microfiber network 23 were laminated to form the carbon composite structure 20.

実施例4の2層からなる炭素複合構造は、実施例3の単層炭素ナノ繊維網または実施例2の単層炭素マイクロ繊維網と比較してより高い導電率を有していた。実施例4の2層からなる炭素複合構造の細孔径分布は、実施例3の単層炭素ナノ繊維網に比べてより低いものであった。   The two-layer carbon composite structure of Example 4 had a higher electrical conductivity than the single-layer carbon nanofiber network of Example 3 or the single-layer carbon microfiber network of Example 2. The pore size distribution of the two-layer carbon composite structure of Example 4 was lower than that of the single-layer carbon nanofiber network of Example 3.

実施例5(燃料電池試験)
実施例1から4の試料を5cm×5cmのサイズにカットし、そしてその後、触媒被覆膜(catalyst coated membrane、CCM、Dupont社から市販されているE71913)と組み合わせて3層からなる膜/電極接合体(MEA)を作製した。これら接合体を燃料電池試験モジュール中に封入した。テフロン(登録商標)ガスケットによりその気密性を確認した後、燃料電池の試験を行った。
Example 5 (Fuel cell test)
Samples from Examples 1 to 4 were cut to a size of 5 cm x 5 cm and then combined with a catalyst coated membrane (Calyst coated membrane, CCM, E71913 commercially available from Dupont) in three layers of membrane / electrode A joined body (MEA) was produced. These assemblies were sealed in a fuel cell test module. After confirming its airtightness with a Teflon (registered trademark) gasket, the fuel cell was tested.

アノードの燃料(1M メタノール)の流量は1.83stpm、およびカソードのガス(O2)の流量は300cc/minとした。試験温度は60℃に設定した。燃料電池に0.4Vを印加し、その電流密度およびメタノール遮断能(methanol-blocking ability)を測定した。実施例1の試料を使用した燃料電池の電流密度は55mA/cm2であり、メタノール遮断能は0.577Vであった。実施例2の試料を使用した燃料電池の電流密度は57mA/cm2であり、メタノール遮断能は0.584Vであった。実施例3の試料を使用した燃料電池は耐圧性が不十分であったため、測定は不可能であった。実施例4の試料を使用した燃料電池の電流密度は60mA/cm2であり、メタノール遮断能は0.594Vであった。このように、実施例4の炭素複合構造を使用した燃料電池は、実施例1〜3の単層からなる炭素ナノ繊維網または炭素マイクロ繊維網を使用した燃料電池と比較して、より高い電流密度およびより高いメタノール遮断能を有していた。 The flow rate of anode fuel (1M methanol) was 1.83 stpm, and the flow rate of cathode gas (O 2 ) was 300 cc / min. The test temperature was set to 60 ° C. 0.4V was applied to the fuel cell, and its current density and methanol-blocking ability were measured. The current density of the fuel cell using the sample of Example 1 was 55 mA / cm 2 , and the methanol blocking ability was 0.577V. The current density of the fuel cell using the sample of Example 2 was 57 mA / cm 2 , and the methanol blocking ability was 0.584V. Since the pressure resistance of the fuel cell using the sample of Example 3 was insufficient, measurement was impossible. The current density of the fuel cell using the sample of Example 4 was 60 mA / cm 2 , and the methanol blocking ability was 0.594V. Thus, the fuel cell using the carbon composite structure of Example 4 has a higher current compared to the fuel cell using the carbon nanofiber network or carbon microfiber network composed of a single layer of Examples 1 to 3. It had a density and higher methanol blocking ability.

一実施形態では、図1に示されるように、炭素複合構造は燃料電池のガス拡散層15とすることができる。図1において、プロトン伝導膜11は、2つの触媒層13、2つのガス拡散層15、2つのバイポーラプレート17、2つの電流コレクタ18、および2つのエンドプレート19の間に挟みこまれている。   In one embodiment, the carbon composite structure can be a fuel cell gas diffusion layer 15, as shown in FIG. In FIG. 1, the proton conducting membrane 11 is sandwiched between two catalyst layers 13, two gas diffusion layers 15, two bipolar plates 17, two current collectors 18, and two end plates 19.

開示された実施形態に各種修飾および変更を加えてもよいことは、当業者には明らかであろう。明細書および実施例は例示的なものと見なされるように意図されており、本発明の開示の真の範囲は以下のクレームおよびそれらの均等物により示される。   It will be apparent to those skilled in the art that various modifications and variations can be made to the disclosed embodiments. It is intended that the specification and examples be considered as exemplary, with the true scope of the present disclosure being indicated by the following claims and their equivalents.

11 プロトン伝導膜
13 触媒層
15 ガス拡散層
16 デバイス
17 バイポーラプレート
18 電流コレクタ
19 エンドプレート
20 炭素複合構造
21 炭素ナノ繊維網
22 炭素マイクロ繊維網
11 Proton Conducting Membrane 13 Catalyst Layer 15 Gas Diffusion Layer 16 Device 17 Bipolar Plate 18 Current Collector 19 End Plate 20 Carbon Composite Structure 21 Carbon Nanofiber Network 22 Carbon Microfiber Network

Claims (9)

炭素ナノ繊維網層であって、該炭素ナノ繊維網層の細孔の細孔径が1μmから2μmである炭素ナノ繊維網層、および
前記炭素ナノ繊維網層上の炭素マイクロ繊維網層
を含む炭素複合構造。
Carbon comprising a carbon nanofiber network layer, wherein the carbon nanofiber network layer has a pore diameter of 1 μm to 2 μm , and a carbon microfiber network layer on the carbon nanofiber network layer Composite structure.
前記炭素ナノ繊維網層の炭素ナノ繊維が、100nmから800nmの直径を有する請求項1記載の炭素複合構造。 The carbon composite structure according to claim 1, wherein the carbon nanofibers of the carbon nanofiber network layer have a diameter of 100 nm to 800 nm. 前記炭素ナノ繊維網層が10μmから100μmの厚さを有する請求項1記載の炭素複合構造。 The carbon composite structure according to claim 1, wherein the carbon nanofiber network layer has a thickness of 10 μm to 100 μm. 前記炭素マイクロ繊維網層の炭素マイクロ繊維が、2μmから10μmの直径を有し、そして、前記炭素マイクロ繊維網層の細孔の細孔径が3μmから12μmである請求項1記載の炭素複合構造。 2. The carbon composite structure according to claim 1, wherein the carbon microfibers of the carbon microfiber network layer have a diameter of 2 μm to 10 μm, and the pore diameter of the pores of the carbon microfiber network layer is 3 μm to 12 μm. 前記炭素マイクロ繊維網層が100μmから600μmの厚さを有する請求項1記載の炭素複合構造。 The carbon composite structure according to claim 1, wherein the carbon microfiber network layer has a thickness of 100 μm to 600 μm. 2つのエンドプレート間に配置されるプロトン伝導膜、ならびに
前記プロトン伝導膜と前記エンドプレートとの間にそれぞれ順次配置される、触媒層、ガス拡散層、バイポーラプレートおよび電流コレクタ
を含む燃料電池であって、
前記ガス拡散層が、炭素ナノ繊維網層およびその上の炭素マイクロ繊維網層を含み炭素複合構造を形成し、前記炭素ナノ繊維網層の細孔の細孔径が1μmから2μmである燃料電池。
A fuel cell including a proton conductive membrane disposed between two end plates, and a catalyst layer, a gas diffusion layer, a bipolar plate, and a current collector, which are sequentially disposed between the proton conductive membrane and the end plate, respectively. And
The fuel cell, wherein the gas diffusion layer includes a carbon nanofiber network layer and a carbon microfiber network layer thereon to form a carbon composite structure, and the pore diameter of the pores of the carbon nanofiber network layer is 1 μm to 2 μm .
前記炭素ナノ繊維網層の前記炭素ナノ繊維が100nmから800nmの直径を有する請求項6記載の燃料電池。 The fuel cell according to claim 6, wherein the carbon nanofibers of the carbon nanofiber network layer have a diameter of 100 nm to 800 nm. 前記炭素マイクロ繊維網層の前記炭素マイクロ繊維が2μmから10μmの直径を有し、そして、前記炭素マイクロ繊維網層の細孔の細孔径が3μmから12μmである請求項6記載の燃料電池。 The fuel cell according to claim 6, wherein the carbon microfibers of the carbon microfiber network layer have a diameter of 2 μm to 10 μm, and the pore diameter of the pores of the carbon microfiber network layer is 3 μm to 12 μm. 前記炭素ナノ繊維網層と前記炭素マイクロ繊維網層との厚さ比が1〜10:10〜60である請求項6記載の燃料電池。 The fuel cell according to claim 6, wherein a thickness ratio of the carbon nanofiber network layer to the carbon microfiber network layer is 1 to 10:10 to 60.
JP2015105339A 2015-05-25 2015-05-25 Fuel cell and carbon composite structure Active JP6027187B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015105339A JP6027187B2 (en) 2015-05-25 2015-05-25 Fuel cell and carbon composite structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015105339A JP6027187B2 (en) 2015-05-25 2015-05-25 Fuel cell and carbon composite structure

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2012250561A Division JP5777595B2 (en) 2012-11-14 2012-11-14 Fuel cell, carbon composite structure, and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2015186923A JP2015186923A (en) 2015-10-29
JP6027187B2 true JP6027187B2 (en) 2016-11-16

Family

ID=54429467

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015105339A Active JP6027187B2 (en) 2015-05-25 2015-05-25 Fuel cell and carbon composite structure

Country Status (1)

Country Link
JP (1) JP6027187B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018062622A1 (en) * 2016-09-27 2018-04-05 가드넥 주식회사 Gas diffusion layer comprising porous carbonaceous film layer for fuel cell
CN110323453B (en) * 2019-06-19 2021-12-14 一汽解放汽车有限公司 Fuel cell using punched metal foil as collector

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006054636A1 (en) * 2004-11-19 2006-05-26 Bridgestone Corporation Carbon fiber, porous support-carbon fiber composite, process for producing them, catalyst structure, electrode for solid polymer fuel cell and solid polymer fuel cell
JP2007099551A (en) * 2005-10-03 2007-04-19 Bridgestone Corp Carbon-based composite material and its manufacturing method, electrode for solid polymer type fuel cell and solid polymer type fuel cell
JP5267760B2 (en) * 2007-03-07 2013-08-21 東洋紡株式会社 Carbon nanofiber sheet
JP5648785B2 (en) * 2010-07-29 2015-01-07 日清紡ホールディングス株式会社 Fuel cell electrode
JP5777595B2 (en) * 2012-11-14 2015-09-09 財團法人工業技術研究院Industrial Technology Research Institute Fuel cell, carbon composite structure, and manufacturing method thereof

Also Published As

Publication number Publication date
JP2015186923A (en) 2015-10-29

Similar Documents

Publication Publication Date Title
JP6121007B2 (en) Moisture management sheet, gas diffusion sheet, membrane-electrode assembly, and polymer electrolyte fuel cell
US10854904B2 (en) Polymer electrolyte membrane, a method for fabricating the same, and a membrane-electrode assembly including the same
KR101178644B1 (en) Ion conductive hybrid membrane, membrane-electrode assembly and fuel cell
WO2002059996A1 (en) Polymer electrolyte film and method for preparation of the same, and solid polymer type fuel cell using the same
JP4898394B2 (en) Method for manufacturing stacked fuel cell
CN104854745B (en) Dielectric film, membrane-electrode assembly and the fuel cell of fuel cell
JP6717748B2 (en) Gas diffusion base material
KR20190001557A (en) Gas diffusion layer comprising carbon nanofiber spun for fuel cell
JP5777595B2 (en) Fuel cell, carbon composite structure, and manufacturing method thereof
US9685663B2 (en) Base material for gas diffusion electrode
JP6027187B2 (en) Fuel cell and carbon composite structure
JP5328407B2 (en) Moisture management sheet, gas diffusion sheet, membrane-electrode assembly, and polymer electrolyte fuel cell
US9180649B2 (en) Fuel cells, carbon composite structures and methods for manufacturing the same
JP3604078B2 (en) Electrode structure for fuel cell and manufacturing method thereof
US20140134506A1 (en) Proton Exchange Membrane
JP4052932B2 (en) Fuel cell
JP2016072000A (en) Gas diffusion layer for fuel cell, fuel cell and method of manufacturing gas diffusion layer for fuel cell
JP3579885B2 (en) Electrode structure for fuel cell and manufacturing method thereof
JP2005085562A (en) Membrane-electrode assembly, its manufacturing method, and solid polymer fuel cell using it
US9859572B2 (en) Gas diffusion substrate
JP4898568B2 (en) Catalyst layer and membrane-electrode assembly
JP2015022888A (en) Substrate for gas diffusion electrode, gas diffusion electrode, membrane-electrode assembly, and solid polymer fuel cell
TWI353398B (en) Nano carbon fibers and fuel cell utilizing the sam
TWI409983B (en) Proton exchange membrane and forming method thereof and fuel cell including the same
JP2013171718A (en) Gas diffusion layer, fuel cell, and method for producing gas diffusion layer

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160628

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160908

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161013

R150 Certificate of patent or registration of utility model

Ref document number: 6027187

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250