JP2007099551A - Carbon-based composite material and its manufacturing method, electrode for solid polymer type fuel cell and solid polymer type fuel cell - Google Patents
Carbon-based composite material and its manufacturing method, electrode for solid polymer type fuel cell and solid polymer type fuel cell Download PDFInfo
- Publication number
- JP2007099551A JP2007099551A JP2005290256A JP2005290256A JP2007099551A JP 2007099551 A JP2007099551 A JP 2007099551A JP 2005290256 A JP2005290256 A JP 2005290256A JP 2005290256 A JP2005290256 A JP 2005290256A JP 2007099551 A JP2007099551 A JP 2007099551A
- Authority
- JP
- Japan
- Prior art keywords
- carbon
- composite material
- based composite
- producing
- catalyst
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Fuel Cell (AREA)
- Carbon And Carbon Compounds (AREA)
- Inert Electrodes (AREA)
Abstract
Description
本発明は、炭素系複合材料の製造方法、該方法で製造された炭素系複合材料、並びに、該炭素系複合材料を用いた固体高分子型燃料電池用電極及び固体高分子型燃料電池に関し、特に表面積が大きく、ガス透過性、液体透過性及び細孔分布等の諸特性を制御することが可能な炭素系複合材料の新規製造方法に関するものである。 The present invention relates to a method for producing a carbon-based composite material, a carbon-based composite material produced by the method, and an electrode for a polymer electrolyte fuel cell and a polymer electrolyte fuel cell using the carbon-based composite material, In particular, the present invention relates to a novel method for producing a carbon-based composite material having a large surface area and capable of controlling various properties such as gas permeability, liquid permeability, and pore distribution.
昨今、発電効率が高く、環境への負荷が小さい電池として、燃料電池が注目を集めており、広く研究開発が行われている。燃料電池の中でも、出力密度が高く作動温度が低い固体高分子型燃料電池は、小型化や低コスト化が他のタイプの燃料電池よりも容易なことから、電気自動車用電源、分散発電システム、家庭用のコージェネレーションシステムとして広く普及することが期待されている。 In recent years, fuel cells have attracted attention as a battery having high power generation efficiency and a low environmental load, and extensive research and development has been conducted. Among fuel cells, solid polymer fuel cells with high power density and low operating temperature are easier to reduce in size and cost than other types of fuel cells. It is expected to spread widely as a household cogeneration system.
一般に固体高分子型燃料電池は、固体高分子電解質膜の両面に貴金属触媒を含む触媒層を配置し、該触媒層の外側にガスの拡散層としてカーボンペーパー等が配置された構造の膜電極接合体(MEA)を備える。更に、ガス拡散層の両外側には、ガス流路が形成された導電性のセパレータが配置されており、該セパレータは、燃料ガスや酸化剤ガスを通過させると同時に、上記ガス拡散層からの電流を外部に伝え、電気エネルギーを取り出す役割を担う(非特許文献1及び2参照)。 Generally, a polymer electrolyte fuel cell has a structure in which a catalyst layer containing a noble metal catalyst is disposed on both sides of a solid polymer electrolyte membrane, and carbon paper or the like is disposed as a gas diffusion layer outside the catalyst layer. It has a body (MEA). Furthermore, a conductive separator having a gas flow path is disposed on both outer sides of the gas diffusion layer. The separator allows the fuel gas and the oxidant gas to pass therethrough and at the same time from the gas diffusion layer. It plays a role of transmitting electric current to the outside and extracting electric energy (see Non-Patent Documents 1 and 2).
ところで、上記固体高分子型燃料電池のガス拡散層として好適な、炭素系の多孔質材料であるカーボンペーパーは、一般に、特定の繊維径のカーボンファイバーチップをバインダー液中に分散させ、それを抄いたシートをホットプレスすることで製造されている。しかしながら、この方法では、カーボンペーパーの厚さ方向に繊維径をコントロールしてカーボンファイバーを配置することは難しく、また、得られるカーボンペーパーのガス透過性、液体透過性及び細孔分布等の諸特性を制御することも難しい。 By the way, carbon paper, which is a carbon-based porous material suitable as a gas diffusion layer of the polymer electrolyte fuel cell, is generally obtained by dispersing a carbon fiber chip having a specific fiber diameter in a binder liquid and extracting it. It is manufactured by hot pressing a sheet. However, with this method, it is difficult to arrange the carbon fiber by controlling the fiber diameter in the thickness direction of the carbon paper, and various properties such as gas permeability, liquid permeability, and pore distribution of the obtained carbon paper are obtained. It is also difficult to control.
カーボンペーパーを固体高分子型燃料電池のガス拡散層として用いる場合、カーボンペーパーの燃料ガス及び酸化剤ガスの透過性並びに水蒸気透過性が固体高分子型燃料電池の性能を大きく左右するものと思われるが、カーボンペーパーの上記各透過性をコントロールすることができないため、カーボンペーパーの厚さや、触媒層形成の際のナフィオン塗布量で調整しているのが現状である。しかしながら、この方法では、燃料ガスや酸化剤ガスの透過性、更には水蒸気透過性を精密にコントロールすることは難しく、また、膜電極接合体(MEA)自体の厚さを変えてしまう可能性があり、固体高分子型燃料電池の性能が大きく低下してしまう恐れがある。 When carbon paper is used as a gas diffusion layer of a polymer electrolyte fuel cell, the fuel gas and oxidant gas permeability and water vapor permeability of the carbon paper are considered to greatly affect the performance of the polymer electrolyte fuel cell. However, since the above-mentioned permeability of the carbon paper cannot be controlled, the present condition is that the thickness of the carbon paper and the amount of Nafion applied when forming the catalyst layer are adjusted. However, with this method, it is difficult to precisely control the permeability of fuel gas and oxidant gas, and further, the permeability of water vapor, and there is a possibility of changing the thickness of the membrane electrode assembly (MEA) itself. In addition, the performance of the polymer electrolyte fuel cell may be greatly deteriorated.
また、カーボンペーパーを各種触媒の触媒担持体として使用する場合、単一の繊維径のカーボンファイバーからなるカーボンペーパーでは、十分に大きな表面積を確保することが難しいという問題もある。 Further, when carbon paper is used as a catalyst carrier for various catalysts, there is a problem that it is difficult to secure a sufficiently large surface area with carbon paper made of carbon fibers having a single fiber diameter.
そこで、本発明の目的は、表面積が大きく、ガス透過性、液体透過性及び細孔分布等の諸特性を制御することが可能な炭素系複合材料の新規製造方法を提供することにある。また、本発明の他の目的は、かかる方法で製造された炭素系複合材料、並びに、該炭素系複合材料を用いた固体高分子型燃料電池用電極及び固体高分子型燃料電池を提供することにある。 Therefore, an object of the present invention is to provide a novel method for producing a carbon-based composite material having a large surface area and capable of controlling various properties such as gas permeability, liquid permeability, and pore distribution. Another object of the present invention is to provide a carbon-based composite material produced by such a method, and a polymer electrolyte fuel cell electrode and solid polymer fuel cell using the carbon-based composite material. It is in.
本発明者らは、上記目的を達成するために鋭意検討した結果、カーボンペーパー等の炭素系多孔質支持体上に直接カーボンナノファイバを生成させたり、炭素系多孔質支持体上に3次元連続状炭素繊維を生成させた後、該3次元連続状炭素繊維上にカーボンナノファイバを生成させることで、表面積が大きく、固体高分子型燃料電池のガス拡散層及び触媒層の担持体として好適な炭素系複合材料が得られ、更に、上記カーボンナノファイバの生成条件を制御することで、得られる炭素系複合材料のガス透過性、液体透過性及び細孔分布等の諸特性を制御できることを見出し、本発明を完成させるに至った。 As a result of intensive studies to achieve the above object, the present inventors have produced carbon nanofibers directly on a carbon-based porous support such as carbon paper, or three-dimensional continuous on a carbon-based porous support. The carbon nanofibers are formed on the three-dimensional continuous carbon fibers after forming the carbon-like carbon fibers, so that the surface area is large and suitable as a support for the gas diffusion layer and the catalyst layer of the solid polymer fuel cell. It has been found that a carbon-based composite material can be obtained, and further, by controlling the production conditions of the carbon nanofibers, various properties such as gas permeability, liquid permeability, and pore distribution of the obtained carbon-based composite material can be controlled. The present invention has been completed.
即ち、本発明の第1の炭素系複合材料の製造方法は、
(A)炭素系の多孔質支持体に触媒を担持する工程と、
(B)前記触媒が担持された炭素系多孔質支持体に高温下で炭素含有化合物を接触させて、炭素系多孔質支持体上にカーボンナノファイバを生成させる工程と
を含むことを特徴とし、炭素系多孔質支持体とカーボンナノファイバとを含む炭素系複合材料を製造することができる。
That is, the first method for producing a carbon-based composite material of the present invention is:
(A) a step of supporting a catalyst on a carbon-based porous support;
(B) contacting the carbon-based porous support on which the catalyst is supported with a carbon-containing compound at a high temperature to form carbon nanofibers on the carbon-based porous support, and A carbon-based composite material including a carbon-based porous support and carbon nanofibers can be manufactured.
本発明の第1の炭素系複合材料の製造方法において、前記(A)工程で用いる炭素系の多孔質支持体としては、カーボンペーパーが好ましく、前記(A)工程で担持する触媒としては、Fe,Ni及びCoが好ましい。また、前記(A)工程における触媒の担持は、電気メッキ法又はスパッタ法で行うことが好ましく、前記(B)工程は、非酸化性雰囲気中で行うことが好ましい。 In the first method for producing a carbon-based composite material of the present invention, the carbon-based porous support used in the step (A) is preferably carbon paper, and the catalyst supported in the step (A) is Fe. Ni and Co are preferred. Moreover, it is preferable to carry | support the catalyst in the said (A) process by an electroplating method or a sputtering method, and it is preferable to perform the said (B) process in non-oxidizing atmosphere.
また、本発明の第2の炭素系複合材料の製造方法は、
(a)炭素系の多孔質支持体上で芳香族化合物を重合させて、炭素系多孔質支持体上にフィブリル状ポリマーを生成させる工程と、
(b)前記フィブリル状ポリマーを焼成して3次元連続状の炭素繊維を生成させる工程と、
(c)前記3次元連続状の炭素繊維に触媒を担持する工程と、
(d)前記触媒が担持された3次元連続状炭素繊維に高温下で炭素含有化合物を接触させて、3次元連続状炭素繊維上にカーボンナノファイバを生成させる工程と
を含むことを特徴とし、炭素系多孔質支持体と3次元連続状炭素繊維とカーボンナノファイバとを含む炭素系複合材料を製造することができる。
In addition, the method for producing the second carbon-based composite material of the present invention includes:
(A) polymerizing an aromatic compound on a carbon-based porous support to form a fibrillated polymer on the carbon-based porous support;
(B) firing the fibrillated polymer to form a three-dimensional continuous carbon fiber;
(C) supporting a catalyst on the three-dimensional continuous carbon fiber;
(D) contacting the three-dimensional continuous carbon fiber carrying the catalyst with a carbon-containing compound at a high temperature to form carbon nanofibers on the three-dimensional continuous carbon fiber, A carbon-based composite material including a carbon-based porous support, a three-dimensional continuous carbon fiber, and a carbon nanofiber can be manufactured.
本発明の第2の炭素系複合材料の製造方法において、前記(a)工程で用いる炭素系の多孔質支持体としては、カーボンペーパーが好ましく、前記(a)工程における重合としては、電解酸化重合が好ましく、前記(a)工程で用いる芳香族化合物としては、芳香族アミン化合物及び複素環式化合物が好ましく、アニリン、ピロール、チオフェン及びそれらの誘導体が更に好ましい。 In the second method for producing a carbon-based composite material of the present invention, the carbon-based porous support used in the step (a) is preferably carbon paper, and the polymerization in the step (a) is electrolytic oxidation polymerization. The aromatic compound used in the step (a) is preferably an aromatic amine compound or a heterocyclic compound, and more preferably aniline, pyrrole, thiophene or a derivative thereof.
本発明の第2の炭素系複合材料の製造方法においては、前記(b)工程を非酸化性雰囲気中で行うことが好ましく、前記(c)工程における触媒の担持を電気メッキ法又はスパッタ法で行うことが好ましく、前記(d)工程を非酸化性雰囲気中で行うことが好ましい。また、前記(c)工程で担持する触媒としては、Fe,Ni及びCoが好ましい。 In the second method for producing a carbon-based composite material of the present invention, the step (b) is preferably performed in a non-oxidizing atmosphere, and the catalyst is supported in the step (c) by electroplating or sputtering. Preferably, the step (d) is performed in a non-oxidizing atmosphere. The catalyst supported in the step (c) is preferably Fe, Ni and Co.
また、本発明の炭素系複合材料は、上記の方法で製造されたものであり、本発明の固体高分子型燃料電池用電極は、該炭素系複合材料に金属を担持してなり、本発明の固体高分子型燃料電池は、該電極を備えることを特徴とする。 The carbon-based composite material of the present invention is manufactured by the above method, and the solid polymer fuel cell electrode of the present invention comprises a metal supported on the carbon-based composite material. The solid polymer fuel cell is provided with the electrode.
本発明によれば、表面積が大きく、ガス透過性、液体透過性及び細孔分布等の諸特性を制御することが可能な炭素系複合材料の新規製造方法を提供することができる。また、かかる方法で製造された炭素系複合材料、並びに、該炭素系複合材料を用いた固体高分子型燃料電池用電極及び固体高分子型燃料電池を提供することができる。なお、上記炭素系複合材料は、表面積が大きいため、各種触媒の担持体としても有用であり、固体高分子型燃料電池の触媒層の担持体及びガス拡散層として特に有用である。 According to the present invention, a novel method for producing a carbon-based composite material having a large surface area and capable of controlling various characteristics such as gas permeability, liquid permeability, and pore distribution can be provided. In addition, it is possible to provide a carbon-based composite material produced by such a method, a polymer electrolyte fuel cell electrode and a polymer electrolyte fuel cell using the carbon-based composite material. Since the carbon composite material has a large surface area, it is useful as a support for various catalysts, and is particularly useful as a support for a catalyst layer and a gas diffusion layer of a polymer electrolyte fuel cell.
<炭素系複合材料の製造方法>
以下に、本発明の炭素系複合材料の製造方法を詳細に説明する。本発明の第1の炭素系複合材料の製造方法は、図1に示すように、(A)炭素系多孔質支持体1に触媒2を担持する工程と、(B)前記触媒2が担持された炭素系多孔質支持体1に高温下で炭素含有化合物を接触させて、炭素系多孔質支持体1上にカーボンナノファイバ3を生成させる工程とを含むことを特徴とし、炭素系多孔質支持体1とカーボンナノファイバ3とを含む炭素系複合材料を製造することができる。なお、(B)工程の後に、炭素系複合材料中に残留する触媒2を、炭素系複合材料の用途に応じて除去してもよい。
<Method for producing carbon-based composite material>
Below, the manufacturing method of the carbon type composite material of this invention is demonstrated in detail. As shown in FIG. 1, the first method for producing a carbon-based composite material of the present invention includes (A) a step of supporting a
また、本発明の第2の炭素系複合材料の製造方法は、図2に示すように、(a)炭素系多孔質支持体1上で芳香族化合物を重合させて、炭素系多孔質支持体1上にフィブリル状ポリマー4を生成させる工程と、(b)前記フィブリル状ポリマー4を焼成して3次元連続状炭素繊維5を生成させる工程と、(c)前記3次元連続状炭素繊維5に触媒2を担持する工程と、(d)前記触媒2が担持された3次元連続状炭素繊維5に高温下で炭素含有化合物を接触させて、3次元連続状炭素繊維5上にカーボンナノファイバ3を生成させる工程とを含むことを特徴とし、炭素系多孔質支持体1と3次元連続状炭素繊維5とカーボンナノファイバ3とを含む炭素系複合材料を製造することができる。なお、(d)工程の後に、炭素系複合材料中に残留する触媒2を、炭素系複合材料の用途に応じて除去してもよい。
In addition, as shown in FIG. 2, the second method for producing a carbon-based composite material according to the present invention includes: (a) polymerizing an aromatic compound on the carbon-based porous support 1 to obtain a carbon-based porous support. A step of generating a fibril-like polymer 4 on 1, (b) a step of firing the fibril-like polymer 4 to generate a three-dimensional
本発明の炭素系複合材料の製造方法では、炭素系多孔質支持体1上に直接カーボンナノファイバ3を生成させるか、炭素系多孔質支持体1上に3次元連続状炭素繊維5を生成させた後、該3次元連続状炭素繊維5上にカーボンナノファイバ3を生成させる。ここで、生成するカーボンナノファイバ3は、炭素系多孔質支持体1よりも径が非常に小さく表面積が非常に大きいため、得られる炭素系複合材料は、表面積が非常に大きい。そのため、本発明の方法で製造される炭素系複合材料は、各種触媒の担持体として有用であり、また、固体高分子型燃料電池の触媒層の担持体及びガス拡散層として特に有用である。なお、本発明の第2の炭素系複合材料の製造方法では、炭素系多孔質支持体1上に3次元連続状炭素繊維5を生成させるが、この3次元連続状炭素繊維5も、炭素系多孔質支持体1よりは径が小さく表面積が大きいため、本発明の第2の炭素系複合材料の製造方法で得られる炭素系複合材料は、表面積が非常に大きい。
In the method for producing a carbon-based composite material according to the present invention, the carbon nanofiber 3 is generated directly on the carbon-based porous support 1 or the three-dimensional
また、本発明の炭素系複合材料の製造方法では、カーボンナノファイバ3の生成条件を選択することで、得られる炭素系複合材料のガス透過性、液体透過性及び細孔分布等の諸特性を制御できる。また、本発明の第2の炭素系複合材料の製造方法では、カーボンナノファイバ3の生成条件に加えて、3次元連続状炭素繊維5の製造条件を選択することでも、得られる炭素系複合材料のガス透過性、液体透過性及び細孔分布等の諸特性を制御できる。
Further, in the method for producing a carbon-based composite material according to the present invention, various properties such as gas permeability, liquid permeability, and pore distribution of the obtained carbon-based composite material are selected by selecting the generation conditions of the carbon nanofiber 3. Can be controlled. Further, in the second method for producing a carbon-based composite material of the present invention, the carbon-based composite material obtained by selecting the production conditions for the three-dimensional
本発明の第1の製造方法においては、(A)工程で、炭素系の多孔質支持体に触媒を担持する。ここで、使用する炭素系多孔質支持体としては、カーボンペーパー、カーボン不織布、カーボンクロス、カーボンネット及びメッシュ状カーボン等が挙げられ、これらの中でも、カーボンペーパーが好ましい。なお、該炭素系多孔質支持体としては、市販品を利用することができる。 In the first production method of the present invention, a catalyst is supported on a carbon-based porous support in the step (A). Here, examples of the carbon-based porous support used include carbon paper, carbon non-woven fabric, carbon cloth, carbon net, and mesh-like carbon, and among these, carbon paper is preferable. A commercially available product can be used as the carbon-based porous support.
上記(A)工程における触媒の担持法としては、特に限定はなく、例えば、電気メッキ法、無電解メッキ法、スパッタ法、含浸法等が挙げられ、これらの中でも、電気メッキ法及びスパッタ法が好ましい。また、担持する触媒としては、カーボンナノファイバの生成反応に対して触媒作用を有するものであればよく、例えば、Fe,Ni及びCo等の金属が挙げられ、これら触媒は、1種でも、2種以上でもよい。また、触媒担持量は、特に限定されるものではなく、炭素系多孔質支持体1gに対して0.001μg〜0.1mgの範囲が好ましい。 The method for supporting the catalyst in the step (A) is not particularly limited, and examples thereof include an electroplating method, an electroless plating method, a sputtering method, and an impregnation method. Among these, the electroplating method and the sputtering method are exemplified. preferable. The supported catalyst may be any catalyst as long as it has a catalytic action for the formation reaction of carbon nanofibers, and examples thereof include metals such as Fe, Ni and Co. It may be more than seeds. The amount of catalyst supported is not particularly limited, and is preferably in the range of 0.001 μg to 0.1 mg with respect to 1 g of the carbon-based porous support.
本発明の第1の製造方法においては、(B)工程で、熱CVD法によって、前記触媒が担持された炭素系多孔質支持体に高温下で炭素含有化合物を接触させて、炭素系多孔質支持体上にカーボンナノファイバを生成させる。ここで、該(B)工程は、非酸化性雰囲気中で行うことが好ましい。例えば、上記触媒が担持された炭素系多孔質支持体を反応器に仕込み、高温下、好ましくは500〜1000℃程度で、炭素源となる炭素含有化合物と非酸化性のキャリアガスとの混合ガスを反応器に流通させればよい。ここで、炭素含有化合物としては、メタン、エチレン、アセチレン等のガス炭素源や、アルコール類や液状炭化水素等の液体炭素源が挙げられ、また、キャリアガスとしては、ヘリウムガス、アルゴンガス、窒素ガス等の非酸化性ガスが挙げられる。 In the first production method of the present invention, in the step (B), the carbon-containing porous material is brought into contact with the carbon-based porous support on which the catalyst is supported at a high temperature by a thermal CVD method. Carbon nanofibers are generated on the support. Here, the step (B) is preferably performed in a non-oxidizing atmosphere. For example, a carbon-based porous support on which the catalyst is supported is charged into a reactor, and a mixed gas of a carbon-containing compound serving as a carbon source and a non-oxidizing carrier gas at a high temperature, preferably at about 500 to 1000 ° C. May be circulated through the reactor. Here, examples of the carbon-containing compound include gaseous carbon sources such as methane, ethylene, and acetylene, and liquid carbon sources such as alcohols and liquid hydrocarbons. Carrier gases include helium gas, argon gas, and nitrogen. Non-oxidizing gas such as gas can be used.
また、本発明の第2の製造方法においては、(a)工程で、炭素系多孔質支持体上で芳香族化合物を重合させて、炭素系多孔質支持体上にフィブリル状ポリマーを生成させる。ここで、使用する炭素系多孔質支持体としては、カーボンペーパー、カーボン不織布、カーボンクロス、カーボンネット及びメッシュ状カーボン等が挙げられ、これらの中でも、カーボンペーパーが好ましい。 In the second production method of the present invention, in the step (a), an aromatic compound is polymerized on the carbon-based porous support to produce a fibrillated polymer on the carbon-based porous support. Here, examples of the carbon-based porous support used include carbon paper, carbon non-woven fabric, carbon cloth, carbon net, and mesh-like carbon, and among these, carbon paper is preferable.
上記芳香族化合物の重合法としては、酸化重合法が好ましく、該酸化重合法としては、電解酸化重合法及び化学的酸化重合法が挙げられ、電解酸化重合法が特に好ましい。ここで、芳香族化合物としては、芳香族アミン化合物、複素環式化合物を挙げることができ、芳香族アミン化合物として、具体的には、アニリン及びアニリン誘導体が好まく、複素環式化合物として、具体的には、ピロール、チオフェン及びこれらの誘導体が好ましい。これら芳香族化合物は、一種単独で用いてもよいし、二種以上の混合物として用いてもよい。 The polymerization method of the aromatic compound is preferably an oxidative polymerization method, and examples of the oxidative polymerization method include an electrolytic oxidative polymerization method and a chemical oxidative polymerization method, and the electrolytic oxidative polymerization method is particularly preferable. Here, examples of the aromatic compound include an aromatic amine compound and a heterocyclic compound. As the aromatic amine compound, specifically, aniline and aniline derivatives are preferable, and as the heterocyclic compound, specific examples are given. Specifically, pyrrole, thiophene, and derivatives thereof are preferable. These aromatic compounds may be used alone or in a mixture of two or more.
例えば、上記フィブリル状ポリマーを電解酸化重合法で製造する場合、原料の芳香族化合物と共に、酸を混在させることが好ましい。この場合、酸の負イオンがドーパントとして合成されるフィブリル状ポリマー中に取り込まれ、導電性に優れたフィブリル状ポリマーが得られ、このフィブリル状ポリマーを用いることにより、生成する炭素繊維の導電性を向上させることができる。なお、重合の際に混在させる酸としては、特に限定されるものではなく、HBF4、H2SO4、HCl、HClO4等を例示することができ、該酸の濃度は、0.1〜3mol/Lの範囲が好ましく、0.5〜2.5mol/Lの範囲が更に好ましい。 For example, when the fibrillated polymer is produced by an electrolytic oxidation polymerization method, it is preferable to mix an acid together with the starting aromatic compound. In this case, the negative ion of the acid is taken into the fibril polymer synthesized as a dopant, and a fibril polymer with excellent conductivity is obtained. By using this fibril polymer, the conductivity of the produced carbon fiber is increased. Can be improved. The acid mixed in the polymerization is not particularly limited, and examples thereof include HBF 4 , H 2 SO 4 , HCl, HClO 4 , and the concentration of the acid is 0.1 to 3 mol / The range of L is preferable, and the range of 0.5 to 2.5 mol / L is more preferable.
上記電解酸化重合によりフィブリル状ポリマーを得る場合には、芳香族化合物を含む溶液中に、作用極として上記炭素系多孔質支持体を浸漬すると共に、対極を浸漬し、両極間に上記芳香族化合物の酸化電位以上の電圧を印加するか、または該芳香族化合物が重合するのに充分な電圧が確保できるような条件の電流を通電すればよく、これにより作用極の炭素系多孔質支持体上にフィブリル状ポリマーが生成する。なお、対極としては、ステンレススチール、白金、カーボン等の良導電性物質からなる板や多孔質材等を用いることができる。また、電解酸化重合における電流密度は、0.1〜1000mA/cm2の範囲が好ましく、0.2〜100mA/cm2の範囲が更に好ましく、芳香族化合物の電解溶液中の濃度は、0.05〜3mol/Lの範囲が好ましく、0.25〜1.5mol/Lの範囲が更に好ましい。なお、電解溶液には、上記成分に加え、pHを調製するために可溶性塩等を適宜添加してもよい。 In the case of obtaining a fibrillated polymer by electrolytic oxidation polymerization, the carbon-based porous support is immersed as a working electrode in a solution containing an aromatic compound, the counter electrode is immersed, and the aromatic compound is sandwiched between both electrodes. It is sufficient to apply a voltage equal to or higher than the oxidation potential, or to pass an electric current under such a condition that a voltage sufficient to polymerize the aromatic compound can be secured. A fibrillar polymer is formed. As the counter electrode, a plate made of a highly conductive material such as stainless steel, platinum, or carbon, a porous material, or the like can be used. Also, the current density in the electrolytic oxidation polymerization is preferably in the range of 0.1~1000mA / cm 2, more preferably in the range of 0.2~100mA / cm 2, the concentration of the electrolytic solution of the aromatic compound, the 0.05 to 3 mol / L The range is preferable, and the range of 0.25 to 1.5 mol / L is more preferable. In addition to the above components, a soluble salt or the like may be appropriately added to the electrolytic solution in order to adjust the pH.
本発明の第2の製造方法では、上記のようにして得られたフィブリル状ポリマーを水や有機溶剤等の溶媒で洗浄し、乾燥させて、次工程に用いることが好ましい。ここで、乾燥方法としては、特に制限されるものではないが、風乾、真空乾燥の他、流動床乾燥装置、気流乾燥機、スプレードライヤー等を使用した方法を例示することができる。 In the second production method of the present invention, it is preferable that the fibrillated polymer obtained as described above is washed with a solvent such as water or an organic solvent, dried and used in the next step. Here, the drying method is not particularly limited, and examples thereof include a method using a fluidized bed drying device, an air dryer, a spray dryer, etc., in addition to air drying and vacuum drying.
上記(a)工程で生成するフィブリル状ポリマーは、通常、直径が30nm〜数百nmであり、好ましくは40nm〜500nmであり、長さが0.5μm〜100mmで、好ましくは1μm〜10mmである。 The fibril-like polymer produced in the step (a) usually has a diameter of 30 nm to several hundreds of nm, preferably 40 nm to 500 nm, and a length of 0.5 μm to 100 mm, preferably 1 μm to 10 mm.
本発明の第2の製造方法においては、(b)工程で、前記フィブリル状ポリマーを焼成して3次元連続状の炭素繊維を生成させる。ここで、フィブリル状ポリマーの焼成は、非酸化性雰囲気中行うことが好ましい。非酸化性雰囲気としては、窒素雰囲気、アルゴン雰囲気、ヘリウム雰囲気等を挙げることができ、場合によっては水素雰囲気とすることもできる。なお、非酸化性雰囲気は、フィブリル状ポリマーが完全に消失されない限り、少量の酸素を含んでもよい。また、焼成条件としては、特に限定されるものではなく、目的に応じて適宜設定すればよく、例えば、温度500〜3000℃、好ましくは600〜2800℃で、0.5〜6時間焼成することが好ましい。 In the second production method of the present invention, in the step (b), the fibrillated polymer is baked to produce a three-dimensional continuous carbon fiber. Here, the firing of the fibrillated polymer is preferably performed in a non-oxidizing atmosphere. Examples of the non-oxidizing atmosphere include a nitrogen atmosphere, an argon atmosphere, and a helium atmosphere. In some cases, a hydrogen atmosphere can also be used. The non-oxidizing atmosphere may contain a small amount of oxygen as long as the fibrillated polymer is not completely lost. The firing conditions are not particularly limited, and may be set as appropriate according to the purpose. For example, firing is preferably performed at a temperature of 500 to 3000 ° C., preferably 600 to 2800 ° C. for 0.5 to 6 hours. .
上記(b)工程で生成する炭素繊維は、直径が30nm〜数百nm、好ましくは40nm〜500nmであり、長さが0.5μm〜100mm、好ましくは1μm〜10mmであり、表面抵抗が106〜10-2Ω、好ましくは104〜10-2Ωである。また、該炭素繊維は、残炭率が95〜30%、好ましくは90〜40%である。なお、上記(b)工程で得られる炭素繊維は、カーボン全体が3次元に連続した網目構造を有し、導電性に優れる。 The carbon fiber produced in the step (b) has a diameter of 30 nm to several hundreds of nm, preferably 40 nm to 500 nm, a length of 0.5 μm to 100 mm, preferably 1 μm to 10 mm, and a surface resistance of 10 6 to 10 −2 Ω, preferably 10 4 to 10 −2 Ω. The carbon fiber has a residual carbon ratio of 95 to 30%, preferably 90 to 40%. The carbon fiber obtained in the step (b) has a network structure in which the entire carbon is three-dimensionally continuous, and is excellent in conductivity.
本発明の第2の製造方法においては、(c)工程で、前記3次元連続状炭素繊維に触媒を担持する。ここで、上記触媒の担持法としては、特に限定されるものではなく、例えば、含浸法、電気メッキ法、無電解メッキ法、スパッタ成膜法等が挙げられ、これらの中でも、電気メッキ法及びスパッタ法が好ましい。また、担持する触媒としては、カーボンナノファイバの生成反応に対して触媒作用を有するものであればよく、例えば、Fe,Ni及びCo等の金属が挙げられる。また、触媒担持量は、特に限定されるものではなく、3次元連続状炭素繊維1gに対して0.001μg〜0.1mgの範囲が好ましい。 In the second production method of the present invention, a catalyst is supported on the three-dimensional continuous carbon fiber in the step (c). Here, the method for supporting the catalyst is not particularly limited, and examples thereof include an impregnation method, an electroplating method, an electroless plating method, and a sputter film forming method. Sputtering is preferred. Further, the supported catalyst may be any catalyst that has a catalytic action on the formation reaction of carbon nanofibers, and examples thereof include metals such as Fe, Ni, and Co. The amount of catalyst supported is not particularly limited, and is preferably in the range of 0.001 μg to 0.1 mg per 1 g of three-dimensional continuous carbon fiber.
本発明の第2の製造方法においては、(d)工程で、熱CVD法によって、前記触媒が担持された3次元連続状炭素繊維に高温下で炭素含有化合物を接触させて、3次元連続状炭素繊維上にカーボンナノファイバを生成させる。ここで、該(d)工程は、非酸化性雰囲気中で行うことが好ましい。例えば、上記触媒が担持された3次元連続状炭素繊維を炭素系多孔質支持体ごと反応器に仕込み、高温下、好ましくは500〜1000℃程度で、炭素源となる炭素含有化合物と非酸化性のキャリアガスとの混合ガスを反応器に流通させればよい。ここで、炭素含有化合物としては、メタン、エチレン、アセチレン等のガス炭素源や、アルコール類や液状炭化水素等の液体炭素源が挙げられ、また、キャリアガスとしては、ヘリウムガス、アルゴンガス、窒素ガス等の非酸化性ガスが挙げられる。 In the second production method of the present invention, in the step (d), a carbon-containing compound is brought into contact with the three-dimensional continuous carbon fiber carrying the catalyst at a high temperature by a thermal CVD method at a high temperature. Carbon nanofibers are generated on carbon fibers. Here, the step (d) is preferably performed in a non-oxidizing atmosphere. For example, a three-dimensional continuous carbon fiber carrying the above catalyst is charged into a reactor together with a carbon-based porous support, and at a high temperature, preferably at about 500 to 1000 ° C., a carbon-containing compound serving as a carbon source and a non-oxidizing property What is necessary is just to distribute | circulate the mixed gas with other carrier gas to a reactor. Here, examples of the carbon-containing compound include gaseous carbon sources such as methane, ethylene, and acetylene, and liquid carbon sources such as alcohols and liquid hydrocarbons. Carrier gases include helium gas, argon gas, and nitrogen. Non-oxidizing gas such as gas can be used.
上記のようにして炭素系多孔質支持体又は3次元連続状炭素繊維上に形成されたカーボンナノファイバは、SWNT、MWNTを含むファイバー状カーボンであり、また、カーボンナノファイバの直径は、特に制限されず、通常0.7nm〜300nmの範囲である。 The carbon nanofiber formed on the carbon-based porous support or the three-dimensional continuous carbon fiber as described above is a fibrous carbon containing SWNT and MWNT, and the diameter of the carbon nanofiber is particularly limited. Usually, it is in the range of 0.7 nm to 300 nm.
本発明の炭素系複合材料の製造方法では、カーボンナノファイバの生成工程(即ち、(B)工程及び(d)工程)の後に、触媒の除去工程を行ってもよい。ここで、触媒の除去方法は、特に限定されるものではなく、担持した触媒に応じて適宜選択することができ、例えば、塩酸、硫酸、硝酸、リン酸、酢酸、フッ酸、クロム酸、過酸化水素、過塩素酸、塩素酸、亜塩素酸、次亜塩素酸、クエン酸、シュウ酸、臭化水素等の酸や、水酸化ナトリウム、水酸化カリウム等のアルカリを用いることができる。 In the method for producing a carbon-based composite material of the present invention, a catalyst removal step may be performed after the carbon nanofiber generation step (that is, step (B) and step (d)). Here, the method for removing the catalyst is not particularly limited, and can be appropriately selected depending on the supported catalyst. For example, hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid, acetic acid, hydrofluoric acid, chromic acid, excess Acids such as hydrogen oxide, perchloric acid, chloric acid, chlorous acid, hypochlorous acid, citric acid, oxalic acid, and hydrogen bromide, and alkalis such as sodium hydroxide and potassium hydroxide can be used.
<固体高分子型燃料電池用電極>
本発明の固体高分子型燃料電池用電極は、上述の方法で製造した炭素系複合材料に金属、好ましくは貴金属の微粒子を担持してなる。なお、本発明では、炭素系複合材料のカーボンナノファイバに金属を担持することが好ましい。ここで、炭素系複合材料に担持する金属としては、Ptが特に好ましい。なお、本発明においては、Ptを単独で用いてもよいし、Ru等の他の金属との合金として用いてもよい。担持する金属としてPtを用いることで、100℃以下の低温でも水素を高効率で酸化することができる。また、PtとRu等の合金を用いることで、COによるPtの被毒を防止して、触媒の活性低下を防止することができる。なお、担持される金属が微粒子状の場合、該金属の粒径は、0.5〜100nmの範囲が好ましく、1〜50nmの範囲が更に好ましい。また、上記金属は、繊維状、ワイヤー状、薄膜状でもよい。該金属の担持率は、炭素系複合材料のカーボンナノファイバ1gに対して0.05〜5gの範囲が好ましい。ここで、上記金属の炭素系複合材料上への担持法としては、特に限定されるものではなく、例えば、含浸法、電気メッキ法(電解還元法)、無電解メッキ法、スパッタ法等が挙げられる。
<Electrode for polymer electrolyte fuel cell>
The electrode for a polymer electrolyte fuel cell of the present invention is formed by supporting fine particles of metal, preferably noble metal, on the carbon-based composite material produced by the above-described method. In the present invention, it is preferable to support a metal on the carbon nanofiber of the carbon-based composite material. Here, Pt is particularly preferable as the metal supported on the carbon-based composite material. In the present invention, Pt may be used alone or as an alloy with another metal such as Ru. By using Pt as the metal to be supported, hydrogen can be oxidized with high efficiency even at a low temperature of 100 ° C. or lower. Further, by using an alloy such as Pt and Ru, it is possible to prevent poisoning of Pt by CO and prevent a decrease in the activity of the catalyst. When the supported metal is in the form of fine particles, the particle size of the metal is preferably in the range of 0.5 to 100 nm, and more preferably in the range of 1 to 50 nm. The metal may be in the form of a fiber, a wire, or a thin film. The supporting rate of the metal is preferably in the range of 0.05 to 5 g with respect to 1 g of carbon nanofibers of the carbon-based composite material. Here, the method for supporting the metal on the carbon-based composite material is not particularly limited, and examples thereof include an impregnation method, an electroplating method (electrolytic reduction method), an electroless plating method, and a sputtering method. It is done.
また、本発明の固体高分子型燃料電池用電極においては、炭素系複合材料に金属を担持した後、担持した金属の一部を溶解させて、表面積を増大させてもよい。ここで、担持した金属の溶解には、例えば、塩酸、硫酸、硝酸、リン酸、酢酸、フッ酸、クロム酸、過酸化水素、過塩素酸、塩素酸、亜塩素酸、次亜塩素酸、クエン酸、シュウ酸、臭化水素等の酸や、水酸化ナトリウム、水酸化カリウム等のアルカリを用いることができる。 In the polymer electrolyte fuel cell electrode of the present invention, after the metal is supported on the carbon-based composite material, a part of the supported metal may be dissolved to increase the surface area. Here, for dissolution of the supported metal, for example, hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid, acetic acid, hydrofluoric acid, chromic acid, hydrogen peroxide, perchloric acid, chloric acid, chlorous acid, hypochlorous acid, Acids such as citric acid, oxalic acid, and hydrogen bromide, and alkalis such as sodium hydroxide and potassium hydroxide can be used.
本発明の固体高分子型燃料電池用電極においては、上記炭素系複合材料の炭素系多孔質支持体が主としてガス拡散層に相当し、金属が担持されたカーボンナノファイバ及び3次元連続状炭素繊維が主として触媒層に相当する。ガス拡散層は、水素等の燃料ガス、或いは、酸素や空気等の酸化剤ガスを上記触媒層へ供給し、発生した電子の授受を行うための層であり、ガスの拡散層としての機能と集電体としての機能を担う。 In the polymer electrolyte fuel cell electrode of the present invention, the carbon-based porous support of the carbon-based composite material mainly corresponds to a gas diffusion layer, and a carbon nanofiber and a three-dimensional continuous carbon fiber on which a metal is supported. Corresponds mainly to the catalyst layer. The gas diffusion layer is a layer for supplying a fuel gas such as hydrogen or an oxidant gas such as oxygen or air to the catalyst layer and transferring the generated electrons, and functions as a gas diffusion layer. It functions as a current collector.
上記触媒層には、高分子電解質を含浸させることが好ましく、該高分子電解質としては、イオン伝導性のポリマーを使用することができる。該イオン伝導性のポリマーとしては、スルホン酸、カルボン酸、ホスホン酸、亜ホスホン酸等のイオン交換基を有するポリマーを挙げることができ、該ポリマーはフッ素を含んでも、含まなくてもよい。該イオン伝導性のポリマーとして、具体的には、ナフィオン(登録商標)等のパーフルオロカーボンスルホン酸系ポリマー等が好ましい。該高分子電解質の含浸量は、触媒層のカーボンナノファイバ100質量部に対して、又はカーボンナノファイバ及び3次元連続状炭素繊維の合計100質量部に対して10〜500質量部の範囲が好ましい。なお、触媒層の厚さは、特に限定されるものではないが、0.1〜100μmの範囲が好ましい。また、触媒層の金属担持量は、前記担持率と触媒層の厚さにより定まり、0.001〜0.8mg/cm2の範囲が好ましい。 The catalyst layer is preferably impregnated with a polymer electrolyte, and an ion conductive polymer can be used as the polymer electrolyte. Examples of the ion conductive polymer include polymers having ion exchange groups such as sulfonic acid, carboxylic acid, phosphonic acid, and phosphonous acid, and the polymer may or may not contain fluorine. Specifically, the ion conductive polymer is preferably a perfluorocarbon sulfonic acid polymer such as Nafion (registered trademark). The amount of impregnation of the polymer electrolyte is preferably in the range of 10 to 500 parts by mass with respect to 100 parts by mass of the carbon nanofibers in the catalyst layer or 100 parts by mass in total of the carbon nanofibers and the three-dimensional continuous carbon fibers. . The thickness of the catalyst layer is not particularly limited, but is preferably in the range of 0.1 to 100 μm. Further, the metal loading amount of the catalyst layer is determined by the loading ratio and the thickness of the catalyst layer, and is preferably in the range of 0.001 to 0.8 mg / cm 2 .
<固体高分子型燃料電池>
本発明の固体高分子型燃料電池は、上記固体高分子型燃料電池用電極を備えることを特徴とする。本発明の固体高分子型燃料電池は、例えば、図3に示すように、膜電極接合体(MEA)11とその両側にそれぞれ位置するセパレータ12とを備える。膜電極接合体(MEA)11は、固体高分子電解質膜13とその両側に位置する燃料極14A及び空気極14Bとからなる。燃料極14Aでは、例えば、2H2→4H++4e-で表される反応が起こり、発生したH+は固体高分子電解質膜13を経て空気極14Bに至り、また、発生したe-は外部に取り出されて電流となる。一方、空気極14Bでは、O2+4H++4e-→2H2Oで表される反応が起こり、水が発生する。ここで、燃料極14A及び空気極14Bの少なくとも一方は、上述した本発明の固体高分子型燃料電池用電極である。また、燃料極14A及び空気極14Bは、それぞれ触媒層15及びガス拡散層16からなり、触媒層15が固体高分子電解質膜13に接触するように配置されている。
<Solid polymer fuel cell>
The polymer electrolyte fuel cell of the present invention comprises the above-mentioned electrode for a polymer electrolyte fuel cell. For example, as shown in FIG. 3, the polymer electrolyte fuel cell of the present invention includes a membrane electrode assembly (MEA) 11 and
なお、固体高分子電解質膜13としては、イオン伝導性のポリマーを使用することができ、該イオン伝導性のポリマーとしては、上記触媒層に含浸させることが可能な高分子電解質として例示したものを用いることができる。また、セパレータ12としては、表面に燃料、空気及び生成した水等の流路(図示せず)が形成された通常のセパレータを用いることができる。
As the solid
本発明の固体高分子型燃料電池においては、燃料極14A及び空気極14Bの少なくとも一方に、高表面積で、電子伝導性が高く、ガス透過性及び液体透過性に優れた炭素系複合材料に金属を担持してなる本発明の固体高分子型燃料電池用電極が用いられるため、該電極における燃料ガスや酸化剤ガスの物質移動がスムーズに行われ、また、反応で生成した水の排出もスムーズに行われ、燃料電池の出力が低下するのを防止することができる。
In the polymer electrolyte fuel cell of the present invention, at least one of the
以下に、実施例を挙げて本発明を更に詳しく説明するが、本発明は下記の実施例に何ら限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the following examples.
1.カーボンペーパーに直接カーボンナノファイバを生成
DCスパッタリングによりカーボンペーパー[東レ製]に膜厚およそ10nmのNi薄膜を成膜した。
1. Carbon nanofibers were directly formed on carbon paper. A Ni thin film having a thickness of about 10 nm was formed on carbon paper [manufactured by Toray Industries, Inc.] by DC sputtering.
熱CVD装置の反応管にNi薄膜を成膜したカーボンペーパーを配置し窒素を300sccmの流速で導入した。この状態で、反応管を450℃まで昇温させた。450℃に達したところで、エタノールを1ml/minの流速で反応管に導入した。窒素を止め、この状態で反応管をさらに昇温させ、反応温度である650℃まで上げた。650℃の状態で30分間反応させた。エタノールを止め、放冷し室温になったところでサンプルを取り出した。生成したものをSEMにより形態観察すると繊維径がおよそ10〜100nmのカーボンファイバが生成していることが確認できた。 Carbon paper on which a Ni thin film was formed was placed in a reaction tube of a thermal CVD apparatus, and nitrogen was introduced at a flow rate of 300 sccm. In this state, the temperature of the reaction tube was raised to 450 ° C. When the temperature reached 450 ° C., ethanol was introduced into the reaction tube at a flow rate of 1 ml / min. Nitrogen was stopped, and the temperature of the reaction tube was further raised in this state to raise the reaction temperature to 650 ° C. The reaction was carried out at 650 ° C. for 30 minutes. The ethanol was stopped and the sample was taken out when it was allowed to cool to room temperature. When the formed product was observed by SEM, it was confirmed that a carbon fiber having a fiber diameter of approximately 10 to 100 nm was generated.
2.カーボンペーパーにフィブリルカーボン調製後、直接カーボンナノファイバを生成
アニリンモノマー0.5mol/LとHBF4 1.0mol/Lとを含む酸性水溶液中に、カーボンペーパー[東レ製]からなる作用極を設置し、対極として白金板を使用し、室温にて15mA/cm2の定電流で3分間電解重合を行い、ポリアニリンを作用極上に電析させた。得られたポリアニリンをイオン交換水で洗浄後、24時間真空乾燥した後、カーボンペーパーごとAr雰囲気中3℃/分の昇温速度で950℃まで加熱し、その後950℃で1時間保持して焼成処理した。得られた焼成物をSEMで観察したところ、直径が50〜300nmのフィブリル状で3次元連続状の炭素繊維が、カーボンペーパー上に生成していることを確認した。
2. Directly generate carbon nanofibers after preparing fibril carbon on carbon paper Install a working electrode made of carbon paper [manufactured by Toray] in an acidic aqueous solution containing 0.5 mol / L aniline monomer and 1.0 mol / L HBF 4 A platinum plate was used, and electropolymerization was performed at a constant current of 15 mA / cm 2 at room temperature for 3 minutes to deposit polyaniline on the working electrode. The obtained polyaniline was washed with ion-exchanged water, vacuum-dried for 24 hours, then heated with carbon paper to 950 ° C at a rate of 3 ° C / min in an Ar atmosphere, and then held at 950 ° C for 1 hour for firing. Processed. When the obtained fired product was observed by SEM, it was confirmed that fibril-like and three-dimensional continuous carbon fibers having a diameter of 50 to 300 nm were formed on the carbon paper.
次に、DCスパッタリングによりフィブリルカーボン付カーボンペーパーに膜厚およそ10nmのNi薄膜を成膜した。 Next, a Ni thin film having a thickness of about 10 nm was formed on carbon paper with fibril carbon by DC sputtering.
熱CVD装置の反応管にNi薄膜を成膜したフィブリルカーボン付カーボンペーパーを配置し窒素を300sccmの流速で導入した。この状態で、反応管を450℃まで昇温させた。450℃に達したところで、エタノールを1ml/minの流速で反応管に導入した。窒素を止め、この状態で反応管をさらに昇温させ、反応温度である650℃まで上げた。650℃の状態で30分間反応させた。エタノールを止め、放冷し室温になったところでサンプルを取り出した。生成したものをSEMにより形態観察すると繊維径がおよそ10〜100nmのカーボンファイバが生成していることが確認できた。 Carbon paper with fibril carbon on which a Ni thin film was formed was placed in a reaction tube of a thermal CVD apparatus, and nitrogen was introduced at a flow rate of 300 sccm. In this state, the temperature of the reaction tube was raised to 450 ° C. When the temperature reached 450 ° C., ethanol was introduced into the reaction tube at a flow rate of 1 ml / min. Nitrogen was stopped, and the temperature of the reaction tube was further raised in this state to raise the reaction temperature to 650 ° C. The reaction was carried out at 650 ° C. for 30 minutes. The ethanol was stopped and the sample was taken out when it was allowed to cool to room temperature. When the formed product was observed by SEM, it was confirmed that a carbon fiber having a fiber diameter of approximately 10 to 100 nm was generated.
3.燃料電池評価
(実施例1(上記2を使用した場合))
3質量%の塩化白金酸水溶液中に上記炭素繊維を表面に有するカーボンペーパーを作用極として設置し、対極として白金板を使用し、室温にて30mA/cm2の定電流で電気メッキ(電解還元)を25秒間行い、炭素繊維上に白金を析出させ、白金担持量0.4mg/cm2の触媒構造体をカーボンペーパー上に形成した。ここで、作用極と白金板の配置は、カーボンペーパーの炭素繊維が付加した面が白金板に面するようにした。
3. Fuel cell evaluation (Example 1 (when 2 above is used))
A carbon paper with the above carbon fiber on the surface is installed as a working electrode in a 3% by mass chloroplatinic acid aqueous solution, a platinum plate is used as the counter electrode, and electroplating (electrolytic reduction) at a constant current of 30 mA / cm 2 at room temperature. ) For 25 seconds to deposit platinum on the carbon fiber to form a catalyst structure with a platinum loading of 0.4 mg / cm 2 on the carbon paper. Here, the working electrode and the platinum plate were arranged such that the surface of the carbon paper to which the carbon fibers were added faced the platinum plate.
上記カーボンペーパー上に形成した触媒構造体に、5質量%のナフィオン(登録商標)溶液を塗布した後、乾燥して、カーボンペーパー上に触媒層を形成した。次に、ナフィオン(登録商標)からなる固体高分子電解質膜(膜厚:175μm)の両面に上記触媒層が接触するように触媒層付きカーボンペーパーをそれぞれ配置し、ホットプレスにより膜電極接合体(MEA)を作製した。該膜電極接合体をエレクトロケム社製の試験セル(EFC25−01SP)に組み込み、燃料電池を作製した。該燃料電池の電圧−電流特性を、H2流量300cm3/分、O2流量300cm3/分、セル温度80℃、加湿温度80℃の条件で測定した。結果を図4に示す。 A 5 mass% Nafion (registered trademark) solution was applied to the catalyst structure formed on the carbon paper, and then dried to form a catalyst layer on the carbon paper. Next, carbon paper with a catalyst layer is arranged so that the catalyst layer is in contact with both surfaces of a solid polymer electrolyte membrane (film thickness: 175 μm) made of Nafion (registered trademark), and the membrane electrode assembly ( MEA) was prepared. The membrane electrode assembly was incorporated into a test cell (EFC25-01SP) manufactured by Electrochem to produce a fuel cell. The voltage-current characteristics of the fuel cell were measured under the conditions of an H 2 flow rate of 300 cm 3 / min, an O 2 flow rate of 300 cm 3 / min, a cell temperature of 80 ° C., and a humidification temperature of 80 ° C. The results are shown in FIG.
(比較例1)
エレクトロケミカル社製のMEA(固体高分子電解質膜:ナフィオン膜, 膜厚:130μm, 担体:粒状カーボン, 白金担持率20質量%, 白金担持量:1mg/cm2)を用いた以外は、実施例1と同様にして固体高分子型燃料電池を作製し、その電圧−電流特性を測定した。結果を図4に示す。
(Comparative Example 1)
Example except that MEA manufactured by Electrochemical Co. (solid polymer electrolyte membrane: Nafion membrane, film thickness: 130 μm, carrier: granular carbon, platinum loading 20 mass%, platinum loading: 1 mg / cm 2 ) In the same manner as in Example 1, a polymer electrolyte fuel cell was produced and its voltage-current characteristics were measured. The results are shown in FIG.
図4から、本発明の固体高分子型燃料電池は、従来のものに比べ、白金担持量を大幅に減じても、同等の電池性能を示し、白金の利用効率が大幅に改善されていることが分る。特に、本発明の固体高分子型燃料電池は、低電流側でのセル電圧が高いため、活性化分極が小さく、触媒層での化学反応に起因する電圧降下が小さいものと考えられる。 FIG. 4 shows that the polymer electrolyte fuel cell of the present invention shows equivalent cell performance and greatly improved platinum utilization efficiency even when the amount of platinum supported is greatly reduced compared to the conventional one. I understand. In particular, the polymer electrolyte fuel cell of the present invention is considered to have a small activation polarization and a small voltage drop due to a chemical reaction in the catalyst layer because the cell voltage on the low current side is high.
1 炭素系多孔質支持体
2 触媒
3 カーボンナノファイバ
4 フィブリル状ポリマー
5 3次元連続状炭素繊維
11 膜電極接合体(MEA)
12 セパレータ
13 固体高分子電解質膜
14A 燃料極
14B 空気極
15 触媒層
16 ガス拡散層
DESCRIPTION OF SYMBOLS 1 Carbon type
12
Claims (17)
(B)前記触媒が担持された炭素系の多孔質支持体に高温下で炭素含有化合物を接触させて、炭素系の多孔質支持体上にカーボンナノファイバを生成させる工程と
を含む、炭素系多孔質支持体とカーボンナノファイバとを含む炭素系複合材料の製造方法。 (A) a step of supporting a catalyst on a carbon-based porous support;
(B) contacting a carbon-containing porous support on which the catalyst is supported with a carbon-containing compound at a high temperature to produce carbon nanofibers on the carbon-based porous support. A method for producing a carbon-based composite material comprising a porous support and carbon nanofibers.
(b)前記フィブリル状ポリマーを焼成して3次元連続状の炭素繊維を生成させる工程と、
(c)前記3次元連続状の炭素繊維に触媒を担持する工程と、
(d)前記触媒が担持された3次元連続状の炭素繊維に高温下で炭素含有化合物を接触させて、3次元連続状の炭素繊維上にカーボンナノファイバを生成させる工程と
を含む、炭素系多孔質支持体と3次元連続状炭素繊維とカーボンナノファイバとを含む炭素系複合材料の製造方法。 (A) polymerizing an aromatic compound on a carbon-based porous support to form a fibrillated polymer on the carbon-based porous support;
(B) firing the fibrillated polymer to form a three-dimensional continuous carbon fiber;
(C) supporting a catalyst on the three-dimensional continuous carbon fiber;
(D) a step of bringing a carbon-containing compound into contact with a three-dimensional continuous carbon fiber carrying the catalyst at a high temperature to form a carbon nanofiber on the three-dimensional continuous carbon fiber. A method for producing a carbon-based composite material comprising a porous support, a three-dimensional continuous carbon fiber, and a carbon nanofiber.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005290256A JP2007099551A (en) | 2005-10-03 | 2005-10-03 | Carbon-based composite material and its manufacturing method, electrode for solid polymer type fuel cell and solid polymer type fuel cell |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005290256A JP2007099551A (en) | 2005-10-03 | 2005-10-03 | Carbon-based composite material and its manufacturing method, electrode for solid polymer type fuel cell and solid polymer type fuel cell |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2007099551A true JP2007099551A (en) | 2007-04-19 |
Family
ID=38026846
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005290256A Withdrawn JP2007099551A (en) | 2005-10-03 | 2005-10-03 | Carbon-based composite material and its manufacturing method, electrode for solid polymer type fuel cell and solid polymer type fuel cell |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2007099551A (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101350549B1 (en) * | 2012-10-16 | 2014-01-15 | 성균관대학교산학협력단 | Method for preparing carbon filter diposited by porous nickel |
CN103515624A (en) * | 2013-08-02 | 2014-01-15 | 清华大学 | Carbon supported non-noble metal oxygen reduction compound catalyst, and preparation method and application thereof |
JP2014098218A (en) * | 2012-11-14 | 2014-05-29 | Industrial Technology Research Institute | Fuel cell, carbon composite structure, and method of manufacturing the same |
JP2015186923A (en) * | 2015-05-25 | 2015-10-29 | 財團法人工業技術研究院Industrial Technology Research Institute | fuel cell and carbon composite structure |
US9180649B2 (en) | 2011-07-13 | 2015-11-10 | Industrial Technology Research Institute | Fuel cells, carbon composite structures and methods for manufacturing the same |
WO2016036663A1 (en) * | 2014-09-02 | 2016-03-10 | The University Of South Alabama | Porous nanocomposite and related method |
JP2016213157A (en) * | 2015-05-13 | 2016-12-15 | 昭和電工株式会社 | Fuel battery |
CN114824343A (en) * | 2022-04-07 | 2022-07-29 | 北京氢沄新能源科技有限公司 | Preparation method of carbon-based composite bipolar plate, bipolar plate and fuel cell |
CN116516685A (en) * | 2023-04-19 | 2023-08-01 | 重庆文理学院 | Preparation method of physiological monitoring multifunctional sensor |
-
2005
- 2005-10-03 JP JP2005290256A patent/JP2007099551A/en not_active Withdrawn
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9180649B2 (en) | 2011-07-13 | 2015-11-10 | Industrial Technology Research Institute | Fuel cells, carbon composite structures and methods for manufacturing the same |
KR101350549B1 (en) * | 2012-10-16 | 2014-01-15 | 성균관대학교산학협력단 | Method for preparing carbon filter diposited by porous nickel |
JP2014098218A (en) * | 2012-11-14 | 2014-05-29 | Industrial Technology Research Institute | Fuel cell, carbon composite structure, and method of manufacturing the same |
CN103515624A (en) * | 2013-08-02 | 2014-01-15 | 清华大学 | Carbon supported non-noble metal oxygen reduction compound catalyst, and preparation method and application thereof |
JP2017528611A (en) * | 2014-09-02 | 2017-09-28 | ユニバーシティ・オブ・サウス・アラバマ | Porous nanocomposite material and method for producing the same |
WO2016036663A1 (en) * | 2014-09-02 | 2016-03-10 | The University Of South Alabama | Porous nanocomposite and related method |
CN106795656A (en) * | 2014-09-02 | 2017-05-31 | 南阿拉巴马大学 | Porous nano composite and correlation technique |
JP2016213157A (en) * | 2015-05-13 | 2016-12-15 | 昭和電工株式会社 | Fuel battery |
JP2015186923A (en) * | 2015-05-25 | 2015-10-29 | 財團法人工業技術研究院Industrial Technology Research Institute | fuel cell and carbon composite structure |
CN114824343A (en) * | 2022-04-07 | 2022-07-29 | 北京氢沄新能源科技有限公司 | Preparation method of carbon-based composite bipolar plate, bipolar plate and fuel cell |
CN114824343B (en) * | 2022-04-07 | 2023-09-15 | 北京氢沄新能源科技有限公司 | Preparation method of carbon-based composite bipolar plate, bipolar plate and fuel cell |
CN116516685A (en) * | 2023-04-19 | 2023-08-01 | 重庆文理学院 | Preparation method of physiological monitoring multifunctional sensor |
CN116516685B (en) * | 2023-04-19 | 2024-03-22 | 重庆文理学院 | Preparation method of physiological monitoring multifunctional sensor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100728611B1 (en) | Catalyst for fuel cell electrode and method of preparing the same | |
JP2007099551A (en) | Carbon-based composite material and its manufacturing method, electrode for solid polymer type fuel cell and solid polymer type fuel cell | |
JP2007526616A (en) | Fuel cell with less platinum, catalyst and method for producing the same | |
JPWO2006054636A1 (en) | CARBON FIBER AND POROUS SUPPORT-CARBON FIBER COMPOSITE AND METHOD FOR PRODUCING THE SAME, CATALYST STRUCTURE, ELECTROLYTE FOR SOLID POLYMER FUEL CELL, AND SOLID POLYMER FUEL CELL | |
JP2007250274A (en) | Electrode catalyst for fuel cell with enhanced noble metal utilization efficiency, its manufacturing method, and solid polymer fuel cell equipped with this | |
JPWO2006003950A1 (en) | Composite, catalyst structure, electrode for polymer electrolyte fuel cell, method for producing the same, and polymer electrolyte fuel cell | |
CN103259023A (en) | Preparation method of hydrogen cell electrode material | |
JP4393459B2 (en) | Membrane electrode assembly for polymer electrolyte fuel cell and polymer electrolyte fuel cell | |
KR101995830B1 (en) | Supporter for fuel cell, method of preparing same, and electrode for fuel cell, membrane-electrode assembly for a fuel cell and fuel cell system including same | |
JP4892811B2 (en) | Electrocatalyst | |
KR100585551B1 (en) | Method for preparing electrodes for a fuel cell | |
JPWO2002027829A1 (en) | Fuel cell manufacturing method | |
JP2007227088A (en) | Electrode for polymer electrolyte fuel cell, its manufacturing method and treating method, and polymer electrolyte fuel cell | |
JP2007227064A (en) | Electrode for solid polymer fuel cell, its manufacturing method and activation method, as well as solid polymer fuel cell | |
JP2007242250A (en) | Solid polymer fuel cell electrode, membrane electrode assembly, and solid polymer type fuel cell | |
JP2009001845A (en) | Electroplating method with noble metal, noble metal-carried conductive material, electrode for solid polymer type fuel cell, and solid polymer type fuel cell | |
JP2008198438A (en) | Polymer electrolyte fuel cell | |
JP2008069494A (en) | Composite material of metal and carbon fibers, method for producing the same, electrode for polymer electrolyte fuel cell, and polymer electrolyte fuel cell | |
JP2009001846A (en) | Electroplating method with noble metal, noble metal-carried conductive material, electrode for solid polymer type fuel cell, and solid polymer type fuel cell | |
JP2008149485A (en) | Composite material, its manufacturing method, electrode for solid polymer type fuel cell using composite material and solid polymer type fuel cell | |
JP5251009B2 (en) | Electrocatalyst | |
WO2022097562A1 (en) | Carbon carrier and carbon carrier preparation method | |
JP2008204877A (en) | Electrode for solid polymer fuel cell, its manufacturing method and solid polymer fuel cell provided with the same | |
JP2008198436A (en) | Electrode for polymer electrolyte fuel cell, its manufacturing method, and polymer electrolyte fuel cell equipped with it | |
JP2008179909A (en) | Carbon fiber and method for producing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20090106 |