JP2008069494A - Composite material of metal and carbon fibers, method for producing the same, electrode for polymer electrolyte fuel cell, and polymer electrolyte fuel cell - Google Patents

Composite material of metal and carbon fibers, method for producing the same, electrode for polymer electrolyte fuel cell, and polymer electrolyte fuel cell Download PDF

Info

Publication number
JP2008069494A
JP2008069494A JP2006251324A JP2006251324A JP2008069494A JP 2008069494 A JP2008069494 A JP 2008069494A JP 2006251324 A JP2006251324 A JP 2006251324A JP 2006251324 A JP2006251324 A JP 2006251324A JP 2008069494 A JP2008069494 A JP 2008069494A
Authority
JP
Japan
Prior art keywords
metal
carbon fiber
electrode
polymer electrolyte
composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006251324A
Other languages
Japanese (ja)
Inventor
Atsushi Fukushima
敦 福島
Hideo Sugiyama
秀夫 杉山
Shinichi Toyosawa
真一 豊澤
Shinichiro Sugi
信一郎 杉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2006251324A priority Critical patent/JP2008069494A/en
Publication of JP2008069494A publication Critical patent/JP2008069494A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Catalysts (AREA)
  • Inorganic Fibers (AREA)
  • Inert Electrodes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a composite material of a metal and carbon fibers, which is capable of loading the metal on the carbon fibers uniformly, and excellent in productivity. <P>SOLUTION: This method for producing the composite material of the metal and carbon fibers includes: a process of installing a working electrode and a counter electrode in a solution containing a compound having an aromatic ring and a metal ion, impressing an electric voltage between the working electrode and counter electrode, and electrically plating the metal on a fibrillated polymer while forming the fibrillated polymer by performing an electrolytic oxidation polymerization of the compound having the aromatic ring on the working electrode; and a process of burning the fibrillated polymer plated with the metal to produce the carbon fibers loaded with the metal. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、金属と炭素繊維との複合体及びその製造方法、該複合体を含む固体高分子型燃料電池用電極、並びに該電極を具えた固体高分子型燃料電池に関し、特に炭素繊維上に金属を均一に担持することが可能で、生産性の高い、金属と炭素繊維との複合体の製造方法に関するものである。   The present invention relates to a composite of metal and carbon fiber, a method for producing the same, an electrode for a solid polymer fuel cell containing the composite, and a solid polymer fuel cell including the electrode, and more particularly to a carbon fiber. The present invention relates to a method for producing a composite of metal and carbon fiber, which can uniformly carry a metal and has high productivity.

昨今、発電効率が高く、環境への負荷が小さい電池として、燃料電池が注目を集めており、広く研究開発が行われている。燃料電池の中でも、出力密度が高く作動温度が低い固体高分子型燃料電池は、小型化や低コスト化が他のタイプの燃料電池よりも容易なことから、電気自動車用電源、分散発電システム、家庭用のコージェネレーションシステムとして広く普及することが期待されている。   In recent years, fuel cells have attracted attention as a battery with high power generation efficiency and a low environmental load, and extensive research and development has been conducted. Among fuel cells, polymer electrolyte fuel cells with high output density and low operating temperature are easier to reduce in size and cost than other types of fuel cells. It is expected to spread widely as a household cogeneration system.

一般に、上記固体高分子型燃料電池においては、固体高分子電解質膜を挟んで一対の電極を配置すると共に、一方の電極の表面に水素等の燃料ガスを接触させ、もう一方の電極の表面に酸素を含有する酸素含有ガスを接触させ、この時起こる電気化学反応を利用して、電極間から電気エネルギーを取り出している(非特許文献1及び2参照)。また、上記電極の高分子電解質膜に接する側には触媒層が配設されており、高分子電解質膜と触媒層とガスとの三相界面で電気化学反応が起こる。そのため、固体高分子型燃料電池の発電効率を向上させるためには、上記電気化学反応の反応場を大きくする必要がある。   In general, in the above polymer electrolyte fuel cell, a pair of electrodes are arranged with a polymer electrolyte membrane sandwiched between them, and a fuel gas such as hydrogen is brought into contact with the surface of one electrode, and the surface of the other electrode is contacted. An oxygen-containing gas containing oxygen is brought into contact, and electric energy is taken out between the electrodes by using an electrochemical reaction that occurs at this time (see Non-Patent Documents 1 and 2). A catalyst layer is disposed on the electrode in contact with the polymer electrolyte membrane, and an electrochemical reaction occurs at the three-phase interface between the polymer electrolyte membrane, the catalyst layer, and the gas. Therefore, in order to improve the power generation efficiency of the polymer electrolyte fuel cell, it is necessary to increase the reaction field of the electrochemical reaction.

上記電気化学反応の反応場を大きくすることが可能な触媒層を形成するために、一般に、白金等の貴金属触媒をカーボンブラック等の粒状カーボン上に担持した触媒粉を含有するペースト又はスラリーを、カーボンペーパー等の導電性の多孔質支持体上に塗布する方法が採られている。しかしながら、この方法で形成された触媒層を備える固体高分子型燃料電池は、発電効率が低かった。   In order to form a catalyst layer capable of increasing the reaction field of the electrochemical reaction, generally, a paste or slurry containing catalyst powder in which a noble metal catalyst such as platinum is supported on granular carbon such as carbon black, The method of apply | coating on electroconductive porous supports, such as carbon paper, is taken. However, the polymer electrolyte fuel cell including the catalyst layer formed by this method has low power generation efficiency.

これに対して、本発明者らは、カーボンペーパー等の導電性の多孔質支持体上において芳香環を有する化合物を重合させてフィブリル状ポリマーを生成させた後、該フィブリル状ポリマーを焼成して炭素繊維を作製し、該炭素繊維上に電気メッキにより貴金属を担持して作製した電極を固体高分子型燃料電池に使用することで、固体高分子型燃料電池の発電効率が向上することを見出している(特許文献1参照)。   On the other hand, the present inventors polymerized a compound having an aromatic ring on a conductive porous support such as carbon paper to produce a fibril polymer, and then calcined the fibril polymer. It has been found that the power generation efficiency of a polymer electrolyte fuel cell can be improved by using the electrode prepared by producing a carbon fiber and supporting a noble metal on the carbon fiber by electroplating in the polymer electrolyte fuel cell. (See Patent Document 1).

日本化学会編,「化学総説No.49,新型電池の材料化学」,学会出版センター,2001年,p.180−182The Chemical Society of Japan, “Chemical Review No. 49, Material Chemistry of New Batteries”, Academic Publishing Center, 2001, p. 180-182 「固体高分子型燃料電池<2001年版>」,技術情報協会,2001年,p.14−15“Polymer fuel cell <2001 edition>”, Technical Information Association, 2001, p. 14-15 国際公開第2004/063438号パンフレットInternational Publication No. 2004/063438 Pamphlet

しかしながら、本発明者らが更に検討を進めたところ、上記国際公開第2004/063438号に開示の電極は、炭素繊維の表面に貴金属が偏析しているため、貴金属の利用効率が不十分であることが分かった。また、国際公開第2004/063438号に記載の方法では、モノマーの電解重合工程と金属の電気メッキ工程とが別々に行われるため工程数が多く、生産性に改善の余地があることが分かった。   However, as a result of further investigation by the present inventors, the electrode disclosed in International Publication No. 2004/063438 has insufficient utilization efficiency of the noble metal because the noble metal is segregated on the surface of the carbon fiber. I understood that. Further, in the method described in International Publication No. 2004/063438, it was found that the electrolytic polymerization process of the monomer and the electroplating process of the metal are separately performed, so that the number of processes is large and there is room for improvement in productivity. .

そこで、本発明の目的は、上記従来技術の問題を解決し、炭素繊維上に金属を均一に担持することが可能で、生産性に優れた金属と炭素繊維との複合体の製造方法を提供することにある。また、本発明の他の目的は、かかる方法で製造された金属と炭素繊維との複合体、該複合体を含む固体高分子型燃料電池用電極、及び該電極を具えた固体高分子型燃料電池を提供することにある。   Accordingly, an object of the present invention is to solve the above-mentioned problems of the prior art, and to provide a method for producing a composite of metal and carbon fiber that is capable of uniformly supporting a metal on carbon fiber and has excellent productivity. There is to do. Another object of the present invention is to provide a composite of metal and carbon fiber produced by such a method, an electrode for a solid polymer fuel cell containing the composite, and a solid polymer fuel comprising the electrode. To provide a battery.

本発明者らは、上記目的を達成するために鋭意検討した結果、芳香環を有する化合物及び金属イオンを含有する溶液を準備し、該溶液中で芳香環を有する化合物の重合工程と、金属イオンによる電気メッキ工程を同時に行うことで、工程数を減じることができる上、フィブリル状ポリマー上に金属を均一に担持でき、また、該金属がメッキされたフィブリル状ポリマーを焼成して得た金属と炭素繊維との複合体が、固体高分子型燃料電池の触媒層として機能することを見出し、本発明を完成させるに至った。   As a result of intensive studies to achieve the above object, the present inventors prepared a solution containing a compound having an aromatic ring and a metal ion, a polymerization step of the compound having an aromatic ring in the solution, and a metal ion By simultaneously carrying out the electroplating step according to, the number of steps can be reduced, and the metal can be uniformly supported on the fibril polymer, and the metal obtained by firing the fibril polymer plated with the metal and The present inventors have found that a composite with carbon fiber functions as a catalyst layer of a polymer electrolyte fuel cell, and has completed the present invention.

即ち、本発明の金属と炭素繊維との複合体の製造方法は、
芳香環を有する化合物及び金属イオンを含有する溶液中に作用極及び対極を設置し、該作用極及び対極間に電圧を印加して、作用極上において前記芳香環を有する化合物を電解酸化重合してフィブリル状ポリマーを生成させつつ、該フィブリル状ポリマー上に金属を電気メッキする工程と、
前記金属がメッキされたフィブリル状ポリマーを焼成して、金属が担持された炭素繊維を生成させる工程と
を含むことを特徴とする。
That is, the method for producing a composite of a metal and carbon fiber according to the present invention includes:
A working electrode and a counter electrode are placed in a solution containing a compound having an aromatic ring and a metal ion, a voltage is applied between the working electrode and the counter electrode, and the compound having an aromatic ring is subjected to electrolytic oxidation polymerization on the working electrode. Electroplating a metal on the fibril polymer while producing the fibril polymer;
Firing the fibrillar polymer plated with the metal to produce carbon fibers carrying the metal.

本発明の金属と炭素繊維との複合体の製造方法において、前記芳香環を有する化合物としてはアニリンが好ましく、金属としてはPtが好ましく、前記作用極としてはカーボンペーパーが好ましい。   In the method for producing a composite of metal and carbon fiber of the present invention, the compound having an aromatic ring is preferably aniline, the metal is preferably Pt, and the working electrode is preferably carbon paper.

本発明の金属と炭素繊維との複合体の製造方法の好適例においては、前記作用極及び対極間に印加する電流の電流密度が-100mA/cm2〜50mA/cm2である。 In a preferred embodiment of the method for producing a composite of metal and carbon fiber according to the present invention, the current density of the current applied between the working electrode and the counter electrode is -100 mA / cm 2 to 50 mA / cm 2 .

本発明の金属と炭素繊維との複合体の製造方法の他の好適例においては、前記焼成を非酸化性雰囲気中で行う。   In another preferred embodiment of the method for producing a composite of metal and carbon fiber of the present invention, the firing is performed in a non-oxidizing atmosphere.

また、本発明の金属と炭素繊維との複合体は、上記の方法で製造されたことを特徴とし、本発明の固体高分子型燃料電池用電極は、該金属と炭素繊維との複合体と、多孔質支持体とを具えることを特徴とし、本発明の固体高分子型燃料電池は、該固体高分子型燃料電池用電極を具えることを特徴とする。   In addition, the composite of the metal and carbon fiber of the present invention is manufactured by the above-described method, and the electrode for the solid polymer fuel cell of the present invention includes a composite of the metal and carbon fiber. The polymer electrolyte fuel cell of the present invention includes the electrode for the polymer electrolyte fuel cell.

本発明によれば、芳香環を有する化合物及び金属イオンを含有する溶液を準備し、該溶液中で芳香環を有する化合物の電解酸化重合工程と、金属イオンによる電気メッキ工程を同時に行うことで、炭素繊維上に金属が均一に担持された金属と炭素繊維との複合体を高い生産性で製造することができる。また、該複合体を含む固体高分子型燃料電池用電極、及び該電極を具えた固体高分子型燃料電池を提供することができる。   According to the present invention, by preparing a solution containing a compound having an aromatic ring and a metal ion, and performing an electrolytic oxidation polymerization step of the compound having an aromatic ring in the solution and an electroplating step with the metal ion simultaneously, A composite of metal and carbon fiber in which the metal is uniformly supported on the carbon fiber can be produced with high productivity. In addition, an electrode for a polymer electrolyte fuel cell containing the composite and a polymer electrolyte fuel cell including the electrode can be provided.

<金属と炭素繊維との複合体及びその製造方法>
以下に、本発明の金属と炭素繊維との複合体及びその製造方法を詳細に説明する。本発明の金属と炭素繊維との複合体の製造方法は、芳香環を有する化合物及び金属イオンを含有する溶液中に作用極及び対極を設置し、該作用極及び対極間に電圧を印加して、作用極上において前記芳香環を有する化合物を電解酸化重合してフィブリル状ポリマーを生成させつつ、該フィブリル状ポリマー上に金属を電気メッキする工程と、前記金属がメッキされたフィブリル状ポリマーを焼成して、金属が担持された炭素繊維を生成させる工程とを含むことを特徴とし、また、本発明の金属と炭素繊維との複合体は、かかる方法で製造されたことを特徴とする。
<Metal and carbon fiber composite and method for producing the same>
Below, the composite_body | complex of the metal of this invention and carbon fiber and its manufacturing method are demonstrated in detail. In the method for producing a composite of metal and carbon fiber according to the present invention, a working electrode and a counter electrode are placed in a solution containing a compound having an aromatic ring and a metal ion, and a voltage is applied between the working electrode and the counter electrode. An electrooxidation polymerization of the compound having an aromatic ring on the working electrode to produce a fibril polymer, and electroplating a metal on the fibril polymer; and firing the fibril polymer plated with the metal. And a step of producing a metal-supported carbon fiber, and the composite of the metal and carbon fiber of the present invention is manufactured by such a method.

本発明の製造方法では、芳香環を有する化合物を電解酸化重合工程と、金属イオンによる電気メッキ工程とが同時に行われるため、国際公開第2004/063438号に記載の方法よりも、工程数が少なく、生産性が高い。また、国際公開第2004/063438号に記載の方法のように、重合工程及び焼成工程の後に、メッキ工程を行うと、支持体上に形成された炭素繊維層の表面近傍に金属が偏析する傾向があるが、本発明では、重合工程とメッキ工程が同時に行われるため、フィブリル状ポリマー中に金属が均一に担持され、該金属担持フィブリル状ポリマーを焼成することで、金属が内部まで均一に担持された炭素繊維が得られる。そして、本発明の方法で製造される金属と炭素繊維との複合体は、金属が炭素繊維内部まで均一に担持されているため、金属の単位質量当りの表面積が大きく、金属の利用効率が高いため、金属使用量を削減しても、十分な触媒作用が得られる。   In the production method of the present invention, since the electrolytic oxidation polymerization step and the metal plating electroplating step are simultaneously performed on the compound having an aromatic ring, the number of steps is less than the method described in International Publication No. 2004/063438. High productivity. Further, as in the method described in International Publication No. 2004/063438, when the plating step is performed after the polymerization step and the firing step, the metal tends to segregate near the surface of the carbon fiber layer formed on the support. However, in the present invention, since the polymerization process and the plating process are performed at the same time, the metal is uniformly supported in the fibril polymer, and the metal is uniformly supported to the inside by firing the metal supported fibril polymer. Carbon fiber is obtained. And the composite of the metal and carbon fiber manufactured by the method of the present invention has a large surface area per unit mass of the metal because the metal is uniformly supported to the inside of the carbon fiber, and the utilization efficiency of the metal is high. Therefore, even if the amount of metal used is reduced, sufficient catalytic action can be obtained.

本発明の製造方法では、まず、芳香環を有する化合物及び金属イオンを含有する溶液を準備する。ここで、該溶液の溶媒としては、一般に水が使用される。また、芳香環を有する化合物としては、ベンゼン環を有する化合物、芳香族複素環を有する化合物を挙げることができ、ベンゼン環を有する化合物としては、アニリン及びアニリン誘導体が好ましく、芳香族複素環を有する化合物としては、ピロール、チオフェン及びこれらの誘導体が好ましい。これら芳香環を有する化合物は、一種単独で用いてもよいし、二種以上の混合物として用いてもよい。なお、溶液中の芳香環を有する化合物の濃度は、0.05〜3mol/Lが好ましく、0.25〜1.5mol/Lがより好ましい。   In the production method of the present invention, first, a solution containing a compound having an aromatic ring and a metal ion is prepared. Here, water is generally used as the solvent of the solution. In addition, examples of the compound having an aromatic ring include a compound having a benzene ring and a compound having an aromatic heterocycle. As the compound having a benzene ring, aniline and aniline derivatives are preferable, and an aromatic heterocycle is included. As the compound, pyrrole, thiophene and derivatives thereof are preferable. These compounds having an aromatic ring may be used singly or as a mixture of two or more. The concentration of the compound having an aromatic ring in the solution is preferably 0.05 to 3 mol / L, more preferably 0.25 to 1.5 mol / L.

一方、金属イオンとしては、Ptイオン、Ruイオン等の貴金属イオンが好ましく、Ptイオンが特に好ましい。該金属イオンは、金属イオンと陰イオンからなる塩を水等の溶媒に溶解させることで、発生させることができる。ここで、溶液中の金属イオンの濃度は、0.1mol/L以下が好ましく、0.01〜0.03mol/Lがより好ましい。   On the other hand, as the metal ions, noble metal ions such as Pt ions and Ru ions are preferable, and Pt ions are particularly preferable. The metal ion can be generated by dissolving a salt composed of a metal ion and an anion in a solvent such as water. Here, the concentration of the metal ion in the solution is preferably 0.1 mol / L or less, and more preferably 0.01 to 0.03 mol / L.

上記溶液には、芳香環を有する化合物及び金属イオンに加え、酸を混在させることが好ましい。この場合、酸の負イオンがドーパントとして合成されるフィブリル状ポリマー中に取り込まれ、導電性に優れたフィブリル状ポリマーが得られ、このフィブリル状ポリマーを用いることにより最終的に炭素繊維の導電性を更に向上させることができる。ここで、酸としては、HBF4、H2SO4、HCl、HClO4等を例示することができ、該酸の濃度は、0.1〜3mol/Lの範囲が好ましく、0.5〜2.5mol/Lの範囲がより好ましい。 In the solution, it is preferable to mix an acid in addition to the compound having an aromatic ring and the metal ion. In this case, the negative ion of the acid is taken into the fibril polymer synthesized as a dopant to obtain a fibril polymer excellent in conductivity. By using this fibril polymer, the conductivity of the carbon fiber is finally improved. Further improvement can be achieved. Here, examples of the acid include HBF 4 , H 2 SO 4 , HCl, HClO 4, and the like. The concentration of the acid is preferably in the range of 0.1 to 3 mol / L, and 0.5 to 2.5 mol / L. A range is more preferred.

また、上記溶液には、芳香環を有する化合物、金属イオン及び酸に加え、pHを調製するために可溶性塩等を適宜添加してもよい。   In addition to the compound having an aromatic ring, metal ions, and an acid, a soluble salt or the like may be appropriately added to the solution in order to adjust pH.

本発明の製造方法では、上記溶液中に作用極及び対極を設置し、該作用極及び対極間に上記芳香環を有する化合物の酸化電位以上の電圧、好ましくは、電流密度が-100mA/cm2〜50mA/cm2の電圧を印加して、作用極上において前記芳香環を有する化合物を電解酸化重合してフィブリル状ポリマーを生成させつつ、該フィブリル状ポリマー上に金属を電気メッキする。なお、通電量(単位:クーロン)は、芳香環を有する化合物の重合量と金属のメッキ量が2:1となるように設定することが好ましい。ここで、作用極及び対極としては、ステンレススチール、白金、カーボン等の良導電性物質からなる板や多孔質支持体等を用いることができ、また、作用極としては、カーボンペーパーが特に好ましい。 In the production method of the present invention, a working electrode and a counter electrode are installed in the solution, and a voltage higher than the oxidation potential of the compound having the aromatic ring between the working electrode and the counter electrode, preferably a current density of −100 mA / cm 2. A voltage of ˜50 mA / cm 2 is applied, and the compound having an aromatic ring is electrolytically oxidized and polymerized on the working electrode to form a fibril polymer, and then a metal is electroplated on the fibril polymer. The energization amount (unit: coulomb) is preferably set so that the polymerization amount of the compound having an aromatic ring and the metal plating amount are 2: 1. Here, as the working electrode and the counter electrode, a plate made of a highly conductive material such as stainless steel, platinum, and carbon, a porous support, and the like can be used, and as the working electrode, carbon paper is particularly preferable.

上記にようにして、芳香環を有する化合物及び金属イオンを含有する溶液中に電圧を印加することで、作用極上において、金属がメッキされたフィブリル状ポリマーが生成する。該金属がメッキされたフィブリル状ポリマーにおいて、フィブリル状ポリマーは、通常、3次元連続構造を有し、直径が30〜数百nmで、好ましくは40〜500nmであり、長さが0.5〜100000μmで、好ましくは1〜10000μmである。一方、担持される金属は、溶液中に含まれる金属イオンに対応し、該金属としては、Pt、Ru等の貴金属が好ましく、Ptが特に好ましい。また、該金属の粒径は、50nm以下であることが好ましく、10nm以下であることがより好ましい。   As described above, by applying a voltage to a solution containing a compound having an aromatic ring and a metal ion, a fibrillated polymer plated with a metal is generated on the working electrode. In the fibril-like polymer plated with the metal, the fibril-like polymer usually has a three-dimensional continuous structure, a diameter of 30 to several hundred nm, preferably 40 to 500 nm, and a length of 0.5 to 100,000 μm. The thickness is preferably 1 to 10,000 μm. On the other hand, the supported metal corresponds to a metal ion contained in the solution, and as the metal, a noble metal such as Pt or Ru is preferable, and Pt is particularly preferable. Further, the particle size of the metal is preferably 50 nm or less, and more preferably 10 nm or less.

本発明の製造方法では、上記のようにして作用極上に得られた金属担持フィブリル状ポリマーを、水や有機溶剤等の溶媒で洗浄し、乾燥させた後、焼成して炭化、好ましくは、非酸化性雰囲気中で焼成して炭化することで、金属担持炭素繊維が得られる。ここで、乾燥方法としては、特に制限されるものではないが、風乾、真空乾燥の他、流動床乾燥装置、気流乾燥機、スプレードライヤー等を使用した方法を例示することができる。また、焼成条件としては、特に限定されるものではなく、最適導電率となるように適宜設定すればよいが、特に高導電率を必要とする場合は、温度500〜3000℃、好ましくは600〜2800℃で、0.5〜6時間焼成することが好ましい。なお、非酸化性雰囲気としては、窒素雰囲気、アルゴン雰囲気、ヘリウム雰囲気等を挙げることができ、場合によっては水素雰囲気とすることもできる。   In the production method of the present invention, the metal-supported fibrillar polymer obtained on the working electrode as described above is washed with a solvent such as water or an organic solvent, dried and then calcined by firing, preferably non- By firing and carbonizing in an oxidizing atmosphere, a metal-supported carbon fiber can be obtained. Here, the drying method is not particularly limited, and examples thereof include a method using a fluidized bed drying device, an air dryer, a spray dryer, etc., in addition to air drying and vacuum drying. In addition, the firing conditions are not particularly limited, and may be set as appropriate so as to obtain the optimum conductivity. Particularly, when high conductivity is required, the temperature is 500 to 3000 ° C., preferably 600 to Baking is preferably performed at 2800 ° C. for 0.5 to 6 hours. Note that examples of the non-oxidizing atmosphere include a nitrogen atmosphere, an argon atmosphere, and a helium atmosphere, and in some cases, a hydrogen atmosphere can also be used.

上記金属担持炭素繊維において、炭素繊維は、通常、3次元連続構造を有し、直径が30〜数百nm、好ましくは40〜500nmであり、長さが0.5〜100000μm、好ましくは1〜10000μmであり、表面抵抗が106〜10-2Ω、好ましくは104〜10-2Ωである。また、該炭素繊維は、残炭率が95〜30%、好ましくは90〜40%である。該炭素繊維は、カーボン全体が3次元に連続した構造を有するため、粒状カーボンよりも導電性が高い。一方、炭素繊維上の金属の粒径は、50nm以下であることが好ましく、10nm以下であることがより好ましい。 In the metal-supported carbon fiber, the carbon fiber usually has a three-dimensional continuous structure, has a diameter of 30 to several hundred nm, preferably 40 to 500 nm, and has a length of 0.5 to 100,000 μm, preferably 1 to 10,000 μm. And the surface resistance is 10 6 to 10 −2 Ω, preferably 10 4 to 10 −2 Ω. The carbon fiber has a residual carbon ratio of 95 to 30%, preferably 90 to 40%. Since the carbon fiber has a structure in which the entire carbon is three-dimensionally continuous, the carbon fiber has higher conductivity than the granular carbon. On the other hand, the particle size of the metal on the carbon fiber is preferably 50 nm or less, and more preferably 10 nm or less.

<固体高分子型燃料電池用電極>
次に、本発明の固体高分子型燃料電池用電極を詳細に説明する。本発明の固体高分子型燃料電池用電極は、上述の金属と炭素繊維との複合体と、多孔質支持体とを具えることを特徴とし、燃料極としても、空気極(酸素極)としても使用できる。ここで、該固体高分子型燃料電池用電極は、多孔質支持体がガス拡散層として機能し、金属と炭素繊維との複合体が触媒層として機能する。
<Electrode for polymer electrolyte fuel cell>
Next, the polymer electrolyte fuel cell electrode of the present invention will be described in detail. An electrode for a polymer electrolyte fuel cell of the present invention comprises the above-mentioned composite of metal and carbon fiber and a porous support, and as an anode, an air electrode (oxygen electrode) Can also be used. Here, in the polymer electrolyte fuel cell electrode, the porous support functions as a gas diffusion layer, and the composite of metal and carbon fiber functions as a catalyst layer.

本発明の固体高分子型燃料電池用電極の多孔質支持体は、金属と炭素繊維との複合体(触媒層)へ水素ガス等の燃料、或いは、酸素や空気等の酸素含有ガスを供給するガス拡散層としての機能と、発生した電子の授受を行う集電体としての機能を担う。該多孔質支持体に用いる材質としては、多孔質で且つ電子伝導性を有するものであればよく、具体的には、カーボンペーパー、多孔質のカーボン布等が挙げられ、カーボンペーパーが好ましい。なお、上記複合体の製造において、カーボンペーパー等の多孔質支持体を作用極として用いることで、多孔質支持体上に複合体を形成することで、本発明の固体高分子型燃料電池用電極を作製することができる。   The porous support for a polymer electrolyte fuel cell electrode of the present invention supplies a fuel such as hydrogen gas or an oxygen-containing gas such as oxygen or air to a composite (catalyst layer) of metal and carbon fiber. It functions as a gas diffusion layer and as a current collector that exchanges generated electrons. The material used for the porous support may be any material that is porous and has electronic conductivity, and specific examples include carbon paper and porous carbon cloth, and carbon paper is preferred. In the production of the above composite, by using a porous support such as carbon paper as a working electrode, a composite is formed on the porous support, so that the electrode for the polymer electrolyte fuel cell of the present invention is formed. Can be produced.

本発明の固体高分子型燃料電池用電極は、多孔質支持体と、該多孔質支持体上に配置された上記金属と炭素繊維との複合体と、該複合体に含浸された高分子電解質とからなることが好ましい。該高分子電解質としては、イオン伝導性のポリマーを使用することができ、該イオン伝導性のポリマーとしては、スルホン酸、カルボン酸、ホスホン酸、亜ホスホン酸等のイオン交換基を有するポリマーを挙げることができ、該ポリマーはフッ素を含んでも、含まなくてもよい。該イオン伝導性のポリマーとしては、ナフィオン(登録商標)等のパーフルオロカーボンスルホン酸系ポリマー等が挙げられる。該高分子電解質の含浸量は、複合体100質量部に対して10〜500質量部の範囲が好ましい。なお、触媒層(複合体)の厚さは、特に限定されるものではないが、0.1〜100μmの範囲が好ましい。   An electrode for a polymer electrolyte fuel cell according to the present invention includes a porous support, a composite of the metal and carbon fiber disposed on the porous support, and a polymer electrolyte impregnated in the composite It is preferable to consist of. As the polyelectrolyte, an ion conductive polymer can be used. Examples of the ion conductive polymer include polymers having ion exchange groups such as sulfonic acid, carboxylic acid, phosphonic acid, and phosphonous acid. And the polymer may or may not contain fluorine. Examples of the ion conductive polymer include perfluorocarbon sulfonic acid polymers such as Nafion (registered trademark). The amount of impregnation of the polymer electrolyte is preferably in the range of 10 to 500 parts by mass with respect to 100 parts by mass of the composite. The thickness of the catalyst layer (composite) is not particularly limited, but is preferably in the range of 0.1 to 100 μm.

<固体高分子型燃料電池>
次に、図1を参照しながら、本発明の固体高分子型燃料電池を詳細に説明する。図示例の固体高分子型燃料電池は、膜電極接合体(MEA)1とその両側に位置するセパレータ2とを具える。膜電極接合体(MEA)1は、固体高分子電解質膜3とその両側に位置する燃料極4A及び空気極4Bとからなる。燃料極4Aでは、2H2→4H++4e-で表される反応が起こり、発生したH+は固体高分子電解質膜3を経て空気極4Bに至り、また、発生したe-は外部に取り出されて電流となる。一方、空気極4Bでは、O2+4H++4e-→2H2Oで表される反応が起こり、水が発生する。
<Solid polymer fuel cell>
Next, the polymer electrolyte fuel cell of the present invention will be described in detail with reference to FIG. The illustrated polymer electrolyte fuel cell includes a membrane electrode assembly (MEA) 1 and separators 2 located on both sides thereof. The membrane electrode assembly (MEA) 1 includes a solid polymer electrolyte membrane 3 and fuel electrodes 4A and air electrodes 4B located on both sides thereof. In the fuel electrode 4A, a reaction represented by 2H 2 → 4H + + 4e occurs, the generated H + passes through the solid polymer electrolyte membrane 3 to the air electrode 4B, and the generated e is taken out to the outside. Current. On the other hand, in the air electrode 4B, a reaction represented by O 2 + 4H + + 4e → 2H 2 O occurs, and water is generated.

燃料極4A及び空気極4Bは、触媒層5及び多孔質支持体(ガス拡散層)6からなり、触媒層5が固体高分子電解質膜3に接触するように配置されている。ここで、触媒層5は、上述の金属と炭素繊維との複合体からなり、金属が均一に担持されており、金属の表面積が非常に広いため、固体高分子電解質膜3と触媒層5とガスとの三相界面での電気化学反応の反応場が非常に広い。そのため、本発明の固体高分子型燃料電池は、発電効率が高い。   The fuel electrode 4 </ b> A and the air electrode 4 </ b> B include a catalyst layer 5 and a porous support (gas diffusion layer) 6, and are arranged so that the catalyst layer 5 is in contact with the solid polymer electrolyte membrane 3. Here, the catalyst layer 5 is composed of a composite of the above-described metal and carbon fiber, and the metal is uniformly supported, and the surface area of the metal is very large. Therefore, the solid polymer electrolyte membrane 3 and the catalyst layer 5 The reaction field of electrochemical reaction at the three-phase interface with gas is very wide. Therefore, the polymer electrolyte fuel cell of the present invention has high power generation efficiency.

なお、固体高分子電解質膜3としては、イオン伝導性のポリマーを使用することができ、該イオン伝導性のポリマーとしては、上記触媒層に含浸させることが可能な高分子電解質として例示したものを用いることができる。また、セパレータ2としては、表面に燃料、空気及び生成した水等の流路(図示せず)が形成された通常のセパレータを用いることができる。   In addition, as the solid polymer electrolyte membrane 3, an ion conductive polymer can be used. As the ion conductive polymer, those exemplified as the polymer electrolyte that can be impregnated in the catalyst layer are used. Can be used. Moreover, as the separator 2, the normal separator with which flow paths (not shown), such as fuel, air, and produced | generated water, were formed in the surface can be used.

以下に、実施例を挙げて本発明を更に詳しく説明するが、本発明は下記の実施例に何ら限定されるものではない。   Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the following examples.

(実施例1)
1MのH2SO4及び0.5Mのアニリンを含む水溶液(重合液)500mLに、0.02MのH2[PtCl6]の水溶液(メッキ液)500mLを混合した。次に、該混合液にカーボンペーパー[東レ製]からなる作用極を設置し、対極として白金板を使用し、室温にて+50mA/cm2の電流(重合に使われる)と-100mA/cm2の電流(Ptメッキに使われる)を交互に印加することで、白金担持フィブリル状ポリアニリンを得た。得られた白金担持ポリアニリンをイオン交換水で洗浄し、24時間真空乾燥した後、カーボンペーパーごとAr雰囲気中10℃/分の昇温速度で950℃まで加熱し、その後950℃で1時間保持し焼成処理して白金担持炭素繊維を得た。得られた白金担持炭素繊維のSEM写真を図2に示す。
(Example 1)
To 500 mL of an aqueous solution (polymerization solution) containing 1 M H 2 SO 4 and 0.5 M aniline, 500 mL of an aqueous solution (plating solution) of 0.02 M H 2 [PtCl 6 ] was mixed. Next, a working electrode made of carbon paper [manufactured by Toray] is installed in the mixed solution, a platinum plate is used as a counter electrode, and a current of +50 mA / cm 2 (used for polymerization) and -100 mA / cm at room temperature. By alternately applying a current of 2 (used in Pt plating), platinum-supported fibrillar polyaniline was obtained. The obtained platinum-supported polyaniline was washed with ion-exchanged water, vacuum-dried for 24 hours, then heated together with carbon paper to 950 ° C at a heating rate of 10 ° C / min in an Ar atmosphere, and then held at 950 ° C for 1 hour. A platinum-supporting carbon fiber was obtained by firing treatment. An SEM photograph of the obtained platinum-supported carbon fiber is shown in FIG.

(比較例1)
1MのH2SO4及び0.5Mのアニリンを含む水溶液にカーボンペーパー[東レ製]からなる作用極を設置し、対極として白金板を使用し、室温にて+50mA/cm2の電流を印加して、電解重合を行い、作用極上にフィブリル状ポリアニリンを電析させた。得られたポリアニリンをイオン交換水で洗浄し、24時間真空乾燥した後、カーボンペーパーごとAr雰囲気中10℃/分の昇温速度で950℃まで加熱し、その後950℃で1時間保持し焼成処理して炭素繊維を得た。その後、得られた炭素繊維をカーボンペーパーごと作用極として0.02MのH2[PtCl6]の水溶液中に設置し、対極として白金板を使用し、-100mA/cm2の電流を印加して、Ptを電気メッキして、白金担持炭素繊維を得た。得られた白金担持炭素繊維のSEM写真を図3に示す。
(Comparative Example 1)
A working electrode made of carbon paper [Toray] is installed in an aqueous solution containing 1M H 2 SO 4 and 0.5M aniline, a platinum plate is used as the counter electrode, and a current of +50 mA / cm 2 is applied at room temperature. Then, electrolytic polymerization was performed, and fibrillar polyaniline was electrodeposited on the working electrode. The obtained polyaniline was washed with ion-exchanged water, vacuum-dried for 24 hours, then heated together with carbon paper to 950 ° C at a heating rate of 10 ° C / min in an Ar atmosphere, and then held at 950 ° C for 1 hour for firing treatment To obtain carbon fiber. Then, the obtained carbon fiber was placed in a 0.02M H 2 [PtCl 6 ] aqueous solution as a working electrode together with the carbon paper, a platinum plate was used as a counter electrode, and a current of −100 mA / cm 2 was applied, Pt was electroplated to obtain platinum-supported carbon fibers. An SEM photograph of the obtained platinum-supported carbon fiber is shown in FIG.

図2から、アニリンの重合工程と白金のメッキ工程を同時に行って作製した実施例1の白金担持炭素繊維は、SEMで観察しても白金粒子が観察されず、極微小な白金粒子が炭素繊維中に均一に担持されていることが分かる。一方、アニリンの重合工程と白金のメッキ工程を別々に行って作製した比較例1の金担持炭素繊維は、SEMでの観察により白金粒子(写真中の白色の部分)が観察され、担持された白金の粒子径が大きいことが分かる。   From FIG. 2, the platinum-supported carbon fiber of Example 1 prepared by simultaneously performing the aniline polymerization step and the platinum plating step shows no platinum particles even when observed with an SEM. It can be seen that it is uniformly supported inside. On the other hand, in the gold-supported carbon fiber of Comparative Example 1 prepared by separately performing the aniline polymerization step and the platinum plating step, platinum particles (white portions in the photograph) were observed and supported by observation with an SEM. It can be seen that the particle size of platinum is large.

<CV測定>
次に、実施例1で得た白金担持炭素繊維に対して、CV(サイクリックボルタンメトリー)測定を行った。具体的には、電極面積1cm2に調製した白金担持炭素繊維付きカーボンペーパーを0.5MのH2SO4溶液に浸漬し、対極として白金板を使用し、-0.2V〜1.2VのCV測定を行った。なお、標準電極としてはAg/AgClを用い、O2バブリング雰囲気下、電圧掃引速度:100mV/秒で行った。結果を図4に示す。また、比較として、カーボンペーパー単体、及び白金未担持の炭素繊維付きカーボンペーパーについてもCV測定を行った。なお、白金未担持の炭素繊維付きカーボンペーパーは、以下のようにして作製した。
<CV measurement>
Next, CV (cyclic voltammetry) measurement was performed on the platinum-supported carbon fiber obtained in Example 1. Specifically, carbon paper with platinum-supported carbon fibers prepared to have an electrode area of 1 cm 2 is immersed in a 0.5 M H 2 SO 4 solution, a platinum plate is used as a counter electrode, and CV measurement of −0.2 V to 1.2 V is performed. went. In addition, Ag / AgCl was used as a standard electrode, and the voltage sweep rate was 100 mV / sec in an O 2 bubbling atmosphere. The results are shown in FIG. In addition, as a comparison, CV measurement was also performed on carbon paper alone and carbon paper with carbon fiber not carrying platinum. In addition, the carbon paper with carbon fiber not carrying platinum was produced as follows.

(白金未担持の炭素繊維付きカーボンペーパーの作製)
アニリン 0.5mol/Lと硫酸 1.0mol/Lとを含む酸性水溶液中に、作用極としてカーボンペーパー[東レ製]を設置し、対極として白金板を設置し、室温にて35mA/cm2の定電流を印加し、合計電気量が3C/cm2になるまで電解酸化重合を行い、作用極上にポリアニリンを電析させた。得られたポリアニリンを純水で十分に洗浄した後、24時間真空乾燥した。その後、得られたポリアニリンをカーボンペーパーごとAr減圧雰囲気中3℃/分の昇温速度で950℃まで加熱し、該温度で1時間保持して焼成処理を行い、カーボンペーパー上に炭素繊維を作製した。
(Production of carbon paper with carbon fiber not carrying platinum)
In an acidic aqueous solution containing aniline 0.5 mol / L and sulfuric acid 1.0 mol / L, carbon paper [manufactured by Toray] was installed as the working electrode, a platinum plate was installed as the counter electrode, and a constant current of 35 mA / cm 2 at room temperature. Was applied, and electrolytic oxidation polymerization was performed until the total amount of electricity reached 3 C / cm 2 , and polyaniline was electrodeposited on the working electrode. The obtained polyaniline was thoroughly washed with pure water and then vacuum-dried for 24 hours. Thereafter, the obtained polyaniline is heated to 950 ° C. at a temperature rising rate of 3 ° C./min in an Ar reduced pressure atmosphere together with the carbon paper, and kept at that temperature for 1 hour to perform a firing process, thereby producing carbon fibers on the carbon paper. did.

図4の結果から、カーボンペーパー単体や炭素繊維付きカーボンペーパーのCV測定では、ピークが観測されなかったが、実施例1の白金担持炭素繊維付きカーボンペーパーのCV測定では、ピークが観測された。このことから、本発明に従って得られる金属と炭素繊維との複合体は、固体高分子型燃料電池の触媒層として触媒作用を有することが確認された。   From the results of FIG. 4, no peak was observed in the CV measurement of the carbon paper alone or carbon paper with carbon fiber, but the peak was observed in the CV measurement of the carbon paper with platinum-supported carbon fiber of Example 1. From this, it was confirmed that the composite of the metal and carbon fiber obtained according to the present invention has a catalytic action as a catalyst layer of a polymer electrolyte fuel cell.

本発明の固体高分子型燃料電池用電極を用いた固体高分子型燃料電池の一例の断面図である。It is sectional drawing of an example of the polymer electrolyte fuel cell using the electrode for polymer electrolyte fuel cells of this invention. 実施例1で得られた炭素繊維のSEM写真である。2 is a SEM photograph of the carbon fiber obtained in Example 1. 比較例1で得られた炭素繊維のSEM写真である。2 is a SEM photograph of the carbon fiber obtained in Comparative Example 1. 実施例の白金担持炭素繊維に対するCV(サイクリックボルタンメトリー)測定の結果を示すグラフである。It is a graph which shows the result of the CV (cyclic voltammetry) measurement with respect to the platinum carrying | support carbon fiber of an Example.

符号の説明Explanation of symbols

1 膜電極接合体(MEA)
2 セパレータ
3 固体高分子電解質膜
4A 燃料極
4B 空気極
5 触媒層(金属と炭素繊維との複合体)
6 多孔質支持体(ガス拡散層)
1 Membrane electrode assembly (MEA)
2 Separator 3 Solid polymer electrolyte membrane 4A Fuel electrode 4B Air electrode 5 Catalyst layer (composite of metal and carbon fiber)
6 Porous support (gas diffusion layer)

Claims (9)

芳香環を有する化合物及び金属イオンを含有する溶液中に作用極及び対極を設置し、該作用極及び対極間に電圧を印加して、作用極上において前記芳香環を有する化合物を電解酸化重合してフィブリル状ポリマーを生成させつつ、該フィブリル状ポリマー上に金属を電気メッキする工程と、
前記金属がメッキされたフィブリル状ポリマーを焼成して、金属が担持された炭素繊維を生成させる工程と
を含む、金属と炭素繊維との複合体の製造方法。
A working electrode and a counter electrode are placed in a solution containing a compound having an aromatic ring and a metal ion, a voltage is applied between the working electrode and the counter electrode, and the compound having an aromatic ring is subjected to electrolytic oxidation polymerization on the working electrode. Electroplating a metal on the fibril polymer while producing the fibril polymer;
Firing the fibrillated polymer plated with the metal to produce a carbon fiber carrying the metal, and a method for producing a composite of the metal and the carbon fiber.
前記芳香環を有する化合物がアニリンであることを特徴とする請求項3に記載の金属と炭素繊維との複合体の製造方法。   4. The method for producing a composite of metal and carbon fiber according to claim 3, wherein the compound having an aromatic ring is aniline. 前記金属が少なくともPtを含むことを特徴とする請求項1に記載の金属と炭素繊維との複合体の製造方法。   The method for producing a composite of metal and carbon fiber according to claim 1, wherein the metal contains at least Pt. 前記作用極がカーボンペーパーであることを特徴とする請求項1に記載の金属と炭素繊維との複合体の製造方法。   The said working electrode is carbon paper, The manufacturing method of the composite_body | complex of the metal and carbon fiber of Claim 1 characterized by the above-mentioned. 前記作用極及び対極間に印加する電流の電流密度が-100mA/cm2〜50mA/cm2であることを特徴とする請求項1に記載の金属と炭素繊維との複合体の製造方法。 2. The method for producing a composite of metal and carbon fiber according to claim 1, wherein a current density of a current applied between the working electrode and the counter electrode is −100 mA / cm 2 to 50 mA / cm 2 . 前記焼成を非酸化性雰囲気中で行うことを特徴とする請求項1に記載の金属と炭素繊維との複合体の製造方法。   The method for producing a composite of metal and carbon fiber according to claim 1, wherein the firing is performed in a non-oxidizing atmosphere. 請求項1〜6のいずれかに記載の方法で製造された金属と炭素繊維との複合体。   The composite_body | complex of the metal and carbon fiber manufactured by the method in any one of Claims 1-6. 請求項7に記載の金属と炭素繊維との複合体と、多孔質支持体とを具える固体高分子型燃料電池用電極。   An electrode for a polymer electrolyte fuel cell comprising the composite of metal and carbon fiber according to claim 7 and a porous support. 請求項8に記載の固体高分子型燃料電池用電極を具える固体高分子型燃料電池。   A polymer electrolyte fuel cell comprising the electrode for a polymer electrolyte fuel cell according to claim 8.
JP2006251324A 2006-09-15 2006-09-15 Composite material of metal and carbon fibers, method for producing the same, electrode for polymer electrolyte fuel cell, and polymer electrolyte fuel cell Withdrawn JP2008069494A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006251324A JP2008069494A (en) 2006-09-15 2006-09-15 Composite material of metal and carbon fibers, method for producing the same, electrode for polymer electrolyte fuel cell, and polymer electrolyte fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006251324A JP2008069494A (en) 2006-09-15 2006-09-15 Composite material of metal and carbon fibers, method for producing the same, electrode for polymer electrolyte fuel cell, and polymer electrolyte fuel cell

Publications (1)

Publication Number Publication Date
JP2008069494A true JP2008069494A (en) 2008-03-27

Family

ID=39291321

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006251324A Withdrawn JP2008069494A (en) 2006-09-15 2006-09-15 Composite material of metal and carbon fibers, method for producing the same, electrode for polymer electrolyte fuel cell, and polymer electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JP2008069494A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012206912A (en) * 2011-03-30 2012-10-25 Osaka Gas Co Ltd Method for producing titanium oxide-carbon composite
JP2016145436A (en) * 2015-02-09 2016-08-12 三菱重工業株式会社 Manufacturing method of nano coil made of metal

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012206912A (en) * 2011-03-30 2012-10-25 Osaka Gas Co Ltd Method for producing titanium oxide-carbon composite
JP2016145436A (en) * 2015-02-09 2016-08-12 三菱重工業株式会社 Manufacturing method of nano coil made of metal
WO2016129589A1 (en) * 2015-02-09 2016-08-18 三菱重工業株式会社 Method for producing metal nanocoil
US10790086B2 (en) 2015-02-09 2020-09-29 Mitsubishi Heavy Industries, Ltd. Method of manufacturing metal nano coil

Similar Documents

Publication Publication Date Title
Xia et al. Highly stable vanadium redox‐flow battery assisted by redox‐mediated catalysis
EA009404B1 (en) Conducting polymer-grafted carbon material for fuel cell application
JP2007250274A (en) Electrode catalyst for fuel cell with enhanced noble metal utilization efficiency, its manufacturing method, and solid polymer fuel cell equipped with this
JP2007186823A (en) Method for treating surface of carbon fiber, hydrophilic carbon fiber and electrode and method for producing the same
WO2012160957A1 (en) Electrode catalyst and method for producing same
JP2011230099A (en) Carbon catalyst and method of manufacturing the same
JP4393459B2 (en) Membrane electrode assembly for polymer electrolyte fuel cell and polymer electrolyte fuel cell
JP2007099551A (en) Carbon-based composite material and its manufacturing method, electrode for solid polymer type fuel cell and solid polymer type fuel cell
JPWO2006003950A1 (en) Composite, catalyst structure, electrode for polymer electrolyte fuel cell, method for producing the same, and polymer electrolyte fuel cell
JP2008069494A (en) Composite material of metal and carbon fibers, method for producing the same, electrode for polymer electrolyte fuel cell, and polymer electrolyte fuel cell
JP2008177023A (en) Electrode for solid polymer fuel cell, its manufacturing method, and solid polymer fuel cell equipped with it
Guo et al. Palladium dispersed in three-dimensional polyaniline networks as the catalyst for hydrogen peroxide electro-reduction in an acidic medium
JP4239917B2 (en) Fuel cell electrode, fuel cell and manufacturing method thereof
JP2009001845A (en) Electroplating method with noble metal, noble metal-carried conductive material, electrode for solid polymer type fuel cell, and solid polymer type fuel cell
JP2009001846A (en) Electroplating method with noble metal, noble metal-carried conductive material, electrode for solid polymer type fuel cell, and solid polymer type fuel cell
JP2008198438A (en) Polymer electrolyte fuel cell
JP2007227088A (en) Electrode for polymer electrolyte fuel cell, its manufacturing method and treating method, and polymer electrolyte fuel cell
JP2008179909A (en) Carbon fiber and method for producing the same
JP2008149485A (en) Composite material, its manufacturing method, electrode for solid polymer type fuel cell using composite material and solid polymer type fuel cell
JP2007227064A (en) Electrode for solid polymer fuel cell, its manufacturing method and activation method, as well as solid polymer fuel cell
JP2008204877A (en) Electrode for solid polymer fuel cell, its manufacturing method and solid polymer fuel cell provided with the same
JP2008198436A (en) Electrode for polymer electrolyte fuel cell, its manufacturing method, and polymer electrolyte fuel cell equipped with it
JP2008177056A (en) Electrode for solid polymer fuel cell, its manufacturing method, and solid polymer cell equipped with it
JP2008013889A (en) Carbon fiber and method for producing the same, and cathode for solid polymeric fuel cell using the same, and solid polymeric fuel cell
JP2008177057A (en) Electrode for solid polymer fuel cell, its manufacturing method, and solid polymer fuel cell equipped with it

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20091201