JP3549241B2 - Electrode for polymer solid electrolyte fuel cell and joined body thereof with polymer solid electrolyte - Google Patents

Electrode for polymer solid electrolyte fuel cell and joined body thereof with polymer solid electrolyte Download PDF

Info

Publication number
JP3549241B2
JP3549241B2 JP08479794A JP8479794A JP3549241B2 JP 3549241 B2 JP3549241 B2 JP 3549241B2 JP 08479794 A JP08479794 A JP 08479794A JP 8479794 A JP8479794 A JP 8479794A JP 3549241 B2 JP3549241 B2 JP 3549241B2
Authority
JP
Japan
Prior art keywords
electrode
layer
solid electrolyte
polymer solid
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP08479794A
Other languages
Japanese (ja)
Other versions
JPH07296818A (en
Inventor
博 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
W.L.Gore&Associates G.K.
W.L.Gore&Associates,Co.,LTD.
Japan Gore Tex Inc
Original Assignee
W.L.Gore&Associates G.K.
W.L.Gore&Associates,Co.,LTD.
Japan Gore Tex Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by W.L.Gore&Associates G.K., W.L.Gore&Associates,Co.,LTD., Japan Gore Tex Inc filed Critical W.L.Gore&Associates G.K.
Priority to JP08479794A priority Critical patent/JP3549241B2/en
Publication of JPH07296818A publication Critical patent/JPH07296818A/en
Application granted granted Critical
Publication of JP3549241B2 publication Critical patent/JP3549241B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Description

【0001】
【産業上の利用分野】
本発明は高分子固体電解質燃料電池用電極及びそれと高分子固体電解質との接合体に係る。
【0002】
【従来の技術】
固体高分子電解質燃料電池はその作動原理から、その出力密度を従来の電解液を使用した燃料電池(例えば燐酸型燃料電池)に比し4倍程度上げられる可能性が有り、また発電効率も高いことから、近年、小型移動用電源や分散配置用電源として注目されている。ところで、固体高分子電解質燃料電池の電気化学反応は、触媒、高分子固体電解質、反応ガスの三相界面反応であり、この三相界面をいかに多く形成させるかによりその発電特性は大きく左右される。またこの反応界面により多くの触媒を存在させることも、出力特性にとって重要である。
【0003】
従来この高分子固体電解質用のガス拡散電極として下記の方法が提案されている。
(1)PTFEや高分子固体電解質をバインダーとして触媒物質を高分子固体電解質膜上にホットプレスする事により電極を形成したもの。
(2)PTFEディスパージョンと触媒物質、あるいは、高分子固体電解質の溶液と触媒物質又はその前駆物質とを混合したペースト状あるいはインク状液を高分子固体電解質膜に塗布、乾燥、加熱して形成するか、ペースト状あるいはインク状液から溶媒を除去して膜状としこれを高分子固体電解質膜に転写、ホットプレスする。
【0004】
(3)集電体状に触媒層を形成しこれを高分子固体電解質膜にホットプレスする。
(4)PTFEと触媒物質からシート状の電極を形成しこれを高分子固体電解質膜にホットプレスするか、高分子固体電解質溶液を表面に塗布した後、これをバインダーとして高分子固体電解質膜にホットプレスする。
【0005】
【発明が解決しようとする課題】
上記の方法が提案されているが、しかしこれらの方法は反応界面が2次元的で十分な反応の場が確保されなかったり、全体親水性となり反応ガスの供給が確保できなかったり、触媒量が十分確保できなかったりするという問題があった。
また、本出願人は特開平2−85387号公報にて、フッ素含有重合体バインダと電気化学的機能性材料粉末とからなる連続多孔体の一表面から気孔内へ向ってイオン交換樹脂又はそれと金属との混合物を分布させたイオン交換樹脂含有シート状電極材料を開示したが、燃料電気用としては性能が十分でない。
【0006】
そこで、本発明はこれら問題点を解決し、上記三相界面反応帯を三次元的に十分確保し、また触媒量を確保した電極を提案するとともに、電極/高分子固体電解質接合体を提案するものである。
【0007】
【課題を解決するための手段】
本発明によれば、導電性粒子とポリテトラフルオロエチレンとから成る第1の層と、該第1の層上の触媒担持粒子と高分子固体電解質とから成る第2の層とから成り、該第2の層の触媒担持粒子と高分子固体電解質が第1の層の厚み方向の少なくとも一部にまで貫入している複層構造の電極材料と、該電極材料の第1の層側に設けられた電極基体とから構成されていることを特徴とする高分子固体電解質燃料電池用電極と、この電極の第2層の表面に更に高分子固体電解質のみから成る層を設けた電極−高分子固体電解質接合体と、この接合体の高分子固体電解質のみから成る層に対極も設けた電極−高分子固体電解質接合体が提供される。
【0008】
第1の層はポリテトラフルオロエチレン(PTFE)と導電性粒子とから成る。
PTFEは通常ディスパージョンの形態で用いられる。
導電性粒子としては、炭素系粒子であるカーボンブラック、黒鉛粒子、活性炭粒子等、あるいは金属粒子の白金系金属粒子、等が使用し得る。また繊維状の粒子、例えばカーボン繊維の微細繊維やグラファイトウィスカー等も含まれる。またこれらの混合物でも良い。また、前記粒子に触媒粉末を担持したものでも良い。好ましくはカーボンブラック単体又はカーボンブラックに白金系触媒を担持したものがあげられる。
【0009】
第1の層の製法としては、この導電性粒子を水に分散させた後、PTFEの水性分散液を加え、必要に応じてさらに造孔剤等を加えた後よく混合してペースト状とし、カーボンペーパーや金属メッシュ等の基体に塗布乾燥、加熱して水分、溶剤、造孔剤等を除去して作製してもよい。
好ましくは、導電性粒子とPTFEの混合分散液から導電性粒子とPTFEを共凝集させ、ろ過乾燥して得た混合粒子に、石油エーテル、ソルベントナフサ等の表面張力の低い溶剤を液状潤滑剤として加え、ペースト押出、または圧延またはその両方の工程によりシート状とした後、液状潤滑剤を抽出または加熱により除去することにより、自己支持性を有するシート状の物を得る。
【0010】
さらには液状潤滑剤の量、粘度等を調節するか、またはシート状とした後液状潤滑剤の存在下または除去後に延伸することにより、材料肉質が導電性粒子を含有した数多のPTFE樹脂による微小結節とそれらの各微小結節から延出して微小結節相互を三次元的に連結する導電性粒子を含まない数多のPTFE樹脂微細繊維とからなるシート状の物を得ることができる。この後者の製法については、特公昭63−19979号に詳細に開示されている。この様な膜はその空隙率が高くまた撥水性に富んでおり、さらにその空孔には後に述べるインク状溶液が浸入し易く、そのため上記微小結節と空孔部に浸入したインク状溶液から形成された高分子固体電解質又は触媒/高分子固体電解質混合体が微細に分布した形となり、いわゆる三次元反応帯が容易に形成されるため本発明には特に好ましい。
【0011】
またこの製法では、シート状とした後液状潤滑剤の存在下に、他に用意した同様シートと合せて圧延することにより一体化成形することが可能であり、これにより、組成の異なる2層からなるシートや、孔径等の物性の異なる2層から成るシート、あるいは複数層から成るシート状物を得ることも可能である。このことは上記延伸等により得られるシートについても同様である。従って例えば一層目には導電性粒子を多量に含み、比較的に親水性が強く、空孔の大きな、後述のインク成分の浸入しやすい層とし、2層目は、PTFE分を多くし、撥水性の強い、孔径の小さい層を形成した複層構造とすることが可能である。さらに以上の様にして得たシート状物に必要に応じて機械的に多数の微細な穴をあけても良い。
【0012】
また、当然、このシート状物をカーボンペーパーや金属メッシュ等の基体に接着しておいてもかまわない。この場合、PTFE,FEP,ETFE等のフッ素樹脂またはこれと導電性粉末との混合物をバインダーとしてホットプレスにより接着する等の手段により便宜行えば良い。
PTFEと導電性粉末の混合比率は、5:95から70:30までの範囲で適宜選べる。PTFEがこれ以下では必要な強度、耐久性が得られなく、70%以上では十分な導電性が得られない。特に好ましい比率はPTFEが20%から50%の間である。
【0013】
また自己支持性を有するシートとは、シート自身の重さで破壊される事の無い様な、例えばシートの一端を保持して釣り下げても切れることの無い強度を有することであり、具体的には30g/mm程度以上、好ましくは90g/mm以上の強度を有する物である。この様な物ではその表面に塗布されるインク状溶液の造膜性が良好となり、また形成された皮膜に対する補強効化及び保護効果に優れたものとなる。この様なシートは、前記共凝集後、押出または圧延またはその両方を含む工程により容易に作製できる。このことは、延伸工程を加えて作成した物でも同様である。
【0014】
なお、第1の層には第2の層の触媒担持粒子と高分子固体電解質が貫入するための空孔が必要であるが、上記の製法に従うと自然と形成される。これは▲1▼導電性粒子どうしのすき間が形成されるからであるが、▲2▼カーボン・ブラックの場合は特にストラクチャーと呼ばれる粒子の連なりをもっておりこのため空隙率はより高いものとなる。もちろん▲3▼延伸する場合上記の如く空隙率がより高い微細構造が形成される。好ましい空孔率は、40〜90%であり、この範囲に調整するのがよい。第1の層の膜厚としては30〜300μmがよい。30μm以下では必要な強度及びクッション性(集電体との電気的接触を良くする)が得られずまた3次元反応帯形成も不充分である。一方、300μm以上では電気伝導性に支障が出る、反応ガス供給性が悪くなる。
【0015】
次に、第2の層は上記第1の層の上に、少なくとも触媒担持粒子と高分子固体電解質成分とからなる混合インク状溶液を塗布乾燥加熱することにより形成することができる。このインク状溶液成分は前記第1の層内の厚み方向に全面的に含浸するか、または塗布面に片寄って部分的に含浸することができる。
混合インク状溶液の成分である触媒担持粒子としては白金族金属またはこの複数成分からなる触媒もしくはこれら金属に他の属の金属を合金化した触媒を、好ましくはカーボンブラック、グラファイト粉末、活性炭等の耐食性導電性基体に担持させた物等があげられる。
【0016】
一方、高分子固体電解質成分としては、炭化水素系、フッ素系のイオン交換樹脂の溶液であれば良いが、耐食性、耐熱性の点でフッ素系の物が好ましい。この様な物としてパーフルオロスルフォン酸樹脂がある。この樹脂は一般に溶剤溶液として例えばアルコール溶液として得られる。従って混合インク状溶液は、例えば、予め水またはアルコールに触媒担持粒子を分散させた後イオン交換樹脂溶液を加えてさらに超音波等により良く混合分散させて得られる。またこの中にさらにPTFE分散液を加えた混合液としても良く、また必要に応じて重炭酸アンモニウム、食塩等の造孔剤を混ぜても良い。
【0017】
本発明では、高分子固体電解質のみからなる層と接触されるべき触媒含有層(第2の層)を、触媒を耐食性導電性基体に担持させた触媒担持粒子と高分子固体電解質との混合層として形成する。これによって、この第2の層中の導電性が向上し、また高分子固体電解質及び触媒と反応ガスとの間で三相界面が良好に形成され易い利点がある。特に担体に担持した触媒は比較的粒径が大きいので、第2の層中に形成される空孔表面に触媒が露出し易く、従って三相界面が形成され易い。このように、第2の層はある程度の空孔を含むことが好ましい。第1の層の導電性粒子の場合と同様に触媒担持粒子間に空孔が形成されるため、触媒担体により空孔の大きさ、率ともに変化し、また、高分子固体電解質の量によっても変わる。従って空孔率を数値化するのは困難であるが40%以上あるのが好ましい。
【0018】
また、第2の層2の形成に用いた触媒担持粒子と高分子固体電解質(4)は図1に示すように第1の層1の空孔中へ部分的に貫入することにより、その貫入3の先端面が波立つ(凹凸面)ので、その凹凸面と第1の層中の空孔との間において良好な三相界面を形成する効果を有する。なお、図1中、5は導電性粒子を含有するポリテトラフルオロエチレンからなる微小結節であり、6はポリテトラフルオロエチレンからなる微小繊維である。
【0019】
第1の層中への触媒担持粒子と高分子固体電解質(4)の貫入深さは、限定されないが、特に常温使用の燃料電池では第1の層の疎水性を残すために、親水性である高分子固体電解質が第1の層の厚さ全部に貫入しないことが望ましい。これは、第2の層を形成する混合インク状溶液の粘度のほか、溶液中の触媒担持粒子の粒径などによって調整できる。しかし、一般的には貫入深さは少なくとも10μm以上貫入されているのが好ましい。
【0020】
触媒担持粒子と高分子固体電解質との混合比率は、使用する触媒により適宜決めれば良いが、例えば30%白金担持カーボンブラック(PtC)の場合、PtC対高分子固体電解質の比率(重量比)は1対9から9対1程度となる。PtCがこれ以下では触媒活性が足りず、またこれ以上では造膜性に支障がでる。
第2の層の厚み(第1の層中への貫入部の厚みは考慮しない)は、必要とする触媒量によって適宜変えるが、一般には3μmから100μmの間となる。
【0021】
こうして第1の層上に第2の層を形成して得られる複合膜は、高分子固体電解質燃料電池用電極材料として好適に使用できる。
この電極材料を用いて高分子固体電解質燃料電池を構成するには、図2に示す如く、高分子固体電解質膜11をガス拡散性電極12,13で挟み、さらに集電体(電極基体)14,15で挟んで構成する。本発明の電極材料はこのガス拡散性電極12,13の少なくとも1方として使用するものである。図2中、21A,21Bは触媒担持粒子と高分子固体電解質からなる第2の層、22A,22Bは導電性粒子とポリテトラフルオロエチレンからなる第1の層、23A,23Bは酸素供給溝4A及び水素供給溝4Bを有するセパレータ板、24A,24Bは酸素又は水素ガス供給溝である。
【0022】
固体高分子電解質膜11としては、パーフルオロスルフォン酸樹脂膜が好適に使用され、この様な膜は米国デュポン社、ダウケミカル社より発表されており、デュポン社のものは「ナフィオン」の商標で販売されており、ここでは特に「ナフィオン#117」が使用に適しているが、これにこだわるものではない。また膜厚も可及的に薄い方が電気抵抗の関係から好ましいが下限は機械的強度、耐久性により決定されるが、一般的には50μm。ただし本発明では電極シート自体の強度による補強、補護効果によりさらに薄くできるメリットがある。
【0023】
ガス拡散性電極12,13としては両方とも本発明の電極材料を用いることが好ましいが、一方については公知の他のガス拡散性電極を用いてもよい。
本発明によれば、この様な電池の作製を容易にするために、予め、本発明の上記電極材料の第2の層の表面にさらに高分子固体電解質のみからなる層を接合した電極−高分子固体電解質接合体、さらにはその接合体の高分子固体電解質のみからなる層の他の表面側にもう1つの電極を接合した電極−高分子固体電解質接合体を作製しておくことができる。
【0024】
図2の集電体(電極基体)14,15としては金属メッシュ、金属エキスバンドメッシュ、金属不織布、金属センイの焼結板、カーボンペーパ、ポーラスカーボン板等が使用される。
こうして構成された高分子固体電解質燃料電池では、図2を参照すると、ガス供給溝4AにO を4BにH を供給すると、電極12内でO +4H +4e →2H O、電極13内で2H →4H +4e の反応が起り、4H は高分子固体電解質膜11を通って13から12へ流れ、4e は外部負荷を通ることにより電気エネルギーとなる。作動温度は60℃から100℃程度、好ましくは80℃程度となる。
【0025】
なお、この発明になる、電極および電極/固体電解質一体成形品は、固体高分子電解質型燃料電池のほか、水電解装置や、オゾン発生器等にも使用可能である。
【0026】
【実施例】
例1
PTFEディスパージョンと白金25%担持カーボンブラックを水に分散させた分散液とを混合したのち共凝集させてろ過乾燥し、これにソルベントナフサを加え押出圧延工程乾燥工程を経て、PTFE30%、白金担持カーボンブラック70%で膜厚60μm、密度0.54g/cm のシート1を用意した。
【0027】
これとは別に白金50%担持カーボンブラックを超音波により水に分散させた後、パーフルオロスルフォン酸樹脂の溶液を加えてさらに分散させることにより、インク状の混合溶液A、を用意した。この溶液は、白金担持カーボンブラックが6に対しパーフルオロスルフォン酸樹脂4の割合の混合物を10%含む溶液であった。
【0028】
次にシート1をバキューム台の上に置き背面よりバキュームをかけることにより台上に固定した後、スクリーン印刷法によりインク状混合溶液Aを塗布含浸させた後、風乾し、続いて120℃で24時間加熱する事によりシート電極を得た。このときの塗布層の厚みは20μmであった。
【0029】
例2
厚さ100μmのカーボンペーパーにPTFEディスパージョンを塗布加熱乾燥してPTFEを付着させた後、例1で使用したのと同じシート1に、板の先端に多数の針を持つ、剣山状の治具で、機械的に多数の微細な穴をあけた後、120℃でホットプレスした後340℃に加熱することにより接着した。
【0030】
次に、やはり例1で使用したのと同じ混合溶液Aを刷毛でシート1の表面に塗布含浸させた後完全に乾燥させた。これを3回繰り返した後、さらにその表面にパーフルオロスルフォン酸樹脂のみの溶液を塗布、乾燥させる工程を5回繰り返して、表面にパーフルオロスルフォン酸樹脂の40μmの皮膜を形成させて、電極/膜一体成形品を得た。
【0031】
例3
白金担持カーボンブラックのかわりにアセチレンブラックを使用した他は、例1と同様にして、PTFE55%、アセチレンブラック45%から成る、圧延後の液状潤滑材(ソルベントナフサ)を含んだままの厚さ200μmのシートを用意した。また同様にして、PTFE25%、白金20%担持カーボンブラック75%からなる厚さ100μmのシートを用意した。次にこれらのシートを重ね合わせた後、さらに圧延することにより厚さ120μmとした後、液状潤滑材を除去して、2層構造一体シートを得た。
【0032】
次にこのシートを150℃加熱下に1.5倍に延伸した後そのままステンレス製のドラムの表面に沿わせて、320℃に加熱することにより、寸法安定性を持たせた。このシートの膜厚は100μmであった。
その後、例1と同様にバキューム台に固定し、やはり例1で使用したのと同じ混合溶液Aをスクリーン印刷法により塗布含浸して本発明の電極材料を得た。
【0033】
さらに、この上にパーフルオロスルフォン酸樹脂溶液を塗布して電極/固体電解質膜一体成型品を得た。
この一体成形品を二枚用意し、パーフルオロスルフォン酸樹脂面をつき合わせて重ねた後ロールを通して仮接着した後、荷重下に130℃で24時間加熱することにより一体化した後、図2の様にエキスパンドメッシュである集電体(電極基体)で挟み込むことにより、燃料電池を構成した。
【0034】
この燃料電池に水素及び酸素を各極に供給したところ、1A/cmで0.42Vの出力が得られた。
【0035】
比較例1
一方、比較のため、混合溶液Aを塗布せずに、直接パーフルオロスルフォン酸樹脂を塗布含浸した他は例3と同様にして、燃料電池を構成し、その出力を測定したところ1A/cm の時の電圧は0.34Vであった。
【0036】
比較例2(特開平2−85387号に相当)
混合溶液Aに替えて、パーフルオロスルフォン酸樹脂のアルコール溶液にクロロペンタアンミン白金の水溶液(白金濃度2mg/ml)を混合して得られたイオン交換樹脂濃度3重量%、白金濃度0.5重量%の溶液を使用した。これを例3で得られたシートに、同様にして塗布、含浸した後風乾し、続いて、150℃の温度で水素還元処理を施し、上記白金アンミン錯体を白金に還元して、シート電極を得た。以下、例3と同様にして燃料電池を構成し、その出力を測定したところ1A/cm の時の電圧は0.38Vであった。
【0037】
【発明の効果】
本発明の高分子固体電解質燃料電池用電極又はそれと高分子固体電解質との接合体は、高分子固体電解質/触媒/反応ガスの三相界面の三次元的形成が可能であり、また触媒量も十分に有することができ、かつガス透過性、撥水性、膜強度等の諸特性も良好な電極である。
【図面の簡単な説明】
【図1】本発明の高分子固体電解質燃料電池用電極の模式断面である。
【図2】高分子固体電解質燃料電池の例を示す。
【符号の説明】
1…第1の層
2…第2の層
3…触媒担持粒子と高分子固体電解質の貫入部分
4…触媒担持粒子と高分子固体電解質
5…PTFEの微小結節
6…PTFEの微小繊維
11…高分子固体電解質膜
12,13…ガス透過性電極
14,15…集電体
21A,21B…第2の層
22A,22B…第1の層
23A,23B…セパレータ板
24A,24B…酸素又は水素ガス供給溝
[0001]
[Industrial applications]
The present invention relates to an electrode for a polymer solid electrolyte fuel cell and a joined body of the electrode and the polymer solid electrolyte.
[0002]
[Prior art]
Due to its operation principle, the polymer electrolyte fuel cell has a possibility that its output density can be increased about four times as compared with a fuel cell using a conventional electrolyte (for example, a phosphoric acid type fuel cell), and its power generation efficiency is high. For this reason, in recent years, it has attracted attention as a small-sized mobile power supply and a distributed power supply. By the way, the electrochemical reaction of a solid polymer electrolyte fuel cell is a three-phase interface reaction of a catalyst, a solid polymer electrolyte, and a reaction gas, and its power generation characteristics are greatly affected by how many such three-phase interfaces are formed. . It is also important for the output characteristics that more catalyst be present at the reaction interface.
[0003]
Conventionally, the following method has been proposed as a gas diffusion electrode for this polymer solid electrolyte.
(1) An electrode formed by hot-pressing a catalytic substance on a polymer solid electrolyte membrane using PTFE or a polymer solid electrolyte as a binder.
(2) A paste or ink-like liquid obtained by mixing a PTFE dispersion and a catalyst substance, or a solution of a polymer solid electrolyte and a catalyst substance or a precursor thereof, is applied to a polymer solid electrolyte membrane, and dried and heated to form. Alternatively, the solvent is removed from the paste or ink-like liquid to form a film, which is transferred to a polymer solid electrolyte membrane and hot-pressed.
[0004]
(3) A catalyst layer is formed in the shape of a current collector, and this is hot-pressed to a polymer solid electrolyte membrane.
(4) A sheet-shaped electrode is formed from PTFE and a catalyst substance and hot-pressed on a polymer solid electrolyte membrane, or a polymer solid electrolyte solution is applied on the surface, and then this is used as a binder to form a polymer solid electrolyte membrane. Hot press.
[0005]
[Problems to be solved by the invention]
Although the above methods have been proposed, however, these methods have a two-dimensional reaction interface and do not ensure a sufficient reaction field, cannot provide a sufficient supply of the reaction gas because the entire surface is hydrophilic, and the amount of the catalyst is low. There was a problem that it could not secure enough.
Further, the present applicant discloses in Japanese Patent Application Laid-Open No. 2-85387 that an ion exchange resin or a metal and an ion exchange resin are introduced from one surface of a continuous porous body comprising a fluorine-containing polymer binder and an electrochemically functional material powder into pores. Disclosed a sheet-like electrode material containing an ion-exchange resin in which a mixture of the above is distributed, but the performance is not sufficient for fuel electricity.
[0006]
Therefore, the present invention solves these problems, and proposes an electrode in which the three-phase interface reaction zone is sufficiently secured three-dimensionally and the amount of catalyst is secured, and an electrode / polymer solid electrolyte joined body is proposed. Things.
[0007]
[Means for Solving the Problems]
According to the present invention, a first layer comprising conductive particles and polytetrafluoroethylene, and a second layer comprising catalyst-carrying particles and a solid polymer electrolyte on the first layer, An electrode material having a multilayer structure in which the catalyst-supporting particles of the second layer and the solid polymer electrolyte penetrate at least partially into the thickness direction of the first layer ; and a material provided on the first layer side of the electrode material. An electrode for a polymer solid electrolyte fuel cell, comprising: an electrode substrate; and an electrode-polymer in which a layer comprising only a polymer solid electrolyte is further provided on the surface of the second layer of the electrode. Provided is a solid electrolyte joined body and an electrode-polymer solid electrolyte joined body provided with a counter electrode in a layer made of only the polymer solid electrolyte of the joined body.
[0008]
The first layer is composed of polytetrafluoroethylene (PTFE) and conductive particles.
PTFE is usually used in the form of a dispersion.
As the conductive particles, carbon-based particles such as carbon black, graphite particles, activated carbon particles, and the like, or platinum-based metal particles such as metal particles can be used. Further, fibrous particles, for example, fine fibers of carbon fibers, graphite whiskers, and the like are also included. Further, a mixture thereof may be used. Further, catalyst particles may be supported on the particles. Preferably, carbon black alone or carbon black carrying a platinum-based catalyst is used.
[0009]
As a method for producing the first layer, after dispersing the conductive particles in water, an aqueous dispersion of PTFE is added, and if necessary, a pore-forming agent or the like is further added, followed by mixing well to form a paste, It may be prepared by coating a substrate such as carbon paper or metal mesh, drying and heating to remove moisture, solvent, pore-forming agent and the like.
Preferably, conductive particles and PTFE are co-aggregated from a mixed dispersion of conductive particles and PTFE, and the mixed particles obtained by filtration and drying are mixed with a solvent having a low surface tension such as petroleum ether or solvent naphtha as a liquid lubricant. In addition, after forming into a sheet by paste extrusion and / or rolling, the liquid lubricant is extracted or removed by heating to obtain a self-supporting sheet.
[0010]
Further, by adjusting the amount, viscosity, etc. of the liquid lubricant, or by stretching the sheet after the presence or removal of the liquid lubricant after forming the sheet, the material is made of a number of PTFE resins containing conductive particles. It is possible to obtain a sheet-like material composed of micro nodules and a number of PTFE resin fine fibers which do not include conductive particles extending from each of the micro nodules and connecting the micro nodules three-dimensionally. The latter production method is disclosed in detail in Japanese Patent Publication No. 63-19799. Such a film has a high porosity and a high water repellency, and furthermore, the ink-like solution described later easily penetrates into the pores. Therefore, the film is formed from the fine nodules and the ink-like solution penetrating the pores. The polymer solid electrolyte or the catalyst / polymer solid electrolyte mixture thus obtained is particularly preferable in the present invention because the mixture is finely distributed and a so-called three-dimensional reaction zone is easily formed.
[0011]
Further, in this manufacturing method, it is possible to integrally form the sheet by rolling in the presence of a liquid lubricant together with another sheet prepared in the same manner, thereby forming two layers having different compositions. It is also possible to obtain a sheet having two or more layers having different physical properties such as pore diameters, or a sheet having a plurality of layers. The same applies to the sheet obtained by the above stretching or the like. Therefore, for example, the first layer contains a large amount of conductive particles, is relatively hydrophilic, has large pores, and easily penetrates an ink component described later. It is possible to have a multilayer structure in which a layer having a strong aqueous property and a small pore size is formed. Further, a large number of fine holes may be mechanically formed in the sheet obtained as described above, if necessary.
[0012]
Naturally, the sheet may be bonded to a base such as carbon paper or metal mesh. In this case, it may be conveniently performed by a means such as bonding with a hot press using a fluororesin such as PTFE, FEP, ETFE or a mixture of the same and a conductive powder as a binder.
The mixing ratio of the PTFE and the conductive powder can be appropriately selected from the range of 5:95 to 70:30. If PTFE is less than this, required strength and durability cannot be obtained, and if it is more than 70%, sufficient conductivity cannot be obtained. A particularly preferred ratio is between 20% and 50% PTFE.
[0013]
In addition, a sheet having self-supporting properties is such that it does not break under the weight of the sheet itself. Has a strength of about 30 g / mm 2 or more, preferably 90 g / mm 2 or more. In such a product, the film-forming property of the ink-like solution applied to the surface is improved, and the formed film is excellent in reinforcement effect and protection effect. Such a sheet can be easily produced by a process including extrusion or rolling or both after the co-agglomeration. The same applies to a product prepared by adding a stretching step.
[0014]
The first layer needs holes for the catalyst-supporting particles of the second layer and the solid polymer electrolyte to penetrate, but is naturally formed according to the above-described production method. This is because (1) a gap is formed between the conductive particles. (2) In the case of carbon black, particularly, there is a series of particles called a structure, and thus the porosity is higher. Of course, (3) when the film is stretched, a fine structure having a higher porosity is formed as described above. The preferred porosity is 40 to 90%, and it is preferable to adjust the porosity to this range. The thickness of the first layer is preferably 30 to 300 μm. If it is less than 30 μm, the necessary strength and cushioning property (to improve the electrical contact with the current collector) cannot be obtained, and the formation of the three-dimensional reaction zone is also insufficient. On the other hand, when the thickness is 300 μm or more, the electric conductivity is hindered, and the reactant gas supply is deteriorated.
[0015]
Next, the second layer can be formed by applying, drying, and heating a mixed ink-like solution comprising at least catalyst-carrying particles and a solid polymer electrolyte component on the first layer. The ink-like solution component can be completely impregnated in the thickness direction in the first layer, or can be partially impregnated on the application surface side by side.
As the catalyst-supporting particles that are components of the mixed ink-like solution, a platinum group metal or a catalyst comprising a plurality of these components or a catalyst obtained by alloying a metal of another genus with these metals, preferably carbon black, graphite powder, activated carbon, or the like A material supported on a corrosion-resistant conductive substrate can be used.
[0016]
On the other hand, the polymer solid electrolyte component may be a solution of a hydrocarbon-based or fluorine-based ion exchange resin, but a fluorine-based material is preferred in terms of corrosion resistance and heat resistance. Such a product is a perfluorosulfonic acid resin. This resin is generally obtained as a solvent solution, for example as an alcohol solution. Therefore, the mixed ink-like solution can be obtained, for example, by dispersing catalyst-carrying particles in water or alcohol in advance, adding an ion-exchange resin solution, and further mixing and dispersing the mixture by ultrasonic waves or the like. Further, a PTFE dispersion may be further added to the mixture, and a mixture may be added. If necessary, a pore-forming agent such as ammonium bicarbonate or salt may be mixed.
[0017]
In the present invention, a catalyst-containing layer (second layer) to be brought into contact with a layer consisting only of a polymer solid electrolyte is a mixed layer of catalyst-supported particles in which a catalyst is supported on a corrosion-resistant conductive substrate and a polymer solid electrolyte. Form as Thus, there is an advantage that the conductivity in the second layer is improved and a three-phase interface is easily formed between the polymer solid electrolyte and the catalyst and the reaction gas. In particular, since the catalyst supported on the carrier has a relatively large particle size, the catalyst is easily exposed to the surface of pores formed in the second layer, and thus a three-phase interface is easily formed. Thus, it is preferable that the second layer contains a certain amount of holes. Since pores are formed between the catalyst-supporting particles as in the case of the conductive particles in the first layer, both the size and the ratio of the pores vary depending on the catalyst carrier, and also depending on the amount of the solid polymer electrolyte. change. Therefore, it is difficult to quantify the porosity, but it is preferably 40% or more.
[0018]
The catalyst-supporting particles and the solid polymer electrolyte (4) used for forming the second layer 2 partially penetrate into the pores of the first layer 1 as shown in FIG. 3 has a wavy (uneven surface) surface, which has an effect of forming a good three-phase interface between the uneven surface and the holes in the first layer. In addition, in FIG. 1, 5 is a micro nodule made of polytetrafluoroethylene containing conductive particles, and 6 is a microfiber made of polytetrafluoroethylene.
[0019]
The depth of penetration of the catalyst-carrying particles and the solid polymer electrolyte (4) into the first layer is not limited, but in particular in a fuel cell used at room temperature, it is hydrophilic to leave the first layer hydrophobic. It is desirable that certain polymer solid electrolytes do not penetrate the entire thickness of the first layer. This can be adjusted by the viscosity of the mixed ink-like solution forming the second layer, the particle size of the catalyst-carrying particles in the solution, and the like. However, it is generally preferable that the penetration depth is at least 10 μm or more.
[0020]
The mixing ratio between the catalyst-carrying particles and the polymer solid electrolyte may be appropriately determined depending on the catalyst used. For example, in the case of 30% platinum-carrying carbon black (PtC), the ratio (weight ratio) of PtC to the polymer solid electrolyte is It is about 9 to 1 from 1 to 9. If the PtC is less than this, the catalytic activity is insufficient, and if it is more than this, the film-forming property is impaired.
The thickness of the second layer (the thickness of the portion penetrating into the first layer is not taken into consideration) is appropriately changed depending on the required amount of the catalyst, but is generally between 3 μm and 100 μm.
[0021]
Thus, the composite membrane obtained by forming the second layer on the first layer can be suitably used as an electrode material for a polymer solid electrolyte fuel cell.
In order to construct a polymer solid electrolyte fuel cell using this electrode material, as shown in FIG. 2, a polymer solid electrolyte membrane 11 is sandwiched between gas diffusive electrodes 12 and 13, and a current collector (electrode substrate) 14 is formed. , 15. The electrode material of the present invention is used as at least one of the gas diffusive electrodes 12 and 13. In FIG. 2, reference numerals 21A and 21B denote a second layer made of catalyst-carrying particles and a polymer solid electrolyte, 22A and 22B denote first layers made of conductive particles and polytetrafluoroethylene, and 23A and 23B denote oxygen supply grooves 4A. And a separator plate having hydrogen supply grooves 4B, 24A and 24B are oxygen or hydrogen gas supply grooves.
[0022]
As the solid polymer electrolyte membrane 11, a perfluorosulfonic acid resin membrane is suitably used, and such a membrane has been announced by Dupont Corporation and Dow Chemical Company in the United States. Dupont's membrane is a trademark of "Nafion". It is sold, and "Nafion # 117" is particularly suitable for use here, but is not limited to this. It is preferable that the film thickness is as thin as possible from the viewpoint of electrical resistance. The lower limit is determined by mechanical strength and durability, but is generally 50 μm t . However, in the present invention, there is an advantage that the electrode sheet itself can be made thinner due to the reinforcement and protection effects due to its strength.
[0023]
It is preferable to use the electrode material of the present invention for both of the gas diffusing electrodes 12 and 13, but for one of them, other known gas diffusing electrodes may be used.
According to the present invention, in order to facilitate the manufacture of such a battery, an electrode in which a layer composed of only a polymer solid electrolyte is further joined to the surface of the second layer of the electrode material of the present invention in advance is used. An electrode-polymer solid electrolyte joined body in which another electrode is joined to the other surface side of the molecular solid electrolyte joined body, and a layer made of only the polymer solid electrolyte of the joined body can be prepared.
[0024]
As the current collectors (electrode bases) 14 and 15 in FIG. 2, a metal mesh, a metal expanded band mesh, a metal nonwoven fabric, a sintered plate of a metal sensor, carbon paper, a porous carbon plate, or the like is used.
In the solid polymer electrolyte fuel cell thus configured, referring to FIG. 2, when O 2 and H 2 are supplied to the gas supply groove 4A and O 2 + 4H + + 4e → 2H 2 O in the electrode 12, A reaction of 2H 2 → 4H + + 4e occurs in 13, 4H + flows from 13 to 12 through the solid polymer electrolyte membrane 11, and 4e becomes electric energy by passing through an external load. The operating temperature ranges from 60 ° C to about 100 ° C, preferably about 80 ° C.
[0025]
In addition, the electrode and the electrode / solid electrolyte integrated molded article according to the present invention can be used not only for a solid polymer electrolyte fuel cell, but also for a water electrolyzer, an ozone generator, and the like.
[0026]
【Example】
Example 1
A PTFE dispersion and a dispersion of 25% platinum-supported carbon black in water are mixed, coagulated, filtered and dried. Solvent naphtha is added, and the mixture is extruded and rolled. Sheet 1 having 70% carbon black and a film thickness of 60 μm and a density of 0.54 g / cm 3 was prepared.
[0027]
Separately, 50% platinum-supported carbon black was dispersed in water by ultrasonic waves, and a perfluorosulfonic acid resin solution was further added to further disperse the ink, whereby an ink-like mixed solution A was prepared. This solution was a solution in which platinum-supported carbon black contained 10% of a mixture of 6 perfluorosulfonic acid resin to 6 parts.
[0028]
Next, the sheet 1 is placed on a vacuum table and fixed on the table by vacuuming from the back, then the ink mixture solution A is applied and impregnated by a screen printing method, air-dried, and then dried at 120 ° C. for 24 hours. By heating for a time, a sheet electrode was obtained. The thickness of the coating layer at this time was 20 μm.
[0029]
Example 2
A PTFE dispersion is applied to carbon paper having a thickness of 100 μm, heated and dried to adhere PTFE, and then a sword mountain-shaped jig having a large number of needles at the end of the plate is attached to the same sheet 1 used in Example 1. Then, a large number of fine holes were mechanically made, hot-pressed at 120 ° C., and then heated to 340 ° C. for bonding.
[0030]
Next, the same mixed solution A also used in Example 1 was applied and impregnated on the surface of the sheet 1 with a brush, and then completely dried. After repeating this three times, a step of applying a solution of only the perfluorosulfonic acid resin to the surface and drying the solution is repeated five times to form a 40 μm film of the perfluorosulfonic acid resin on the surface, A film integrated molded product was obtained.
[0031]
Example 3
Except that acetylene black was used in place of the platinum-supported carbon black, a 200 μm thick rolled liquid lubricant (solvent naphtha) consisting of 55% PTFE and 45% acetylene black was used in the same manner as in Example 1. Sheets were prepared. Similarly, a sheet having a thickness of 100 μm and comprising 25% of PTFE and 75% of carbon black supporting 20% of platinum was prepared. Next, these sheets were overlaid and further rolled to a thickness of 120 μm, and then the liquid lubricant was removed to obtain a two-layer structure integrated sheet.
[0032]
Next, the sheet was stretched 1.5 times while being heated at 150 ° C., and then heated to 320 ° C. along the surface of the stainless steel drum as it was to have dimensional stability. The thickness of this sheet was 100 μm.
Thereafter, Example 1 was fixed to a vacuum table similarly, to obtain an electrode material of the present invention is applied impregnated with still Example 1 The same mixed solution A screen printing method as that used in.
[0033]
Further, a perfluorosulfonic acid resin solution was applied thereon to obtain an electrode / solid electrolyte membrane integrated molded product.
After preparing two pieces of this integrally molded product, superposing the perfluorosulfonic acid resin surfaces together, temporarily bonding them through a roll, and then heating them at 130 ° C. for 24 hours under a load to integrate them, the FIG. As described above, a fuel cell was formed by sandwiching the current collector (electrode substrate) as an expanded mesh.
[0034]
When hydrogen and oxygen were supplied to each electrode of this fuel cell, an output of 0.42 V was obtained at 1 A / cm 2 .
[0035]
Comparative Example 1
On the other hand, for comparison, a fuel cell was constructed in the same manner as in Example 3 except that the perfluorosulfonic acid resin was directly applied and impregnated without applying the mixed solution A, and the output was measured. As a result, 1 A / cm 2 was obtained. At that time was 0.34V.
[0036]
Comparative Example 2 (corresponding to JP-A-2-85387)
Instead of the mixed solution A, an aqueous solution of chloropentaammineplatinum (platinum concentration: 2 mg / ml) was mixed with an alcohol solution of perfluorosulfonic acid resin, and the ion exchange resin concentration was 3% by weight and the platinum concentration was 0.5% by weight. % Solution was used. This was similarly applied to the sheet obtained in Example 3 , impregnated, air-dried, and subsequently subjected to a hydrogen reduction treatment at a temperature of 150 ° C. to reduce the platinum ammine complex to platinum, thereby forming a sheet electrode. Obtained. Hereinafter, a fuel cell was constructed in the same manner as in Example 3, and the output was measured. The voltage at 1 A / cm 2 was 0.38 V.
[0037]
【The invention's effect】
The polymer solid electrolyte fuel cell electrode of the present invention or the joined body thereof and the polymer solid electrolyte can form a three-dimensional interface of a solid polymer electrolyte / catalyst / reaction gas three-dimensional interface, and have a small amount of catalyst. It is an electrode that can be sufficiently provided and has good properties such as gas permeability, water repellency, and film strength.
[Brief description of the drawings]
FIG. 1 is a schematic cross section of an electrode for a solid polymer electrolyte fuel cell of the present invention.
FIG. 2 shows an example of a polymer solid electrolyte fuel cell.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... 1st layer 2 ... 2nd layer 3 ... Penetration part of catalyst carrying particle and polymer solid electrolyte 4 ... Catalyst carrying particle and polymer solid electrolyte 5 ... PTFE micro nodule 6 ... PTFE micro fiber 11 ... high Molecular solid electrolyte membranes 12, 13 Gas permeable electrodes 14, 15 Current collectors 21A, 21B Second layers 22A, 22B First layers 23A, 23B Separator plates 24A, 24B Oxygen or hydrogen gas supply groove

Claims (7)

導電性粒子とポリテトラフルオロエチレンとから成る第1の層と、該第1の層上の触媒担持粒子と高分子固体電解質とから成る第2の層とから成り、該第2の層の触媒担持粒子と高分子固体電解質が第1の層の厚み方向の少なくとも一部にまで貫入している複層構造の電極材料と、該電極材料の第1の層側に設けられた電極基体とから構成されていることを特徴とする高分子固体電解質燃料電池用電極。A first layer comprising conductive particles and polytetrafluoroethylene; and a second layer comprising catalyst-carrying particles on the first layer and a polymer solid electrolyte, wherein the second layer comprises a catalyst. From an electrode material having a multilayer structure in which the carrier particles and the solid polymer electrolyte penetrate at least partially into the thickness direction of the first layer, and an electrode substrate provided on the first layer side of the electrode material. solid polymer electrolyte fuel cell electrode, characterized in that it is configured. 前記触媒担持粒子が白金担持カーボンブラック粉末である請求項1記載の電極。The electrode according to claim 1, wherein the catalyst-supporting particles are platinum-supporting carbon black powder. 前記導電性粒子がカーボンブラック又は触媒粉末担持カーボンブラック粉末である請求項1又は2記載の電極。3. The electrode according to claim 1, wherein the conductive particles are carbon black or carbon black powder carrying a catalyst powder. 前記ポリテトラフルオロエチレンが、多数の微小結節とそれらの微小結節から延出して微小結節相互を三次元的に連結する多数の微小繊維とから成る肉質を成し、かつ、該微小結節中に前記導電性粒子を含有している請求項1,2又は3記載の電極。The polytetrafluoroethylene forms a flesh consisting of a number of micronodules and a number of microfibers extending from the micronodules and interconnecting the micronodules three-dimensionally, and the micronodules are formed in the micronodules. The electrode according to claim 1, 2 or 3, which contains conductive particles. 前記電極基体が、金属メッシュ、金属エキスパンドメッシュ、金属不織布、金属繊維の焼成板、カーボンペーパー又はポーラスカーボン板である請求項1、2、3又は4記載の電極。The electrode according to claim 1, 2, 3, or 4, wherein the electrode substrate is a metal mesh, a metal expanded mesh, a metal nonwoven fabric, a fired plate of metal fiber, carbon paper or a porous carbon plate. 請求項1〜のいずれか1項に記載の電極の前記第2の層の表面に更に高分子固体電解質のみから成る層を設けたことを特徴とする電極−高分子固体電解質接合体。An electrode-polymer solid electrolyte joined body, further comprising a layer comprising only a polymer solid electrolyte provided on the surface of the second layer of the electrode according to any one of claims 1 to 5 . 請求項6記載の高分子固体電解質のみから成る前記層の前記電極と反対側に対極を有することを特徴とする電極−高分子固体電解質接合体。An electrode-polymer solid electrolyte assembly, comprising a counter electrode on a side opposite to the electrode of the layer comprising only the polymer solid electrolyte according to claim 6 .
JP08479794A 1994-04-22 1994-04-22 Electrode for polymer solid electrolyte fuel cell and joined body thereof with polymer solid electrolyte Expired - Lifetime JP3549241B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08479794A JP3549241B2 (en) 1994-04-22 1994-04-22 Electrode for polymer solid electrolyte fuel cell and joined body thereof with polymer solid electrolyte

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08479794A JP3549241B2 (en) 1994-04-22 1994-04-22 Electrode for polymer solid electrolyte fuel cell and joined body thereof with polymer solid electrolyte

Publications (2)

Publication Number Publication Date
JPH07296818A JPH07296818A (en) 1995-11-10
JP3549241B2 true JP3549241B2 (en) 2004-08-04

Family

ID=13840701

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08479794A Expired - Lifetime JP3549241B2 (en) 1994-04-22 1994-04-22 Electrode for polymer solid electrolyte fuel cell and joined body thereof with polymer solid electrolyte

Country Status (1)

Country Link
JP (1) JP3549241B2 (en)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19544323A1 (en) * 1995-11-28 1997-06-05 Magnet Motor Gmbh Gas diffusion electrode for polymer electrolyte membrane fuel cells
US5863673A (en) * 1995-12-18 1999-01-26 Ballard Power Systems Inc. Porous electrode substrate for an electrochemical fuel cell
JP3773325B2 (en) * 1997-03-17 2006-05-10 ジャパンゴアテックス株式会社 Gas diffusion layer material for polymer electrolyte fuel cell and its joined body
US5976726A (en) 1997-05-01 1999-11-02 Ballard Power Systems Inc. Electrochemical cell with fluid distribution layer having integral sealing capability
US5910378A (en) * 1997-10-10 1999-06-08 Minnesota Mining And Manufacturing Company Membrane electrode assemblies
WO1999066578A1 (en) 1998-06-16 1999-12-23 Matsushita Electric Industrial Co., Ltd. Polymer electrolyte fuel cell
JP4433518B2 (en) 1999-07-30 2010-03-17 アイシン精機株式会社 Solid polymer electrolyte fuel cell
EP2124275B1 (en) * 2000-06-22 2011-08-24 Panasonic Corporation Apparatus for manufacturing electrode for polymer electrolyte fuel cell, and method of manufacturing the same
DE10037072A1 (en) 2000-07-29 2002-02-14 Omg Ag & Co Kg Membrane electrode unit for polymer electrolyte fuel cells and process for their production
JP3382213B2 (en) * 2000-08-08 2003-03-04 松下電器産業株式会社 Method for producing gas diffusion electrode for polymer electrolyte fuel cell
JP3579885B2 (en) * 2000-09-01 2004-10-20 本田技研工業株式会社 Electrode structure for fuel cell and manufacturing method thereof
JP3579886B2 (en) * 2000-09-01 2004-10-20 本田技研工業株式会社 Electrode structure for fuel cell and manufacturing method thereof
JP2002216778A (en) * 2001-01-15 2002-08-02 Aisin Seiki Co Ltd Fuel cell electrode and its producing method and solid polymer electrolyte fuel cell
WO2002091503A1 (en) * 2001-04-27 2002-11-14 Matsushita Electric Industrial Co., Ltd. Electrode for fuel cell and method of manufacturing the electrode
CA2407202C (en) 2001-10-11 2009-11-03 Honda Giken Kogyo Kabushiki Kaisha Electrode for polymer electrolyte fuel cell
JP2005100748A (en) * 2003-09-24 2005-04-14 Nec Tokin Corp Electrolyte membrane electrode bonded laminate, its manufacturing method as well as solid polymer fuel cell
JP4673550B2 (en) * 2003-12-03 2011-04-20 ペルメレック電極株式会社 Method for producing electrochemical porous electrode
JP2005174564A (en) * 2003-12-08 2005-06-30 Hitachi Ltd Polyelectrolyte membrane/electrode junction for fuel cell, fuel cell using it, electronic equipment mounting fuel cell
JP2006059756A (en) * 2004-08-23 2006-03-02 Toyota Motor Corp Solid polyelectrolyte film and polymer electrolyte fuel cell using the same, and their manufacturing method
JP4693442B2 (en) * 2005-03-03 2011-06-01 大日本印刷株式会社 Gas diffusion electrode, manufacturing method thereof, and electrode-electrolyte membrane laminate
JP4626756B2 (en) * 2005-03-09 2011-02-09 東京電力株式会社 Method for producing electrode for solid oxide fuel cell
JP2006294559A (en) * 2005-04-14 2006-10-26 Aisin Chem Co Ltd Water repellent paste, fuel cell gas diffusion layer, and manufacturing method of the fuel dell gas diffusion layer
US7943268B2 (en) 2005-10-04 2011-05-17 GM Global Technology Operations LLC Reinforced membrane electrode assembly
JP5217256B2 (en) * 2007-06-06 2013-06-19 大日本印刷株式会社 Conductive porous sheet and method for producing the same
JP2009004268A (en) * 2007-06-22 2009-01-08 Toyota Motor Corp Diffusion layer and fuel cell using it, and its manufacturing method
KR20090058406A (en) * 2007-12-04 2009-06-09 한화석유화학 주식회사 Process to prepare the self-stand electrode using porous supporter of electrode catalyst for fuel cell, a membrane electrode assembly comprising the same
US8778557B2 (en) * 2011-01-18 2014-07-15 Panasonic Corporation Membrane electrode assembly for fuel cell and fuel cell using the same
JP2018055810A (en) * 2016-09-26 2018-04-05 Fdk株式会社 Air electrode for air secondary battery and air-hydrogen secondary battery including the air electrode

Also Published As

Publication number Publication date
JPH07296818A (en) 1995-11-10

Similar Documents

Publication Publication Date Title
JP3549241B2 (en) Electrode for polymer solid electrolyte fuel cell and joined body thereof with polymer solid electrolyte
JP3576739B2 (en) Gas diffusion electrode
AU724783B2 (en) Porous electrode substrate for an electrochemical fuel cell
JP4837298B2 (en) Humidity adjustment film
US6368751B1 (en) Electrochemical electrode for fuel cell
CA2405318C (en) Gas diffusion substrate
JP4738569B2 (en) Non-woven fiber web
JP6328114B2 (en) Method for preparing a catalyst material
US4585711A (en) Hydrogen electrode for a fuel cell
JPH10513006A (en) Flow field structure for fuel cell membrane electrode assembly
JP4578769B2 (en) Gas diffusion substrate
JP2006339018A (en) Gas diffusion layer for fuel cell and its manufacturing method
EP1165885B1 (en) Nonwoven web
JP2005100748A (en) Electrolyte membrane electrode bonded laminate, its manufacturing method as well as solid polymer fuel cell
JP4649094B2 (en) Manufacturing method of membrane electrode assembly for fuel cell
JP2005183263A (en) Porous structure
EP2769429B1 (en) Gas diffusion substrate
JP4529345B2 (en) Method for producing polymer electrolyte fuel cell
JP2006179412A (en) Fuel cell electrode catalyst layer and fuel cell using the same
JP2006059661A (en) Solid polymer fuel cell
JP4959946B2 (en) Solid polymer fuel cell, membrane-electrode assembly, and gas diffusion electrode substrate
JP2005251491A (en) Fuel cell system
JPH07130372A (en) Solid polymer fuel cell electrode and manufacture thereof
JPH067489B2 (en) Flexible water-repellent firing carbon substrate and its manufacturing method, fuel cell electrode and fuel cell

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040323

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040420

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140430

Year of fee payment: 10

EXPY Cancellation because of completion of term