JP3579275B2 - Method for producing benzoic acid derivative - Google Patents

Method for producing benzoic acid derivative Download PDF

Info

Publication number
JP3579275B2
JP3579275B2 JP36680598A JP36680598A JP3579275B2 JP 3579275 B2 JP3579275 B2 JP 3579275B2 JP 36680598 A JP36680598 A JP 36680598A JP 36680598 A JP36680598 A JP 36680598A JP 3579275 B2 JP3579275 B2 JP 3579275B2
Authority
JP
Japan
Prior art keywords
group
trifluoromethyl
bis
general formula
benzoic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP36680598A
Other languages
Japanese (ja)
Other versions
JP2000191580A (en
Inventor
孝司 久米
道夫 石田
智 成塚
譲 森野
誠 小出
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Original Assignee
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd filed Critical Central Glass Co Ltd
Priority to JP36680598A priority Critical patent/JP3579275B2/en
Publication of JP2000191580A publication Critical patent/JP2000191580A/en
Application granted granted Critical
Publication of JP3579275B2 publication Critical patent/JP3579275B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Description

本発明は、医薬品、農薬、各種機能材料などの製造中間体として有用な安息香酸または安息香酸エステル類の製造法に関する。
【0001】
【従来技術】
芳香族ハロゲン化物に一酸化炭素を挿入する反応により安息香酸誘導体が得られることは従来から知られている。
【0002】
特開昭64−47号公報には、環上に塩素原子を有する有機塩化物をパラジウム化合物及びホスフィン化合物を触媒とし、塩基の存在下、一酸化炭素と150℃〜300℃の反応温度で反応させてカルボン酸の得られることが開示され、ホスフィン化合物としてビス(ジフェニルフォスフィノ)ブタンが例示されている。
【0003】
ビス(トリフルオロメチル)安息香酸類を製造する方法としては、3,5−ビス(トリフルオロメチル)ブロモベンゼンを出発原料とし、グリニャール反応により、3,5−ビス(トリフルオロメチル)安息香酸を製造する方法が知られている[Bull.Soc.Chim.France.,(1962),587−93]。
【0004】
また、特開平9−67297号公報には、3,5−ビス(トリフルオロメチル)ブロモベンゼンと一酸化炭素と水またはメタノールとを、酢酸パラジウムとトリフェニルホスフィンからなる触媒およびトリエチルアミンの存在下、反応させて3,5−ビス(トリフルオロメチル)安息香酸類およびそのエステル類の得られることが記載されている。
【0005】
【発明が解決しようとする課題】
特開平9−67297号公報の方法によると選択率、収率共に比較的良好な結果が得られるが反応途中でパラジウム触媒が触媒不活性なパラジウム黒として析出し実質的な触媒濃度が低下するため比較的多量のパラジウム化合物を使用する必要があった。また、ベンゼン環上にトリフルオロメチル基を有する場合、副反応として脱ハロゲン化反応が進行し、目的とする安息香酸の収率を低下させ、またそれによる副生成物が生成物の精製を困難にしていた。
【0006】
【課題を解決するための手段】
本発明者らは、かかる問題点に鑑み、ビス(トリフルオロメチル)安息香酸類を工業的に容易に、かつ、大量に製造することができる方法について、鋭意検討を行った結果、ハロゲノ−ビス(トリフルオロメチル)ベンゼンと、一酸化炭素および水またはアルコール類とを塩基の存在下反応させることによりビス(トリフルオロメチル)安息香酸類を製造する際に、触媒として特定の触媒を使用することで収率と選択率が顕著に向上し、また、他の貴金属触媒を用いた場合に起こりやすい金属の析出を著しく減らすことができることを見出し、本発明に到達した。
【0007】
すなわち、本発明は、一般式(1)
Ar−X (1)
(式中、Arはアリール基、Xはハロゲン(フッ素、塩素、臭素またはヨウ素)、トリフルオロメタンスルホネート基、炭素数1〜4のアルキルスルホネート基、置換または非置換アリールスルホネート基を表す)で表される芳香族化合物を触媒と塩基の存在下一酸化炭素と一般式(2)
OH (2)
(式中、Rは水素、アリール基または炭素数1〜10のアルキル基を表す)で表されるヒドロキシ化合物を反応させることからなる一般式(3)
【0008】
【化5】

Figure 0003579275
(式中、Ar、Rは前記に同じ)で表される安息香酸誘導体を製造する方法であって、触媒として一般式(4)、
【0009】
【化6】
Figure 0003579275
(式中、Ar、Arはそれぞれ独立にアリール基を表し、Lはそれぞれ独立にホスフィン配位子を表す。)で表されるパラジウム錯化合物を用いる安息香酸誘導体の製造方法である。
【0010】
以下、本発明を詳細に説明する。
【0011】
本発明に使用する一般式(1)で表される芳香族化合物は、Xで表される基以外の部分が本発明の方法において不活性なものであればよく、置換基を有することもある芳香族基にハロゲン、トリフルオロメタンスルホネート基、炭素数1〜4のアルキルスルホネート基、置換または非置換アリールスルホネート基が結合した化合物である。原料の入手が容易なハロゲン化物の方が実用上は好ましい。ハロゲンはフッ素、塩素、臭素またはヨウ素であり、臭素またはヨウ素がより好ましい。
【0012】
芳香族基としては、フェニル基、ナフチル基などの炭素環式基、ピリジル基、キノリル基などの複素環式基であってもよく、置換基を有することもあるが、Ar(アリール基)としては一般式(5)
【0013】
【化7】
Figure 0003579275
(式中、Rはそれぞれ独立にトリフルオロメチル基、トリフルオロメチルオキシ基、ハロゲン(フッ素、塩素、臭素またはヨウ素)を表す)、ニトロ基、アセチル基、シアノ基、炭素数1〜4のアルキル基、炭素数1〜4のアルコキシ基、炭素数2〜5のアルコキシカルボニル基を表し、nは0または1〜5の整数を表す。)で表されるアリール基であるのが好ましい。炭素数1〜4のアルキル基としては、例えば、メチル基、エチル基、n−プロピル基、i−プロピル基、n−ブチル基、炭素数1〜4のアルコキシ基としては、例えば、メトキシ基、エトキシ基、n−プロポキシ基、i−プロポキシ基、炭素数2〜5のアルコキシカルボニル基としては、例えば、メトキシカルボニル基、エトキシカルボニル基、n−プロポキシカルボニル基、i−プロポキシカルボニル基を挙げることができる。
【0014】
一般式(1)で表される芳香族化合物としては、Rとして上に例示したアルキル基、アルコキシ基、ハロゲン(Xとは異なる)、またはトリフルオロメチル基を有し、Xとして臭素またはヨウ素原子を有するものがより好ましい。アルキル基を有するものとしては具体的には、2−、3−または4−ブロモトルエン、2−、3−または4−ブロモエチルベンゼン、2−、3−または4−ブロモ−イソプロピルベンゼンなど、2−、3−または4−ブロモn−ブチルベンゼンなどが例示でき、2−、3−または4−ブロモメトキシベンゼン、2−、3−または4−ブロモエトキシベンゼン、2−、3−または4−ブロモn−プロポキシベンゼン、2−、3−または4−ブロモイソプロポキシベンゼン、2−、3−または4−ブロモn−ブトキシベンゼンなど、2−、3−または4−ブロモクロロベンゼンなどまたはこれらの臭素がヨウ素に置換した化合物が例示できるがこれらに限られない。
【0015】
さらに、一般式(1)で表される芳香族化合物としては、ハロゲノ−(トリフルオロメチル)ベンゼン、ハロゲノ−ビス(トリフルオロメチル)ベンゼン、あるいはこれらの化合物のベンゼン環上水素がハロゲン原子で置換した化合物は好ましい。
【0016】
具体的には、トリフルオロメチル基を1個有する、2−トリフルオロメチルフェニルブロモベンゼン、3−トリフルオロメチルフェニルブロモベンゼン、4−トリフルオロメチルフェニルブロモベンゼン、トリフルオロメチル基を2個有する、2,3−ビス(トリフルオロメチル)フェニルブロモベンゼン、2,4−ビス(トリフルオロメチル)フェニルブロモベンゼン、2,5−ビス(トリフルオロメチル)フェニルブロモベンゼン、2,6−ビス(トリフルオロメチル)フェニルブロモベンゼン、3,4−ビス(トリフルオロメチル)フェニルブロモベンゼン、3,5−ビス(トリフルオロメチル)フェニルブロモベンゼンまたはこれらの臭素がヨウ素に置換した化合物が例示できるがこれらに限られない。
【0017】
さらに、X以外にハロゲンを有する芳香族化合物としては、2−クロロ−3−(トリフルオロメチル)ブロモベンゼン、2−フルオロ−3−(トリフルオロメチル)ブロモベンゼン、2−フルオロ−4−(トリフルオロメチル)ブロモベンゼン、3−フルオロ−5−(トリフルオロメチル)ブロモベンゼン、2−ブロモ−6−(トリフルオロメチル)ブロモベンゼン、4−クロロ−2−(トリフルオロメチル)ブロモベンゼン、4−フルオロ−2−(トリフルオロメチル)ブロモベンゼン、2−クロロ−6−(トリフルオロメチル)ブロモベンゼン、4−フルオロ−3−(トリフルオロメチル)ブロモベンゼン、1−クロロ−4−(トリフルオロメチル)ブロモベンゼン、2−フルオロ−6−(トリフルオロメチル)ブロモベンゼン、2−フルオロ−5−(トリフルオロメチル)ブロモベンゼン、2−クロロ−4−(トリフルオロメチル)ブロモベンゼン、4−クロロ−3−(トリフルオロメチル)ブロモベンゼン、4−クロロ−2−(トリフルオロメチル)ブロモベンゼンなどまたはこれらの臭素がヨウ素に置換した化合物が例示できるがこれらに限られない。
【0018】
これらのうち、生成物の有用性の顕著なことから3,5−ビス(トリフルオロメチル)ブロモベンゼンまたは3,5−ビス(トリフルオロメチル)ヨードベンゼン、あるいはこれらのベンゼン核の水素がハロゲンで置換した2−クロロ−3,5−ビス(トリフルオロメチル)ブロモベンゼンなどがさらに好ましい。この場合、前2者を出発原料として用いると3,5−ビス(トリフルオロメチル)安息香酸またはそのエステルが得られ、後者からは2−クロロ−3,5−ビス(トリフルオロメチル)安息香酸またはそのエステルが得られる。
【0019】
一般式(1)で表される芳香族化合物に本発明の方法を適用すると、一般に芳香環に結合したハロゲンまたはトリフルオロメタンスルホネート基、炭素数1〜4のアルキルスルホネート基、置換または非置換アリールスルホネート基などのみがカルボキシル基に変換し、Rで表される置換基は変化しない生成物が得られる。複数の異なるハロゲンを芳香環に有する化合物では、一般にヨウ素、臭素、塩素、フッ素の順に優先的に反応するが、置換基の環上での位置および種類により異なることもある。
【0020】
一般式(2)
OH (2)
(式中、Rは水素または炭素数1〜10のアルキル基を表す)で表されるヒドロキシ化合物は、炭素数1〜10の直鎖または分岐鎖を有するアルキル基、具体的には、例えば、メチル基、エチル基、n−プロピル基、iso−プロピル基、n−ブチル基、iso−ブチル基、sec−ブチル基、tert−ブチル基、n−ペンチル基、n−ヘキシル基、n−ヘプチル基、n−オクチル基、n−ノニル基、n−デシル基などを有するアルコール類や水を挙げることができる。したがって、本発明における一般式(2)で表されるヒドロキシ化合物を具体的に示すと、例えば、水、メタノール、エタノール、n−プロピルアルコール、iso−プロピルアルコール、n−ブチルアルコール、iso−ブチルアルコール、sec−ブチルアルコール、tert−ブチルアルコール、n−ペンチルアルコール、n−ヘキシルアルコール、n−ヘプチルアルコール、n−オクチルアルコール、n−ノニルアルコール、n−デシルアルコールなどを挙げることができる。
【0021】
本発明における水またはアルコール類の使用量は、一般式(1)で示される芳香族化合物1モルに対して1モル以上であればよいが、一般式(1)で示される芳香族化合物をより転化率よく反応させるため、および、溶媒として機能させるために、やや過剰に添加するのが好ましい。
【0022】
本発明における塩基としては、トリエチルアミン、トリプロピルアミン、トリブチルアミン、トリアリルアミン、N,N−ジメチルアニリン、N,N−ジエチルアニリン、ピリジン、N−メチルモルホリンなどの第三アミン類、酢酸ナトリウム、酢酸カリウムなどの酢酸塩、あるいは、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウムなどの無機塩基などを挙げることができる。
【0023】
また、本発明における塩基の使用量は、通常、一般式(1)で示される芳香族化合物1モルに対して1.0〜10.0モル、好ましくは1.0〜5.0モル、さらに好ましくは1.0〜3.0モル使用するのがよい。1.0モルより少ない場合には、反応が充分に進行せず、収率低下の原因となり、経済的に不利となり、また、未反応の一般式(1)で示される芳香族化合物の除去あるいは回収のために後処理工程に負荷がかかるため、好ましくない。また、10.0モルより多く使用しても、目的とする安息香酸エステル類の収量にほとんど変化はなく、過剰に添加した塩基が、未反応のまま、多量に残るだけであり、経済的に不利となり、また、未反応の塩基の除去のために後処理工程に負荷がかかるため、好ましくない。
【0024】
本発明の触媒は、一般式(4)
【0025】
【化8】
Figure 0003579275
(式中、Ar、Arはそれぞれ独立にアリール基を表し、Lはホスフィン配位子を表す。)で表されるパラジウム錯化合物である。
【0026】
一般式(4)のArまたはArで表されるアリール基はそれぞれ独立に一般式(5)
【0027】
【化9】
Figure 0003579275
(式中、Rはそれぞれ独立にトリフルオロメチル基、トリフルオロメチルオキシ基、ハロゲン(フッ素、塩素、臭素またはヨウ素)を表す)、ニトロ基、アセチル基、シアノ基、炭素数1〜4のアルキル基、炭素数1〜4のアルコキシ基、炭素数2〜5のアルコキシカルボニル基を表し、nは0または1〜5の整数を表す。)で表されるアリール基である。
【0028】
炭素数1〜4のアルキル基としては、例えば、メチル基、エチル基、n−プロピル基、i−プロピル基)、炭素数1〜4のアルコキシ基としては、例えば、メトキシ基、エトキシ基、n−プロポキシ基、i−プロポキシ基、炭素数2〜5のアルコキシカルボニル基としては、例えば、メトキシカルボニル基、エトキシカルボニル基、n−プロポキシカルボニル基、i−プロポキシカルボニル基を挙げることができる。
【0029】
一般式(4)で表されるパラジウム錯化合物において一般式(5)で表されるアリール基としては、Ar、Ar共にフェニル基、o−、m−、p−トリル基などの炭化水素系のアルキル基を有するフェニル基を始め、トリフルオロメチル基を1個有する、2−トリフルオロメチルフェニル基、3−トリフルオロメチルフェニル基、4−トリフルオロメチルフェニル基、トリフルオロメチル基を2個有する、2,3−ビス(トリフルオロメチル)フェニル基、2,4−ビス(トリフルオロメチル)フェニル基、2,5−ビス(トリフルオロメチル)フェニル基、2,6−ビス(トリフルオロメチル)フェニル基、3,4−ビス(トリフルオロメチル)フェニル基、3,5−ビス(トリフルオロメチル)フェニル基などが好ましい基として挙げられる。
【0030】
さらに、これらのうち、一般式(4)で表される錯化合物のArで表されるアリール基がビス(トリフルオロメチル)フェニル基であるのものが好ましく、一方、Arで表されるアリール基がフェニル基、トリフルオロメチルフェニル基またはビス(トリフルオロメチル)フェニル基であるものが好ましく、3−トリフルオロメチルフェニル基または3,5−ビス(トリフルオロメチル)フェニル基であるのがより好ましい。
【0031】
一般式(4)で表されるパラジウム錯化合物においてLで表されるホスフィン配位子は、特に限定されないが、一般式(6)、
P(R (6)
(Rはそれぞれ独立に置換基を有することもあるフェニル基(アリール基)、炭素数1〜6のアルキル基を表す。)で表されるホスフィン配位子である。ここで、Rはそれぞれ独立にフェニル基、o−トリル基、m−トリル基、p−トリル基、メチル基、エチル基、n−ブチル基などから選ばれた基であることが好ましい。また、Lで表されるホスフィン配位子は、トリフェニルホスフィン、トリ−o−トリルホスフィン、トリ−m−トリルホスフィン、トリ−p−トリルホスフィンまたはトリ−n−ブチルホスフィンなどが好ましく、トリフェニルホスフィンは特に好ましい。
【0032】
本発明に使用するのに好適な一般式(4)で表されるパラジウム化合物としては、
【0033】
【化10】
Figure 0003579275
(Tolはo−、m−またはp−トリル基を表す)などが例示できる。
【0034】
本発明に使用するパラジウム錯化合物は結晶性であり、多くの有機溶媒に溶解し、安定である。また、室温において空気中で安定である。このような物理的、化学的性質を有するために単離操作が容易であるので高純度の物質が得られやすく、保存も容易であるので工業的な使用においても取り扱い易いという特徴がある。
【0035】
本発明のに使用するパラジウム錯化合物の製造方法は特に限定されないが、文献(J. Am. Chem. Soc., Vol.117, No.15, 4305(1995))に記載された方法や以下に例示的に示す方法を採用できる。密閉できる容器に一般式(7)
Ar−COOH (7)
(式中、Arは前記に同じ)で表される安息香酸と一般式(1)
Ar−X (1)
(式中、Arは前記に同じ、但し、一般式(7)のArと同時に同じである必要はない)で表される芳香族化合物、溶媒、パラジウム化合物、ホスフィン配位子となるホスフィン、塩基性物質を仕込む。溶媒としては、融点が低い場合には一般式(1)で表される芳香族化合物が使える他、例えば、ペンタン、ヘキサン、ヘプタン、オクタンなどの脂肪族炭化水素類、ベンゼン、トルエン、キシレンなどの芳香族炭化水素類、ジエチルエーテル、ジオキサン、テトラヒドロフラン(THF)、エチレングリコールジメチルエーテルなどのエーテル類、アセトン、メチルエチルケトン、メチルイソブチルケトンなどのケトン類、アセトニトリルなどのニトリル類、ピリジンなどの第三アミン類、N,N−ジメチルホルムアミド(DMF)、N,N−ジメチルアセトアミド(DMAc)などの酸アミド類、ジメチルスルホキシド(DMSO)、スルホランなどの含硫黄化合物、水などを使うことができる。
【0036】
塩基性物質としては、アンモニア、トリエチルアミン、トリプロピルアミン、トリブチルアミン、トリアリルアミン、N,N−ジメチルアニリン、N,N−ジエチルアニリン、ピリジン、N−メチルモルホリンなどの第三アミン類、酢酸ナトリウム、酢酸カリウムなどの酢酸塩、あるいは、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウムなどの無機塩基などを挙げることができる。
【0037】
パラジウム化合物としては、酢酸パラジウム、塩化パラジウム、臭化パラジウムなどが好適である。
【0038】
原料各物質の使用比率は特に限定されないが、パラジウムを有効に利用するために、一般式(1)で表される芳香族化合物と一般式(7)で表される安息香酸はそれぞれ1当量以上用い、ホスフィンは2当量以上使用するのが好ましい。他の溶媒等は適宜の量を使用すればよい。
【0039】
容器は加圧してもしなくてもよく、攪拌してもしなくてもよい。仕込んだ原料などは通常は50〜150℃程度に加熱して反応の進行を速める。所定の時間が経過した後、容器を冷却して内容物を取り出す。内容物に適宜抽出溶媒を加え固形分を分離して、揮発成分を留去すれば目的とする一般式(4)で表される錯化合物が得られる。必要に応じて再結晶により精製することができる。
【0040】
本発明の反応は、無溶媒で行っても溶媒中で行ってもよい。溶媒を使用する場合、溶媒としては、例えば、ペンタン、ヘキサン、ヘプタン、オクタンなどの脂肪族炭化水素類、ベンゼン、トルエン、キシレンなどの芳香族炭化水素類、ジエチルエーテル、ジオキサン、テトラヒドロフラン(THF)、エチレングリコールジメチルエーテルなどのエーテル類、アセトン、メチルエチルケトン、メチルイソブチルケトンなどのケトン類、アセトニトリルなどのニトリル類、ピリジンなどの第三アミン類、N,N−ジメチルホルムアミド(DMF)、N,N−ジメチルアセトアミド(DMAc)などの酸アミド類、ジメチルスルホキシド(DMSO)、スルホランなどの含硫黄化合物など、通常使用されるものを使用することができる。しかしながら、溶媒を使用した場合、反応系全体の容量が増大し、より大規模な反応装置が必要となったり、1バッチ当たりの生産量が減少したりする。本発明においては反応剤として水またはアルコール類を使用しており、これらが溶媒としても機能できることから、特に他の溶媒を使用する必要はない。
【0041】
本発明の方法におけるパラジウム錯化合物の使用量は、一般式(1)で表される芳香族化合物1モルに対して通常金属として0.00001〜0.5モル、好ましくは0.00005〜0.1モル、より好ましくは0.0001〜0.1モルである。0.00001モルよりも少ないと反応の進行が遅く実用的でないので好ましくなく、また、0.5モルよりも多いことは反応の点では問題はないが経済的に不利であるので好ましくない。
【0042】
また、反応系に、一般式(6)
P(R (6)
(式中、Rはそれぞれ独立にアリール基、炭素数1〜6のアルキル基を表す。)または、一般式(8)
(RP−Q−P(R (8)
(式中、Rはそれぞれ独立にアリール基、炭素数1〜6のアルキル基を表し、Qは二価の有機基を表す。)で表されるホスフィンを別途添加することは好ましい。ここで、R、Rはそれぞれ独立にフェニル基、o−トリル基、m−トリル基、p−トリル基、メチル基、エチル基、n−ブチル基などから選ばれた基であることが好ましい。また、Qとしては、−(CH−(mは2〜8の整数)で表されるアルキレン基などである。
【0043】
したがって、ホスフィンとしては、トリフェニルホスフィン、トリ−o−トリルホスフィン、トリ−m−トリルホスフィン、トリ−p−トリルホスフィン、メチルジフェニルホスフィン、トリ−n−ブチルホスフィン、1,1’−ビス(ジフェニルホスフィノ)フェロセン(dppf)、1,4−ビス(ジフェニルホスフィノ)ブタン(dppb)、1,3−ビス(ジフェニルホスフィノ)プロパン(dppp)または1,2−ビス(ジフェニルホスフィノ)エタン(dppe)などが好ましく、トリフェニルホスフィン、dppbは特に好ましい。
【0044】
本発明の方法で、パラジウム錯化合物とは別に反応系に添加するホスフィン類は、パラジウム金属1モルに対し、0.1モル〜100モルであり、50モル以下が好ましく、20モル以下であるのがより好ましい。100モルよりも多く使用しても、反応速度、収率などにはほとんど変化はなく、経済的に不利なだけであり、好ましくない。
【0045】
本発明において、一般式(4)で表されるパラジウム錯化合物の他にホスフィン類を反応系に共存させることは、パラジウム錯化合物の使用量を減らすことに効果があり、また、反応途中においてパラジウム金属が析出し触媒の実効濃度を下げるという好ましくない現象の発現を低減させるという点においても効果を有する。
【0046】
また、本発明における塩基の使用量は、通常、一般式(1)で示される芳香族化合物1モルに対して10.0〜1.0モル、好ましくは5.0〜1.0モル、さらに好ましくは3.0〜1.0モル使用するのがよい。この範囲より少ない場合には、反応が充分に進行せず、収率低下の原因となり、経済的に不利となり、また、未反応の一般式(1)で示される芳香族ハロゲン化物の除去あるいは回収のために後処理工程に負荷がかかるため、好ましくない。また、この範囲より多く使用しても、目的とする安息香酸エステル類の収量にほとんど変化はなく、過剰に添加した塩基が、未反応のまま、多量に残るだけであり、経済的に不利となり、また、未反応の塩基の除去のために後処理工程に負荷がかかるため、好ましくない。
【0047】
次に、本発明の製造方法の実施について述べる。一般式(1)で示される芳香族化合物、水またはアルコール類、パラジウム錯化合物および塩基、さらに必要であれば溶媒および/またはホスフィンを反応器に仕込んだ後、反応器を密閉し、系内を一酸化炭素で置換し、常圧下あるいは加圧下で反応を行う。一酸化炭素圧は、通常、常圧〜30kg/cm、好ましくは1〜20kg/cm、さらに好ましくは2〜10kg/cmとするのがよい。この範囲より低い場合には、反応が充分に進行せず、収率低下の原因となり、経済的に不利となる、あるいは、反応速度が低下して反応終了までに長時間を要するなどの問題を生ずる場合があり、好ましくない。また、この範囲より高くしても、反応速度や目的とする一般式(3)で示される安息香酸または安息香酸エステル類の収量にほとんど変化はなく、また、反応装置の安全性などの問題が生じるため、好ましくない。
【0048】
また、本発明における反応温度は、通常、30℃〜200℃、好ましくは50℃〜180℃、さらに好ましくは60℃〜150℃とするのがよい。この範囲より低い温度の場合には、反応が充分に進行せず、収率低下の原因となり、経済的に不利となる、あるいは、反応速度が低下して反応終了までに長時間を要するなどの問題を生ずる場合があり、好ましくない。また、この範囲より高い温度の場合には、反応中に分解などが起こる場合があり、収率低下の原因となり、経済的に不利となり、また、分解生成物などの除去のために後処理工程に負荷がかかるため、好ましくない。
【0049】
【実施例】
次に、本発明が製法について実施例を挙げて詳細に説明するが、本発明はこれらに限定されるものではない。
【0050】
〔調製例1〕[3,5−ビス(トリフルオロメチル)ベンゾアト]3’,5’−ビス(トリフルオロメチル)フェニルビス(トリフェニルホスフィン)パラジウム(II)の合成
容量500mlのステンレス製オートクレーブに3,5−ビス(トリフルオロメチル)ブロモベンゼン65.3g、テトラヒドロフラン100ml、酢酸パラジウム50.0g、トリフェニルホスフィン175.5g、3,5−ビス(トリフルオロメチル)安息香酸57.6g、25%アンモニア水60.8gを仕込んだ。窒素置換を2回行い、窒素圧を3kg/cmとして攪拌を始めると内温が約50℃に上昇した。その後油浴温度を120℃に設定し加熱を開始した。約2時間後、内温が95.6℃に達した時点で油浴を外し冷却した。反応液に水200mlおよびトルエン600mlを加え、氷冷下、数十分間攪拌した。得られた処理液を吸引濾過し、濾液の有機層を分液した後、飽和食塩水で2回洗浄し、無水硫酸マグネシウムで乾燥後揮発成分を留去濃縮した。濃縮初期に析出した固体を濾別し、さらに濃縮した後,n−ヘキサンを加え冷却し析出した固体を濾別し粗生成物187.5gを得た。粗生成物をトルエンから再結晶し淡黄色結晶143.0gを得た。
【0051】
[3,5−ビス(トリフルオロメチル)ベンゾアト]3’,5’−ビス(トリフルオロメチル)フェニルビス(トリフェニルホスフィン)パラジウム(II)
融点:168−170℃(decomp.)
IR(KBr:cm−1):3060,2926,1637,1437,1321,1277,1173,1127,748,697,518
H−NMR(基準物質:TMS 溶媒:CDCl):
δppm 6.97(s,1H),7.09(s,2H),7.20−7.32(m,18H),7.40−7.50(m,12H),7.53(s,2H),7.62(s,1H)
31P−NMR(基準物質:85%HPO溶媒:CDCl):δppm 25.73(s)
【0052】
〔調製例2〕[3,5−ビス(トリフルオロメチル)ベンゾアト]3’−トリフルオロメチルフェニルビス(トリフェニルホスフィン)パラジウム(II)の合成容量500mlのステンレス製オートクレーブに、3−トリフルオロメチルブロモベンゼン25.0g、テトラヒドロフラン75ml、酢酸パラジウム25g、トリフェニルホスフィン87.3g、25%アンモニア水38g、3,5−ビス(トリフルオロメチル)安息香酸57.5gを仕込み、調製例1と同様な操作を行って目的とする[3,5−ビス(トリフルオロメチル)ベンゾアト]3’−トリフルオロメチルフェニルビス(トリフェニルホスフィン)パラジウム(II)が32.3g得られた。
【0053】
[3,5−ビス(トリフルオロメチル)ベンゾアト]3’−トリフルオロメチルフェニルビス(トリフェニルホスフィン)パラジウム(II)
H−NMR(基準物質:TMS 溶媒:CDCl):
δppm 6.47(dd,J=7.3,7.8Hz,1H),6.77(d,J=7.3Hz,1H),6.80(brs,1H),6.95(d,J=7.8Hz,1H),7.24−7.30(m,18H),7.40−7.46(m,12H)
【0054】
[実施例1]
容量500mlのステンレス製オートクレーブに、3,5−ビス(トリフルオロメチル)ブロモベンゼン200g、トリエチルアミン145g、およびテトラヒドロフラン100mlを混合し、さらに[3,5−ビス(トリフルオロメチル)ベンゾアト]3’,5’−ビス(トリフルオロメチル)フェニルビス(トリフェニルホスフィン)パラジウム(II)2.87g、トリフェニルホスフィン1.79gおよび水100gを加えた。反応器を密閉したのち、撹拌を開始し窒素置換3回、更に一酸化炭素置換3回を行った。一酸化炭素初期圧を4kg/cmに設定し加熱を始めた。1時間後内温が100℃に達した時点で内圧を8kg/cmに調整した。反応中は内温100℃、内圧8kg/cmを保った。
【0055】
12.5時間後、加温を停止し反応器を冷却。内温が50℃以下になった時点で内部ガスをパージし、内圧を常圧まで降下させた後、窒素置換を3回行って反応を終了した。
【0056】
反応液を1000mlビーカーに移液し撹拌しつつ、氷冷下濃硫酸55gを分液ロートより滴下した。滴下終了後、テトラヒドロフラン50ml、および水100mlを加え、しばらく撹拌した後、得られた溶液を分液ロートに移液し、有機層を分液した。
【0057】
2000ml三つ口フラスコに撹拌機、滴下ロート及びコンデンサー付きト字管を取り付け、500mlの温水を加えた。油浴を用いて温水の温度を85℃に保ち、そこへ滴下ロートを用いて上記の有機層を滴下した。添加開始後、しばらくしてテトラヒドロフラン−水の混合物が留出してくるので、添加量と留出量のバランスを保ちつつ浴温等を調整した。全量添加終了後、テトラヒドロフランの留出が停止し、液温および蒸気温度が上昇を開始した時点で油浴を外し室温まで冷却した。生成した沈殿を吸引濾過した後、得られた結晶を水、次いでトルエンで洗浄した。減圧乾燥後、目的とする3,5−ビス(トリフルオロメチル)安息香酸128.9gを得た。
【0058】
[実施例2]
容量500mlのステンレス製オートクレーブに、3,5−ビス(トリフルオロメチル)ブロモベンゼン200gおよびトリエチルアミン145gを混合し、さらに[3,5−ビス(トリフルオロメチル)ベンゾアト]3’,5’−ビス(トリフルオロメチル)フェニルビス(トリフェニルホスフィン)パラジウム(II)1.43g、トリフェニルホスフィン0.45gおよび水100gを加えた。その後、実施例1と同様の操作を行って、3,5−ビス(トリフルオロメチル)安息香酸130gを得た。
【0059】
[実施例3]
容量500mlのステンレス製オートクレーブに、3,5−ビス(トリフルオロメチル)ブロモベンゼン150g、トリエチルアミン114.0gおよびトルエン75gを混合し、さらに[3,5−ビス(トリフルオロメチル)ベンゾアト]3’,5’−ビス(トリフルオロメチル)フェニルビス(トリフェニルホスフィン)パラジウム(II)2.71gおよび水200gを加えた。その後、実施例1と同様の操作を行って、3,5−ビス(トリフルオロメチル)安息香酸84.0gを得た。
【0060】
[実施例4]
容量500mlのステンレス製オートクレーブに、3−トリフルオロメチルブロモベンゼン154gおよびトリエチルアミン145gを混合し、さらに[3,5−ビス(トリフルオロメチル)ベンゾアト]3’,5’−ビス(トリフルオロメチル)フェニルビス(トリフェニルホスフィン)パラジウム(II)3.77g、トリフェニルホスフィン0.898gおよび水100gを加えた。その後、実施例1と同様の操作を行って、3−トリフルオロメチル安息香酸119gを得た。
【0061】
【発明の効果】
医薬品、農薬、各種機能材料などの製造中間体として有用な化合物である安息香酸類誘導体、トリフルオロメチル安息香酸誘導体類を容易に、かつ、効率よく製造することができる。The present invention relates to a method for producing benzoic acid or benzoic esters useful as intermediates for producing pharmaceuticals, agricultural chemicals, various functional materials and the like.
[0001]
[Prior art]
It is conventionally known that a benzoic acid derivative can be obtained by a reaction of inserting carbon monoxide into an aromatic halide.
[0002]
JP-A-64-47 discloses that an organic chloride having a chlorine atom on a ring is reacted with carbon monoxide at a reaction temperature of 150 ° C. to 300 ° C. in the presence of a base using a palladium compound and a phosphine compound as catalysts. It is disclosed that a carboxylic acid can be obtained by the reaction, and bis (diphenylphosphino) butane is exemplified as a phosphine compound.
[0003]
As a method for producing bis (trifluoromethyl) benzoic acid, 3,5-bis (trifluoromethyl) bromobenzene is used as a starting material to produce 3,5-bis (trifluoromethyl) benzoic acid by a Grignard reaction. Is known [Bull. Soc. Chim. France. , (1962), 587-93].
[0004]
Japanese Patent Application Laid-Open No. 9-67297 discloses that 3,5-bis (trifluoromethyl) bromobenzene, carbon monoxide and water or methanol are prepared in the presence of a catalyst comprising palladium acetate and triphenylphosphine and triethylamine. It is described that 3,5-bis (trifluoromethyl) benzoic acid and its ester can be obtained by reacting.
[0005]
[Problems to be solved by the invention]
According to the method disclosed in Japanese Patent Application Laid-Open No. 9-67297, relatively good results can be obtained in both selectivity and yield. However, during the reaction, the palladium catalyst precipitates as inactive palladium black and the actual catalyst concentration decreases. A relatively large amount of palladium compound had to be used. Further, when a trifluoromethyl group is present on the benzene ring, the dehalogenation reaction proceeds as a side reaction, lowering the yield of the target benzoic acid, and the resulting by-products make it difficult to purify the product. I was
[0006]
[Means for Solving the Problems]
In view of the above problems, the present inventors have conducted intensive studies on a method capable of industrially producing bis (trifluoromethyl) benzoic acids easily and in large quantities. As a result, halogeno-bis ( When a bis (trifluoromethyl) benzoic acid is produced by reacting trifluoromethyl) benzene with carbon monoxide and water or an alcohol in the presence of a base, a specific catalyst is used as a catalyst. The present inventors have found that the selectivity and selectivity are remarkably improved, and that the precipitation of metal which is likely to occur when another noble metal catalyst is used can be significantly reduced, and the present invention has been achieved.
[0007]
That is, the present invention relates to the general formula (1)
Ar-X (1)
(Wherein, Ar represents an aryl group, X represents a halogen (fluorine, chlorine, bromine, or iodine), a trifluoromethanesulfonate group, an alkylsulfonate group having 1 to 4 carbon atoms, or a substituted or unsubstituted arylsulfonate group). An aromatic compound is prepared by reacting carbon monoxide with a general formula (2) in the presence of a catalyst and a base.
R 1 OH (2)
(Where R 1 Represents a hydrogen, an aryl group or an alkyl group having 1 to 10 carbon atoms).
[0008]
Embedded image
Figure 0003579275
(Where Ar, R 1 Is the same as described above), which is a method for producing a benzoic acid derivative represented by the following general formula (4):
[0009]
Embedded image
Figure 0003579275
(Wherein, Ar 1 , Ar 2 Each independently represents an aryl group, and L each independently represents a phosphine ligand. This is a method for producing a benzoic acid derivative using a palladium complex compound represented by the following formula:
[0010]
Hereinafter, the present invention will be described in detail.
[0011]
The aromatic compound represented by the general formula (1) used in the present invention may have a substituent other than the group represented by X as long as it is inactive in the method of the present invention. A compound in which a halogen, a trifluoromethanesulfonate group, an alkylsulfonate group having 1 to 4 carbon atoms, or a substituted or unsubstituted arylsulfonate group is bonded to an aromatic group. Practically preferred are halides whose raw materials are easily available. Halogen is fluorine, chlorine, bromine or iodine, with bromine or iodine being more preferred.
[0012]
The aromatic group may be a carbocyclic group such as a phenyl group or a naphthyl group, or a heterocyclic group such as a pyridyl group or a quinolyl group, and may have a substituent. Is the general formula (5)
[0013]
Embedded image
Figure 0003579275
(Where R 2 Each independently represents a trifluoromethyl group, a trifluoromethyloxy group, a halogen (fluorine, chlorine, bromine or iodine), a nitro group, an acetyl group, a cyano group, an alkyl group having 1 to 4 carbon atoms, and 1 carbon atom Represents an alkoxy group having from 4 to 4 or an alkoxycarbonyl group having from 2 to 5 carbon atoms, and n represents 0 or an integer from 1 to 5. ) Is preferred. As an alkyl group having 1 to 4 carbon atoms, for example, a methyl group, an ethyl group, an n-propyl group, an i-propyl group, n-butyl group, and as an alkoxy group having 1 to 4 carbon atoms, for example, a methoxy group, Examples of the ethoxy group, n-propoxy group, i-propoxy group, and alkoxycarbonyl group having 2 to 5 carbon atoms include a methoxycarbonyl group, an ethoxycarbonyl group, an n-propoxycarbonyl group, and an i-propoxycarbonyl group. it can.
[0014]
The aromatic compound represented by the general formula (1) has an alkyl group, an alkoxy group, a halogen (different from X) or a trifluoromethyl group exemplified above as R, and X is a bromine or iodine atom. Are more preferable. Specific examples of those having an alkyl group include 2-, 3- or 4-bromotoluene, 2-, 3- or 4-bromoethylbenzene, 2-, 3- or 4-bromo-isopropylbenzene, and the like. , 3- or 4-bromon-butylbenzene, and the like, and 2-, 3- or 4-bromomethoxybenzene, 2-, 3- or 4-bromoethoxybenzene, 2-, 3- or 4-bromon. -Propoxybenzene, 2-, 3- or 4-bromoisopropoxybenzene, 2-, 3- or 4-bromo n-butoxybenzene, 2-, 3- or 4-bromochlorobenzene or the like or a bromine thereof is converted to iodine. A substituted compound can be exemplified, but the compound is not limited thereto.
[0015]
Further, as the aromatic compound represented by the general formula (1), halogeno- (trifluoromethyl) benzene, halogeno-bis (trifluoromethyl) benzene, or hydrogen on the benzene ring of these compounds is substituted by a halogen atom. The compounds mentioned are preferred.
[0016]
Specifically, having one trifluoromethyl group, 2-trifluoromethylphenylbromobenzene, 3-trifluoromethylphenylbromobenzene, 4-trifluoromethylphenylbromobenzene, having two trifluoromethyl groups, 2,3-bis (trifluoromethyl) phenylbromobenzene, 2,4-bis (trifluoromethyl) phenylbromobenzene, 2,5-bis (trifluoromethyl) phenylbromobenzene, 2,6-bis (trifluoro Examples thereof include methyl) phenylbromobenzene, 3,4-bis (trifluoromethyl) phenylbromobenzene, 3,5-bis (trifluoromethyl) phenylbromobenzene, and compounds in which bromine is substituted by iodine. I can't.
[0017]
Further, as the aromatic compound having a halogen other than X, 2-chloro-3- (trifluoromethyl) bromobenzene, 2-fluoro-3- (trifluoromethyl) bromobenzene, 2-fluoro-4- (tri (Fluoromethyl) bromobenzene, 3-fluoro-5- (trifluoromethyl) bromobenzene, 2-bromo-6- (trifluoromethyl) bromobenzene, 4-chloro-2- (trifluoromethyl) bromobenzene, 4- Fluoro-2- (trifluoromethyl) bromobenzene, 2-chloro-6- (trifluoromethyl) bromobenzene, 4-fluoro-3- (trifluoromethyl) bromobenzene, 1-chloro-4- (trifluoromethyl ) Bromobenzene, 2-fluoro-6- (trifluoromethyl) bromobenzene, Oro-5- (trifluoromethyl) bromobenzene, 2-chloro-4- (trifluoromethyl) bromobenzene, 4-chloro-3- (trifluoromethyl) bromobenzene, 4-chloro-2- (trifluoromethyl ) Bromobenzene and the like or compounds in which bromine is substituted with iodine can be exemplified, but not limited thereto.
[0018]
Of these, 3,5-bis (trifluoromethyl) bromobenzene or 3,5-bis (trifluoromethyl) iodobenzene, or hydrogen of these benzene nuclei is halogen because of the remarkable usefulness of the product Substituted 2-chloro-3,5-bis (trifluoromethyl) bromobenzene and the like are more preferred. In this case, when the former two are used as starting materials, 3,5-bis (trifluoromethyl) benzoic acid or its ester is obtained, and from the latter, 2-chloro-3,5-bis (trifluoromethyl) benzoic acid is obtained. Or its ester is obtained.
[0019]
When the method of the present invention is applied to the aromatic compound represented by the general formula (1), generally, a halogen or a trifluoromethanesulfonate group bonded to an aromatic ring, an alkylsulfonate group having 1 to 4 carbon atoms, a substituted or unsubstituted arylsulfonate Only a group or the like is converted into a carboxyl group, and a product in which the substituent represented by R is not changed is obtained. Compounds having a plurality of different halogens on an aromatic ring generally react preferentially in the order of iodine, bromine, chlorine, and fluorine, but may differ depending on the position and type of substituent on the ring.
[0020]
General formula (2)
R 1 OH (2)
(Where R 1 Represents hydrogen or an alkyl group having 1 to 10 carbon atoms), an alkyl group having a linear or branched chain having 1 to 10 carbon atoms, specifically, for example, a methyl group, an ethyl group , N-propyl group, iso-propyl group, n-butyl group, iso-butyl group, sec-butyl group, tert-butyl group, n-pentyl group, n-hexyl group, n-heptyl group, n-octyl group , An n-nonyl group, an alcohol having an n-decyl group, and the like. Therefore, specific examples of the hydroxy compound represented by the general formula (2) in the present invention include, for example, water, methanol, ethanol, n-propyl alcohol, iso-propyl alcohol, n-butyl alcohol, and iso-butyl alcohol. , Sec-butyl alcohol, tert-butyl alcohol, n-pentyl alcohol, n-hexyl alcohol, n-heptyl alcohol, n-octyl alcohol, n-nonyl alcohol, n-decyl alcohol and the like.
[0021]
The amount of water or alcohol used in the present invention may be 1 mol or more per 1 mol of the aromatic compound represented by the general formula (1). It is preferable to add a slightly excessive amount in order to cause a reaction at a high conversion rate and to function as a solvent.
[0022]
Examples of the base in the present invention include tertiary amines such as triethylamine, tripropylamine, tributylamine, triallylamine, N, N-dimethylaniline, N, N-diethylaniline, pyridine, N-methylmorpholine, sodium acetate, and acetic acid. Examples thereof include acetates such as potassium, and inorganic bases such as sodium hydroxide, potassium hydroxide, sodium carbonate, and potassium carbonate.
[0023]
The amount of the base used in the present invention is usually 1.0 to 10.0 mol, preferably 1.0 to 5.0 mol, per 1 mol of the aromatic compound represented by the general formula (1), and more preferably 1.0 to 5.0 mol. Preferably, it is used in an amount of 1.0 to 3.0 mol. When the amount is less than 1.0 mol, the reaction does not proceed sufficiently, which causes a decrease in yield, and is economically disadvantageous. Further, the removal of unreacted aromatic compound represented by the general formula (1) or It is not preferable because a load is applied to the post-processing step for recovery. Further, even if it is used in an amount of more than 10.0 mol, there is almost no change in the yield of the target benzoic acid esters, and only a large amount of the excessively added base remains unreacted, which is economical. It is not preferable because it is disadvantageous and a load is applied to a post-treatment step for removing unreacted base.
[0024]
The catalyst of the present invention has the general formula (4)
[0025]
Embedded image
Figure 0003579275
(Wherein, Ar 1 , Ar 2 Each independently represents an aryl group, and L represents a phosphine ligand. ) Is a palladium complex compound represented by
[0026]
Ar of the general formula (4) 1 Or Ar 2 The aryl groups represented by are each independently represented by the general formula (5)
[0027]
Embedded image
Figure 0003579275
(Where R 2 Each independently represents a trifluoromethyl group, a trifluoromethyloxy group, a halogen (fluorine, chlorine, bromine or iodine), a nitro group, an acetyl group, a cyano group, an alkyl group having 1 to 4 carbon atoms, and 1 carbon atom Represents an alkoxy group having from 4 to 4 or an alkoxycarbonyl group having from 2 to 5 carbon atoms, and n represents 0 or an integer from 1 to 5. ) Is an aryl group.
[0028]
Examples of the alkyl group having 1 to 4 carbon atoms include a methyl group, an ethyl group, an n-propyl group and an i-propyl group), and examples of the alkoxy group having 1 to 4 carbon atoms include a methoxy group, an ethoxy group, Examples of the -propoxy group, i-propoxy group, and alkoxycarbonyl group having 2 to 5 carbon atoms include a methoxycarbonyl group, an ethoxycarbonyl group, an n-propoxycarbonyl group, and an i-propoxycarbonyl group.
[0029]
The aryl group represented by the general formula (5) in the palladium complex compound represented by the general formula (4) may be Ar 1 , Ar 2 Both include a phenyl group having a hydrocarbon-based alkyl group such as a phenyl group, o-, m-, and p-tolyl group, and a 2-trifluoromethylphenyl group and a 3-trifluoro group having one trifluoromethyl group. 2,3-bis (trifluoromethyl) phenyl, 2,4-bis (trifluoromethyl) phenyl, 2,5 having two methylphenyl, 4-trifluoromethylphenyl, and trifluoromethyl groups -Bis (trifluoromethyl) phenyl group, 2,6-bis (trifluoromethyl) phenyl group, 3,4-bis (trifluoromethyl) phenyl group, 3,5-bis (trifluoromethyl) phenyl group and the like. Preferred groups are mentioned.
[0030]
Further, among these, Ar of the complex compound represented by the general formula (4) 1 The aryl group represented by is preferably a bis (trifluoromethyl) phenyl group. 2 The aryl group represented by is preferably a phenyl group, a trifluoromethylphenyl group or a bis (trifluoromethyl) phenyl group, and a 3-trifluoromethylphenyl group or a 3,5-bis (trifluoromethyl) phenyl group Is more preferable.
[0031]
The phosphine ligand represented by L in the palladium complex compound represented by the general formula (4) is not particularly limited.
P (R 3 ) 3 (6)
(R 3 Represents a phenyl group (aryl group) which may have a substituent independently, and an alkyl group having 1 to 6 carbon atoms. ) Is a phosphine ligand represented by Where R 3 Is preferably a group independently selected from a phenyl group, an o-tolyl group, an m-tolyl group, a p-tolyl group, a methyl group, an ethyl group, and an n-butyl group. The phosphine ligand represented by L is preferably triphenylphosphine, tri-o-tolylphosphine, tri-m-tolylphosphine, tri-p-tolylphosphine, tri-n-butylphosphine, or the like. Phosphine is particularly preferred.
[0032]
Palladium compounds represented by the general formula (4) suitable for use in the present invention include:
[0033]
Embedded image
Figure 0003579275
(Tol represents an o-, m- or p-tolyl group) and the like.
[0034]
The palladium complex compound used in the present invention is crystalline, is soluble in many organic solvents, and is stable. It is stable in air at room temperature. Because of these physical and chemical properties, the isolation operation is easy, so that a high-purity substance is easily obtained, and storage is also easy, so that it is easy to handle even in industrial use.
[0035]
The method for producing the palladium complex compound used in the present invention is not particularly limited, but the method described in the literature (J. Am. Chem. Soc., Vol. 117, No. 15, 4305 (1995)) and the method described below can be used. An exemplary method can be employed. General formula (7) in a sealable container
Ar-COOH (7)
(Wherein Ar is the same as described above) and benzoic acid represented by the general formula (1)
Ar-X (1)
(Wherein, Ar is the same as described above, but it is not necessary to be the same at the same time as Ar in the general formula (7)), a solvent, a palladium compound, phosphine serving as a phosphine ligand, and a base Ingredients are charged. As the solvent, when the melting point is low, an aromatic compound represented by the general formula (1) can be used. In addition, for example, aliphatic hydrocarbons such as pentane, hexane, heptane, and octane; benzene, toluene, and xylene; Aromatic hydrocarbons, ethers such as diethyl ether, dioxane, tetrahydrofuran (THF) and ethylene glycol dimethyl ether; ketones such as acetone, methyl ethyl ketone and methyl isobutyl ketone; nitriles such as acetonitrile; tertiary amines such as pyridine; Acid amides such as N, N-dimethylformamide (DMF) and N, N-dimethylacetamide (DMAc), sulfur-containing compounds such as dimethylsulfoxide (DMSO) and sulfolane, and water can be used.
[0036]
Examples of the basic substance include tertiary amines such as ammonia, triethylamine, tripropylamine, tributylamine, triallylamine, N, N-dimethylaniline, N, N-diethylaniline, pyridine and N-methylmorpholine, sodium acetate, Examples thereof include acetates such as potassium acetate, and inorganic bases such as sodium hydroxide, potassium hydroxide, sodium carbonate, and potassium carbonate.
[0037]
As the palladium compound, palladium acetate, palladium chloride, palladium bromide and the like are suitable.
[0038]
The ratio of each raw material used is not particularly limited, but in order to effectively use palladium, the aromatic compound represented by the general formula (1) and the benzoic acid represented by the general formula (7) each have at least 1 equivalent. The phosphine used is preferably used in an amount of 2 equivalents or more. Other solvents and the like may be used in appropriate amounts.
[0039]
The container may or may not be pressurized and may or may not be agitated. The charged raw materials and the like are usually heated to about 50 to 150 ° C. to speed up the progress of the reaction. After a predetermined time has elapsed, the container is cooled and the contents are taken out. An extraction solvent is appropriately added to the contents to separate a solid content, and a volatile component is distilled off to obtain a desired complex compound represented by the general formula (4). If necessary, it can be purified by recrystallization.
[0040]
The reaction of the present invention may be performed without a solvent or in a solvent. When a solvent is used, examples of the solvent include aliphatic hydrocarbons such as pentane, hexane, heptane, and octane; aromatic hydrocarbons such as benzene, toluene, and xylene; diethyl ether, dioxane, and tetrahydrofuran (THF); Ethers such as ethylene glycol dimethyl ether, ketones such as acetone, methyl ethyl ketone and methyl isobutyl ketone, nitriles such as acetonitrile, tertiary amines such as pyridine, N, N-dimethylformamide (DMF), N, N-dimethylacetamide Commonly used compounds such as acid amides such as (DMAc) and sulfur-containing compounds such as dimethylsulfoxide (DMSO) and sulfolane can be used. However, when a solvent is used, the volume of the entire reaction system increases, a larger-scale reactor is required, and the production amount per batch decreases. In the present invention, water or alcohol is used as a reactant, and since these can also function as a solvent, it is not particularly necessary to use another solvent.
[0041]
The amount of the palladium complex compound used in the method of the present invention is usually 0.00001 to 0.5 mol, preferably 0.00005 to 0.5 mol as a metal per 1 mol of the aromatic compound represented by the general formula (1). It is 1 mol, more preferably 0.0001 to 0.1 mol. If the amount is less than 0.00001 mol, the progress of the reaction is slow, which is not practical because it is not practical. On the other hand, if it is more than 0.5 mol, there is no problem in terms of the reaction, but it is economically disadvantageous, so it is not preferable.
[0042]
In addition, a general formula (6) is added to the reaction system.
P (R 3 ) 3 (6)
(Where R 3 Each independently represents an aryl group or an alkyl group having 1 to 6 carbon atoms. ) Or general formula (8)
(R 4 ) 2 PQP (R 4 ) 2 (8)
(Where R 4 Each independently represents an aryl group or an alkyl group having 1 to 6 carbon atoms, and Q represents a divalent organic group. It is preferable to separately add the phosphine represented by ()). Where R 3 , R 4 Is preferably a group independently selected from a phenyl group, an o-tolyl group, an m-tolyl group, a p-tolyl group, a methyl group, an ethyl group, and an n-butyl group. Q is-(CH 2 ) m And an alkylene group represented by-(m is an integer of 2 to 8).
[0043]
Therefore, phosphine includes triphenylphosphine, tri-o-tolylphosphine, tri-m-tolylphosphine, tri-p-tolylphosphine, methyldiphenylphosphine, tri-n-butylphosphine, 1,1′-bis (diphenyl Phosphino) ferrocene (dppf), 1,4-bis (diphenylphosphino) butane (dppb), 1,3-bis (diphenylphosphino) propane (dppp) or 1,2-bis (diphenylphosphino) ethane ( dppe) is preferred, and triphenylphosphine and dppb are particularly preferred.
[0044]
In the method of the present invention, the phosphine added to the reaction system separately from the palladium complex compound is 0.1 mol to 100 mol, preferably 50 mol or less, more preferably 20 mol or less, based on 1 mol of palladium metal. Is more preferred. Even if it is used more than 100 moles, there is almost no change in the reaction rate, the yield and the like, and it is only economically disadvantageous and is not preferable.
[0045]
In the present invention, coexistence of a phosphine in the reaction system in addition to the palladium complex compound represented by the general formula (4) is effective in reducing the amount of the palladium complex compound used. This is also effective in reducing the occurrence of undesirable phenomena in which the metal precipitates and lowers the effective concentration of the catalyst.
[0046]
The amount of the base used in the present invention is usually 10.0 to 1.0 mol, preferably 5.0 to 1.0 mol, and more preferably 5.0 to 1.0 mol, per 1 mol of the aromatic compound represented by the general formula (1). Preferably 3.0 to 1.0 mol is used. If the amount is less than this range, the reaction does not proceed sufficiently, which causes a decrease in yield and is economically disadvantageous. Further, removal or recovery of unreacted aromatic halide represented by the general formula (1) Therefore, a load is applied to the post-processing step, which is not preferable. In addition, even if the amount is larger than this range, the yield of the target benzoic acid esters hardly changes, and the base added in excess remains unreacted and remains in a large amount, which is economically disadvantageous. In addition, it is not preferable because the removal of unreacted base places a burden on the post-treatment step.
[0047]
Next, implementation of the manufacturing method of the present invention will be described. After charging the aromatic compound represented by the general formula (1), water or alcohols, a palladium complex compound and a base, and if necessary, a solvent and / or phosphine into the reactor, the reactor is closed, and the inside of the system is cooled. The reaction is carried out under normal pressure or under pressure after substituting with carbon monoxide. The carbon monoxide pressure is usually from normal pressure to 30 kg / cm. 2 , Preferably 1 to 20 kg / cm 2 , More preferably 2 to 10 kg / cm 2 It is better to do. When the temperature is lower than this range, the reaction does not proceed sufficiently and causes a decrease in the yield, which is economically disadvantageous, or a problem that the reaction speed is reduced and it takes a long time to complete the reaction. May occur, which is not preferred. In addition, even if it is higher than this range, there is almost no change in the reaction rate or the yield of the target benzoic acid or benzoic acid ester represented by the general formula (3), and there are problems such as safety of the reaction apparatus. It is not preferable because it occurs.
[0048]
Further, the reaction temperature in the present invention is usually 30 ° C to 200 ° C, preferably 50 ° C to 180 ° C, and more preferably 60 ° C to 150 ° C. When the temperature is lower than this range, the reaction does not proceed sufficiently and causes a decrease in yield, which is economically disadvantageous, or the reaction speed decreases and it takes a long time to complete the reaction. This may cause problems and is not preferred. If the temperature is higher than this range, decomposition or the like may occur during the reaction, which causes a decrease in yield, which is economically disadvantageous, and a post-treatment step for removing decomposition products. Is not preferred because of the load on the
[0049]
【Example】
Next, the present invention will be described in detail with reference to examples of the production method, but the present invention is not limited thereto.
[0050]
[Preparation Example 1] Synthesis of [3,5-bis (trifluoromethyl) benzoato] 3 ', 5'-bis (trifluoromethyl) phenylbis (triphenylphosphine) palladium (II)
In a stainless steel autoclave having a capacity of 500 ml, 65.3 g of 3,5-bis (trifluoromethyl) bromobenzene, 100 ml of tetrahydrofuran, 50.0 g of palladium acetate, 175.5 g of triphenylphosphine, and 3,5-bis (trifluoromethyl) benzoate. 57.6 g of acid and 60.8 g of 25% aqueous ammonia were charged. Nitrogen replacement is performed twice, and nitrogen pressure is 3 kg / cm. 2 When the stirring was started, the internal temperature rose to about 50 ° C. Thereafter, the oil bath temperature was set to 120 ° C., and heating was started. About 2 hours later, when the internal temperature reached 95.6 ° C., the oil bath was removed and the system was cooled. 200 ml of water and 600 ml of toluene were added to the reaction solution, and the mixture was stirred for several minutes under ice cooling. The obtained treatment liquid was subjected to suction filtration, the organic layer of the filtrate was separated, washed twice with a saturated saline solution, dried over anhydrous magnesium sulfate, and concentrated by distilling off volatile components. The solid precipitated in the initial stage of concentration was separated by filtration and further concentrated. After adding n-hexane, the mixture was cooled and the precipitated solid was separated by filtration to obtain 187.5 g of a crude product. The crude product was recrystallized from toluene to obtain 143.0 g of pale yellow crystals.
[0051]
[3,5-bis (trifluoromethyl) benzoato] 3 ', 5'-bis (trifluoromethyl) phenylbis (triphenylphosphine) palladium (II)
Melting point: 168-170 ° C (decomp.)
IR (KBr: cm-1): 3060, 2926, 1637, 1437, 1321, 1277, 1173, 1127, 748, 697, 518
1 H-NMR (reference substance: TMS solvent: CDCl 3 ):
δ ppm 6.97 (s, 1H), 7.09 (s, 2H), 7.20-7.32 (m, 18H), 7.40-7.50 (m, 12H), 7.53 (s , 2H), 7.62 (s, 1H)
31 P-NMR (reference substance: 85% H 3 PO 4 Solvent: CDCl 3 ): Δ ppm 25.73 (s)
[0052]
Preparation Example 2 Synthesis of [3,5-bis (trifluoromethyl) benzoato] 3′-trifluoromethylphenylbis (triphenylphosphine) palladium (II) In a stainless steel autoclave having a capacity of 500 ml, 3-trifluoromethyl was added. As in Preparation Example 1, 25.0 g of bromobenzene, 75 ml of tetrahydrofuran, 25 g of palladium acetate, 87.3 g of triphenylphosphine, 38 g of 25% aqueous ammonia, and 57.5 g of 3,5-bis (trifluoromethyl) benzoic acid were charged. By performing the operation, 32.3 g of the objective [3,5-bis (trifluoromethyl) benzoato] 3'-trifluoromethylphenylbis (triphenylphosphine) palladium (II) was obtained.
[0053]
[3,5-bis (trifluoromethyl) benzoato] 3'-trifluoromethylphenylbis (triphenylphosphine) palladium (II)
1 H-NMR (reference substance: TMS solvent: CDCl 3 ):
δ ppm 6.47 (dd, J = 7.3, 7.8 Hz, 1H), 6.77 (d, J = 7.3 Hz, 1H), 6.80 (brs, 1H), 6.95 (d, J = 7.8 Hz, 1H), 7.24-7.30 (m, 18H), 7.40-7.46 (m, 12H)
[0054]
[Example 1]
In a stainless steel autoclave having a capacity of 500 ml, 200 g of 3,5-bis (trifluoromethyl) bromobenzene, 145 g of triethylamine and 100 ml of tetrahydrofuran were mixed, and [3,5-bis (trifluoromethyl) benzoato] 3 ', 5 was further added. 2.87 g of '-bis (trifluoromethyl) phenylbis (triphenylphosphine) palladium (II), 1.79 g of triphenylphosphine and 100 g of water were added. After the reactor was sealed, stirring was started, and nitrogen replacement and carbon monoxide replacement were performed three times. Initial pressure of carbon monoxide is 4kg / cm 2 And started heating. One hour later, when the internal temperature reaches 100 ° C., the internal pressure is increased to 8 kg / cm. 2 Was adjusted to During the reaction, internal temperature 100 ° C, internal pressure 8kg / cm 2 Kept.
[0055]
After 12.5 hours, heating was stopped and the reactor was cooled. When the internal temperature became 50 ° C. or lower, the internal gas was purged, the internal pressure was reduced to normal pressure, and nitrogen replacement was performed three times to complete the reaction.
[0056]
The reaction solution was transferred to a 1000 ml beaker, and while stirring, 55 g of concentrated sulfuric acid was added dropwise from a separating funnel under ice cooling. After completion of the dropwise addition, 50 ml of tetrahydrofuran and 100 ml of water were added, and after stirring for a while, the obtained solution was transferred to a separating funnel, and the organic layer was separated.
[0057]
A stirrer, a dropping funnel and a T-shaped tube with a condenser were attached to a 2000 ml three-necked flask, and 500 ml of warm water was added. The temperature of the hot water was kept at 85 ° C. using an oil bath, and the above-mentioned organic layer was added dropwise thereto using a dropping funnel. Since a mixture of tetrahydrofuran-water distills out after a short time from the start of the addition, the bath temperature and the like were adjusted while maintaining the balance between the addition amount and the distillate amount. After the addition of the whole amount, the distillation of tetrahydrofuran was stopped, and when the liquid temperature and the vapor temperature started to rise, the oil bath was removed and the system was cooled to room temperature. After suction filtration of the formed precipitate, the obtained crystals were washed with water and then with toluene. After drying under reduced pressure, 128.9 g of the desired 3,5-bis (trifluoromethyl) benzoic acid was obtained.
[0058]
[Example 2]
200 g of 3,5-bis (trifluoromethyl) bromobenzene and 145 g of triethylamine were mixed in a 500 ml stainless steel autoclave, and [3,5-bis (trifluoromethyl) benzoato] 3 ′, 5′-bis ( 1.43 g of (trifluoromethyl) phenylbis (triphenylphosphine) palladium (II), 0.45 g of triphenylphosphine and 100 g of water were added. Thereafter, the same operation as in Example 1 was performed to obtain 130 g of 3,5-bis (trifluoromethyl) benzoic acid.
[0059]
[Example 3]
In a stainless steel autoclave having a capacity of 500 ml, 150 g of 3,5-bis (trifluoromethyl) bromobenzene, 114.0 g of triethylamine and 75 g of toluene were mixed, and [3,5-bis (trifluoromethyl) benzoato] 3 ′, 2.71 g of 5'-bis (trifluoromethyl) phenylbis (triphenylphosphine) palladium (II) and 200 g of water were added. Thereafter, the same operation as in Example 1 was performed to obtain 84.0 g of 3,5-bis (trifluoromethyl) benzoic acid.
[0060]
[Example 4]
In a 500 ml stainless steel autoclave, 154 g of 3-trifluoromethylbromobenzene and 145 g of triethylamine were mixed, and [3,5-bis (trifluoromethyl) benzoato] 3 ′, 5′-bis (trifluoromethyl) phenyl was further added. 3.77 g of bis (triphenylphosphine) palladium (II), 0.898 g of triphenylphosphine and 100 g of water were added. Thereafter, the same operation as in Example 1 was performed to obtain 119 g of 3-trifluoromethylbenzoic acid.
[0061]
【The invention's effect】
Benzoic acid derivatives and trifluoromethylbenzoic acid derivatives, which are compounds useful as intermediates for producing pharmaceuticals, agricultural chemicals, various functional materials, and the like, can be produced easily and efficiently.

Claims (13)

一般式(1)
Ar−X (1)
(式中、Arはアリール基、Xはハロゲン(フッ素、塩素、臭素またはヨウ素)、トリフルオロメタンスルホネート基、炭素数1〜4のアルキルスルホネート基、置換または非置換アリールスルホネート基を表す)で表される芳香族化合物を触媒と塩基の存在下一酸化炭素と一般式(2)
OH (2)
(式中、Rは水素、アリール基または炭素数1〜10のアルキル基を表す)で表されるヒドロキシ化合物を反応させることからなる一般式(3)
Figure 0003579275
(式中、Ar、Rは前記に同じ)で表される安息香酸誘導体を製造する方法であって、触媒として一般式(4)、
Figure 0003579275
(式中、Ar、Arはそれぞれ独立にアリール基を表し、Lはそれぞれ独立にホスフィン配位子を表す。)で表されるパラジウム錯化合物を用いる安息香酸誘導体の製造方法。
General formula (1)
Ar-X (1)
(Wherein, Ar represents an aryl group, X represents a halogen (fluorine, chlorine, bromine, or iodine), a trifluoromethanesulfonate group, an alkylsulfonate group having 1 to 4 carbon atoms, or a substituted or unsubstituted arylsulfonate group). An aromatic compound is prepared by reacting carbon monoxide with a general formula (2) in the presence of a catalyst and a base.
R 1 OH (2)
(Wherein, R 1 represents hydrogen, an aryl group or an alkyl group having 1 to 10 carbon atoms).
Figure 0003579275
(Wherein Ar and R 1 are the same as described above), which is a method for producing a benzoic acid derivative represented by the following general formula (4):
Figure 0003579275
(Wherein, Ar 1 and Ar 2 each independently represent an aryl group, and L each independently represents a phosphine ligand.) A method for producing a benzoic acid derivative using a palladium complex compound represented by the following formula:
Arが一般式(5)
Figure 0003579275
(式中、Rはトリフルオロメチル基、トリフルオロメチルオキシ基、ハロゲン(フッ素、塩素、臭素またはヨウ素をいう)、ニトロ基、アセチル基、シアノ基、炭素数1〜4のアルキル基、炭素数1〜4のアルコキシ基、炭素数2〜5のアルコキシカルボニル基を表し、nは0または1〜5の整数を表す。)で表されるアリール基である請求項1に記載の安息香酸誘導体の製造方法。
Ar is a general formula (5)
Figure 0003579275
(Wherein R 2 is a trifluoromethyl group, a trifluoromethyloxy group, a halogen (refers to fluorine, chlorine, bromine or iodine), a nitro group, an acetyl group, a cyano group, an alkyl group having 1 to 4 carbon atoms, a carbon atom The benzoic acid derivative according to claim 1, wherein the benzoic acid derivative is an aryl group represented by an alkoxy group having 1 to 4 or an alkoxycarbonyl group having 2 to 5 carbon atoms, and n represents 0 or an integer of 1 to 5). Manufacturing method.
一般式(1)で表される芳香族化合物が、少なくとも1個のトリフルオロメチル基を有する芳香族化合物である請求項2記載の安息香酸誘導体の製造方法。The method for producing a benzoic acid derivative according to claim 2, wherein the aromatic compound represented by the general formula (1) is an aromatic compound having at least one trifluoromethyl group. 一般式(2)
OH (2)
(式中、Rは水素または炭素数1〜10のアルキル基を表す)で表されるヒドロキシ化合物が水である請求項1乃至3の何れかに記載の安息香酸の製造方法。
General formula (2)
R 1 OH (2)
The method for producing benzoic acid according to any one of claims 1 to 3, wherein the hydroxy compound represented by (wherein R 1 represents hydrogen or an alkyl group having 1 to 10 carbon atoms) is water.
一般式(4)のArまたはArで表されるアリール基はそれぞれ独立に一般式(5)
Figure 0003579275
(式中、Rはトリフルオロメチル基、トリフルオロメチルオキシ基、ハロゲン(フッ素、塩素、臭素またはヨウ素をいう)、ニトロ基、アセチル基、シアノ基、炭素数1〜4のアルキル基、炭素数1〜4のアルコキシ基、炭素数2〜5のアルコキシカルボニル基を表し、nは0または1〜5の整数を表す。)で表されるアリール基である請求項1乃至4の何れかに記載の安息香酸誘導体の製造方法。
The aryl groups represented by Ar 1 or Ar 2 in the general formula (4) are each independently a group represented by the general formula (5)
Figure 0003579275
(Wherein R 2 is a trifluoromethyl group, a trifluoromethyloxy group, a halogen (refers to fluorine, chlorine, bromine or iodine), a nitro group, an acetyl group, a cyano group, an alkyl group having 1 to 4 carbon atoms, a carbon atom 5 represents an alkoxy group having 1 to 4 carbon atoms or an alkoxycarbonyl group having 2 to 5 carbon atoms, and n represents 0 or an integer of 1 to 5). A method for producing the benzoic acid derivative according to the above.
一般式(4)のArで表されるアリール基がビス(トリフルオロメチル)フェニル基である請求項1乃至4の何れかに記載の安息香酸誘導体の製造方法。The method for producing a benzoic acid derivative according to any one of claims 1 to 4, wherein the aryl group represented by Ar 1 in the general formula (4) is a bis (trifluoromethyl) phenyl group. 一般式(4)のArで表されるアリール基がフェニル基、トリフルオロメチルフェニル基またはビス(トリフルオロメチル)フェニル基である請求項1乃至6の何れかに記載の安息香酸誘導体の製造方法。The production of a benzoic acid derivative according to any one of claims 1 to 6, wherein the aryl group represented by Ar 2 in the general formula (4) is a phenyl group, a trifluoromethylphenyl group, or a bis (trifluoromethyl) phenyl group. Method. 一般式(4)のArで表されるアリール基が、3−トリフルオロメチルフェニル基または3,5−ビス(トリフルオロメチル)フェニル基である請求項1乃至6の何れかに記載の安息香酸誘導体の製造方法。The benzoic acid according to any one of claims 1 to 6, wherein the aryl group represented by Ar 2 in the general formula (4) is a 3-trifluoromethylphenyl group or a 3,5-bis (trifluoromethyl) phenyl group. A method for producing an acid derivative. 一般式(4)のLで表されるホスフィン配位子が一般式(6)、
P(R (6)
(Rはそれぞれ独立にアリール基、炭素数1〜6のアルキル基を表す。)で表されるホスフィン配位子である請求項1乃至6の何れかに記載の安息香酸誘導体の製造方法。
The phosphine ligand represented by L in the general formula (4) is represented by the general formula (6):
P (R 3 ) 3 (6)
(R 3 each independently represents an aryl group represents. An alkyl group having 1 to 6 carbon atoms) method for producing benzoic acid derivatives according to any one of claims 1 to 6 is a phosphine ligand represented by.
一般式(6)のRがそれぞれ独立にフェニル基、o−トリル基、m−トリル基、p−トリル基、メチル基またはエチル基から選ばれた基である請求項1乃至6の何れかに記載の安息香酸誘導体の製造方法。R 3 in the general formula (6) is independently a group selected from a phenyl group, an o-tolyl group, an m-tolyl group, a p-tolyl group, a methyl group and an ethyl group. The method for producing a benzoic acid derivative according to the above. 一般式(4)の両方のLがトリフェニルホスフィンである請求項1乃至6の何れかに記載の安息香酸誘導体の製造方法。The method for producing a benzoic acid derivative according to any one of claims 1 to 6, wherein both L in the general formula (4) are triphenylphosphine. 一般式(4)で表されるパラジウム錯化合物が、[3,5−ビス(トリフルオロメチル)ベンゾアト]3’,5’−ビス(トリフルオロメチル)フェニル−ビス(トリフェニルホスフィン)パラジウム(II)または[3,5−ビス(トリフルオロメチル)ベンゾアト]3’−ビス(トリフルオロメチル)フェニル−ビス(トリフェニルホスフィン)パラジウム(II)である請求項1乃至6の何れかに記載の安息香酸誘導体の製造方法。The palladium complex compound represented by the general formula (4) is [3,5-bis (trifluoromethyl) benzoato] 3 ′, 5′-bis (trifluoromethyl) phenyl-bis (triphenylphosphine) palladium (II 7) or [3,5-bis (trifluoromethyl) benzoato] 3'-bis (trifluoromethyl) phenyl-bis (triphenylphosphine) palladium (II). A method for producing an acid derivative. 3,5−ビス(トリフルオロメチル)ブロムベンゼンまたは3,5−ビス(トリフルオロメチル)ヨードベンゼンを[3,5−ビス(トリフルオロメチル)ベンゾアト]3’,5’−ビス(トリフルオロメチル)フェニル−ビス(トリフェニルホスフィン)パラジウム(II)または[3,5−ビス(トリフルオロメチル)ベンゾアト]3’−ビス(トリフルオロメチル)フェニル−ビス(トリフェニルホスフィン)パラジウム(II)と塩基の存在下一酸化炭素と水を反応させることからなる3,5−ビス(トリフルオロメチル)安息香酸の製造方法。3,5-bis (trifluoromethyl) bromobenzene or 3,5-bis (trifluoromethyl) iodobenzene is converted to [3,5-bis (trifluoromethyl) benzoato] 3 ′, 5′-bis (trifluoromethyl ) Phenyl-bis (triphenylphosphine) palladium (II) or [3,5-bis (trifluoromethyl) benzoato] 3′-bis (trifluoromethyl) phenyl-bis (triphenylphosphine) palladium (II) and base A method for producing 3,5-bis (trifluoromethyl) benzoic acid, comprising reacting carbon monoxide with water in the presence of
JP36680598A 1998-12-24 1998-12-24 Method for producing benzoic acid derivative Expired - Fee Related JP3579275B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36680598A JP3579275B2 (en) 1998-12-24 1998-12-24 Method for producing benzoic acid derivative

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36680598A JP3579275B2 (en) 1998-12-24 1998-12-24 Method for producing benzoic acid derivative

Publications (2)

Publication Number Publication Date
JP2000191580A JP2000191580A (en) 2000-07-11
JP3579275B2 true JP3579275B2 (en) 2004-10-20

Family

ID=18487728

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36680598A Expired - Fee Related JP3579275B2 (en) 1998-12-24 1998-12-24 Method for producing benzoic acid derivative

Country Status (1)

Country Link
JP (1) JP3579275B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202014106226U1 (en) 2014-09-30 2015-10-28 Osram Oled Gmbh Organic electronic component

Also Published As

Publication number Publication date
JP2000191580A (en) 2000-07-11

Similar Documents

Publication Publication Date Title
JP5247436B2 (en) Method for producing methylene disulfonate compound
JP4588407B2 (en) Method for producing cyclic disulfonic acid ester
JP3579275B2 (en) Method for producing benzoic acid derivative
US6326517B1 (en) Method of producing benzamides
CN108689874B (en) Method for preparing 2-aryl malonamide and application thereof
EP0795546B1 (en) N,N-disubstituted formamides as halogenation catalysts
JP3552934B2 (en) Method for producing benzoic acid amides
EP1008601B1 (en) Method for producing palladium complex compound
JP3717355B2 (en) Method for producing cinnamic acid derivative
JP3730793B2 (en) Palladium complex compound
JP3730825B2 (en) Palladium complex compound and method for producing the same
JPH0272162A (en) Production of 3, 5, 6-trichlorropyridine-2- aryl and novel aryl-4-cyano-2, 2, 4- trichlorobutylate compound used therein
JPH05155881A (en) Production of 2-substituted benzo(b)thiophene and its intermediate
JP4251508B2 (en) Method for producing acid chloride compound
JP2001302582A (en) Method for producing trifluoromethylphenylacetic acid
JPS584698B2 (en) Method for producing 2-(3-benzoylphenyl)propionic acid
EP2123648A1 (en) A process for the preparation of Telmisartan.
JP2000169419A (en) Manufacture of benzoic acids and their esters
US6096894A (en) Production method of 2-(p-alkylphenyl)pyridine compound
JPH04169542A (en) Production of bistrifluoromethylbiphenyl
JP4435447B2 (en) Method for producing methoxymethyltriarylphosphonium chloride
JPH04234825A (en) Process for producing benzotrifluoride compound
JP2599958B2 (en) Fluorinated isophthalic acid diester
JP2558275B2 (en) Method for producing geranylphenyl sulfone
JP3463918B2 (en) Method for producing benzoic acid amides

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040526

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040713

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040715

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees