JP3578070B2 - Resin composition for sliding parts - Google Patents

Resin composition for sliding parts Download PDF

Info

Publication number
JP3578070B2
JP3578070B2 JP2000278412A JP2000278412A JP3578070B2 JP 3578070 B2 JP3578070 B2 JP 3578070B2 JP 2000278412 A JP2000278412 A JP 2000278412A JP 2000278412 A JP2000278412 A JP 2000278412A JP 3578070 B2 JP3578070 B2 JP 3578070B2
Authority
JP
Japan
Prior art keywords
resin composition
friction
present
powder
tetrafluoroethylene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000278412A
Other languages
Japanese (ja)
Other versions
JP2001131372A (en
Inventor
強 宮森
雅己 加藤
政二 小森
哲男 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2000278412A priority Critical patent/JP3578070B2/en
Publication of JP2001131372A publication Critical patent/JP2001131372A/en
Application granted granted Critical
Publication of JP3578070B2 publication Critical patent/JP3578070B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Sliding-Contact Bearings (AREA)
  • Lubricants (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は摺動用途、特に動的シール材や軸受に適した樹脂組成物に関する。
【0002】
【従来の技術】
従来、摺動用の部品の成形用樹脂組成物としては、ポリテトラフルオロエチレン(PTFE)粉末に各種の充填材を加えたものが知られている。たとえば、特公昭49−36081号公報や特開昭58−72770号公報には、PTFE粉末に金属粉末とカーボングラファイトまたは炭素繊維を配合した摺動特性が向上した樹脂組成物が開示されている。しかし、PTFEは通常の射出成形のような溶融加工ができず、加工生産性が低い圧縮成形法によらざるをえない。しかも、圧縮成形用の組成物では圧力伝達性の点から配合する繊維状材料のアスペクト比を小さくせざるをえず、その結果、えられる成形品の機械的強度の向上も充分とはいえない。
【0003】
テトラフルオロエチレン−エチレン共重合体などの溶融加工可能な含フッ素樹脂に各種の充填材(たとえば炭素繊維、二硫化モリブデン)などを加えた射出成形可能な樹脂組成物も知られている(たとえばプラスチック、Vol.42、No.7、51〜53頁)。しかし、これらも高温での摺動特性、特に摩擦係数を低くし、摩擦抵抗力の変動幅を小さくするという要求は充分満足されているとはいいがたく、またアルミニウムなどの軟質金属に対する耐摩耗性も不充分である。
【0004】
【発明が解決しようとする課題】
本発明は、機械的強度を保持したまま、高温での摺動特性および軟質金属に対する耐摩耗性が改善された含フッ素樹脂成形品を与える溶融加工可能な樹脂組成物を提供することを目的とする。
【0005】
【課題を解決するための手段】
本発明の樹脂組成物は、(a)炭素繊維5〜45容量%、(b)金属粉末(青銅粉末を除く)1〜25容量%および残部が(c)溶融加工可能な含フッ素樹脂からなるものである。
【0006】
本発明に用いる溶融加工可能な含フッ素樹脂は、不安定末端基を安定化させたテトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体(PFA)またはテトラフルオロエチレン−ヘキサフルオロプロピレン共重合体(FEP)である。
【0007】
【発明の実施の形態】
共重合体であるPFAは、テトラフルオロエチレンと式:
CF=CFO(CF
(式中、Xは水素原子、塩素原子またはフッ素原子、mは1〜6の整数である)で表わされるか、または式:
CF=CF(O−CFCF(CF))OC
(式中、nは1〜4の整数)で示されるフルオロアルキルビニルエーテルの少なくとも1種との共重合体が好ましく、特にテトラフルオロエチレン92〜99重量%とフルオロアルキルビニルエーテル1〜8重量%の共重合体が好ましい。またFEPはテトラフルオロエチレン87〜96重量%とヘキサフルオロプロピレン4〜13重量%の共重合体が好ましい。これらのうちでもPFAが特に好ましい。
【0008】
これらの溶融加工可能な含フッ素樹脂は共重合成分として、各樹脂の本質的性質を損わない量で他のモノマーを共重合したものであってもよい。他のモノマーとしては、たとえばテトラフルオロエチレン、ヘキサフルオロプロピレン、パーフルオロアルキルビニルエーテル、パーフルオロアルキル(C〜C10)エチレン、パーフルオロアルキル(C〜C10)アリルエーテル、式:
CF=CF〔OCFCFR(CFOCF(CF
(式中、Rはフッ素原子またはトリフルオロメチル基、Yはハロゲン原子、pは0または1、qは0または1〜5の整数、rは0または1〜2の整数。ただし、pが1のときRはフッ素原子である)で示される化合物などがあげられる。
【0009】
PFAやFEPは耐熱性、耐薬品性に優れており、半導体関連分野をはじめ多くの技術分野で使用されている。しかし、PFAやFEPの共重合の際に用いる開始剤や連鎖移動剤により、その重合鎖の末端にフッ素原子以外の原子を含む基が微量ながら存在する。こうした末端基には酸フルオライドポリマー末端基などのように加熱によって分解して溶出フッ素イオンにより金属を腐食させるものがある。したがって、金属粉末を使用する本発明においては、そうした不安定末端基を安定化させたものを用いる。不安定末端基の安定化法は従来より知られている。たとえばアンモニアと反応させてアミド化する方法、メタノールと反応させてメチルエステル化する方法、フッ素ガスと反応させてパーフルオロ化する方法(井原ら、バルカーレビュー Vol.35、No.3、34〜40頁(1991))などがあるが、これらの方法に限られるものではない。
【0010】
本発明において用いられる炭素繊維は、寸法安定性、補強性、耐摩擦摩耗性、耐クリープ性を改善する目的で添加される。このような目的が成形された摺動部品において最も効果的に達成されるためには、混合後の組成物中での平均繊維径が10〜30μmでアスペクト比が8〜300 であることが望ましい。しかし、混合及び成形時に剪断を受けて繊維が折れることを考慮して選択しなければならず、そのためには、混合前の炭素繊維の平均繊維径が10〜30μm、アスペクト比が20〜300 であることが望ましい。炭素繊維としては従来より知られるものが特に限定なく採用できる。たとえば、レーヨン、PAN(ポリアクリロニトリル)およびピッチなどを出発原料としてえられる炭素含有量90重量%以上の繊維状物質などが例示される。また、気相成長法などにより製造された繊維径1μm以下のカーボンウィスカなどを用いても同様の効果が期待できる。
【0011】
炭素繊維は、必須成分中5〜45容量%、好ましくは10〜20容量%を占めるように配合される。配合量がこれより少ないと、炭素繊維による補強効果がえられず、一方、多すぎると金属粉末と合わせ混合したばあいの流動性が損なわれ、また繊維の折れ方が大きくなり期待する効果がえられない。
【0012】
金属粉末は通常、熱伝導性や導電性、圧縮特性などを改善するために添加されているが、本発明においてはそれらの性質に加えて高温下における摩擦係数を低下させ、かつ摩擦抵抗力の変動幅を小さくするという効果を奏する。本発明で用いる金属粉末としては銅系、アルミニウム系、鉄系など種々の粉末を1種または2種以上混合して使用できるが、熱伝導性、摺動性の点から銅系の金属粉末、特に青銅粉末が好ましい。これら金属粉末としては、粒径20〜53μmのものが用いられる。ここでいう粒径範囲は、ふるい目の開きが53μmのふるいを通り、20μmのふるいに残るものである。金属粉末の粒径が53μmより大きいばあいは伸びや強度の低下を生ずることがあり、20μmより小さいばあいは2次凝集により53μmより大きいばあいと同様に特性の低下を生ずることがある。
【0013】
金属粉末は必須成分中1〜25容量%、好ましくは3〜10容量%配合される。この範囲よりも多いと樹脂組成物による軽量化効果がえられにくく、少なすぎると摩擦係数の変動幅を小さくしにくくなる。
【0014】
そしてこれらの金属粉末および炭素繊維には、必要に応じてフッ素化処理、カップリング剤を用いた処理などの表面処理を行ない含フッ素樹脂との親和性を向上させてもよい。
【0015】
なお、本発明の摺動用樹脂組成物に対して本発明の目的を損わない限り、無機または有機の補強用充填材や相溶化剤、潤滑剤(フッ化カーボン、カーボングラファイト、二硫化モリブデン)、安定剤など種々の添加剤を組み合わせて配合することができる。
【0016】
本発明の樹脂組成物の調製に際し、公知の混合方法が採用される。たとえば、各成分をV型ブレンダー、タンブラー、ヘンシェルミキサーなどの混合機にて混合したのち、さらに二軸押出し機などの溶融混練装置を用いて混練してペレット化することができる。また、溶融混練装置内で溶融している含フッ素樹脂に炭素繊維および金属粉末を途中で供給する方法も可能である。
【0017】
こうしてえられたペレットは、通常用いられる熱可塑性樹脂を成形する機械、たとえば射出成形機、圧縮成形機、押出し成形機などによって所望形状の成形物、たとえばシート状、パイプ状、板状体などに成形することができる。
【0018】
えられた成形品は高温下の摺動特性や機械的強度に優れているので、各種のシール材、軸受、たとえば自動車用途のシーリング、コンプレッサー用途のシール材などに好適である。
【0019】
【実施例】
つぎに本発明の組成物を実施例に基づいて説明するが、本発明はかかる実施例のみに限定されるものではない。
【0020】
参考例1〜2
炭素繊維(呉羽化学工業(株)製のM−207 S、繊維径14.5μm、アスペクト比48)と青銅粉末(福田金属箔粉工業(株)製のBro−SD、平均粒径40μm)とを不安定末端基を安定化したPFA粉末(ダイキン工業(株)製のネオフロンPFA−AP 210SH)に表1に示す配合割合でヘンシェルミキサーにより均一に混合したのち、単軸押出機で270 〜300 ℃にて溶融混合してペレット化した。
【0021】
えられたペレットを射出成形機(シリンダー温度300 〜400 ℃、金型温度200 ℃)に供給し、試験用の試験片を作製した。えられた試験片につき、荷重たわみ温度、熱伝導度、摩擦係数をつぎの要領で調べた。結果を表1および図1に示す。図1は参考例2の摩擦試験のチャートである。
【0022】
(荷重たわみ温度)
安田精機(株)製の熱変形温度測定装置を用い、ASTM D648 に従い荷重1.82N/mm(18.6 kgf/cm)で荷重たわみ温度を測定する。
【0023】
(熱伝導度)
京都電子工業(株)製の迅速熱伝導率計を用いて測定する。
【0024】
(摩擦係数)
オリエンテック(株)製の鈴木・松原式摩擦摩耗試験機を用い、
荷重:0.49→0.98→1.47→1.96→2.45 N/mm
(5→10→15→20→25 kgf/cm に相当する。)
速度:200 m/分
温度:150 ℃
雰囲気:オイル中(スニソ4GS)
距離:各荷重で1.0 km
相手材:アルミ材(S45C)
の条件下に摩擦係数を測定する。
【0025】
比較例1〜2
青銅粉末を配合しない組成物を表1に示す割合で調製し、参考例1と同様にしてペレット化し、ついで射出成形して試験片を作製した。
【0026】
えられた各試験片につき参考例1と同様にして物性を測定した。結果を表1および図1に示す。
【0027】
表1および図1から明らかなように、本発明の組成物は摩擦係数の変動幅の小さい成形品を与えることがわかる。
【0028】
【表1】

Figure 0003578070
【0029】
【発明の効果】
金属粉末と炭素繊維を組み合わせて不安定末端基が安定化された溶融加工可能なPFAやFEPに配合することにより、高温での摺動において低い摩擦係数を示すと共に荷重の変化に対しても摩擦係数の変動幅が小さく、非常に安定した摺動特性を示し、しかもアルミニウムなどの軟質金属に対して自他共に耐摩耗性の向上がみられる摺動用に適した成形品を与える。
【図面の簡単な説明】
【図1】参考例2および比較例2において、荷重を変化させたときの摩擦係数の測定チャートである。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a resin composition suitable for sliding use, particularly for dynamic sealing materials and bearings.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, as a molding resin composition for a sliding part, a resin composition obtained by adding various fillers to polytetrafluoroethylene (PTFE) powder is known. For example, JP-B-49-36081 and JP-A-58-72770 disclose resin compositions in which PTFE powder is blended with a metal powder and carbon graphite or carbon fiber and has improved sliding characteristics. However, PTFE cannot be melt-processed like ordinary injection molding, and is forced to use a compression molding method with low processing productivity. In addition, in the composition for compression molding, the aspect ratio of the fibrous material to be blended must be reduced from the viewpoint of pressure transmission, and as a result, the mechanical strength of the obtained molded product is not sufficiently improved. .
[0003]
There is also known an injection-moldable resin composition obtained by adding various fillers (for example, carbon fiber and molybdenum disulfide) to a melt-processable fluorine-containing resin such as a tetrafluoroethylene-ethylene copolymer (for example, plastics). 42, No. 7, 51-53). However, the requirements for lowering the sliding properties at high temperatures, especially the coefficient of friction, and reducing the fluctuation range of the frictional resistance are not sufficiently satisfied, and the wear resistance to soft metals such as aluminum is not satisfactory. The nature is also insufficient.
[0004]
[Problems to be solved by the invention]
An object of the present invention is to provide a resin composition that can be melt-processed to provide a fluororesin molded article having improved sliding properties at high temperatures and abrasion resistance to soft metals while maintaining mechanical strength. I do.
[0005]
[Means for Solving the Problems]
The resin composition of the present invention comprises (a) 5 to 45% by volume of carbon fiber, (b ) 1 to 25% by volume of metal powder (excluding bronze powder), and the remainder (c) is a melt-processable fluororesin. Things.
[0006]
The melt-processable fluorine-containing resin used in the present invention is a tetrafluoroethylene-perfluoroalkylvinyl ether copolymer (PFA) or a tetrafluoroethylene-hexafluoropropylene copolymer (FEP) in which unstable terminal groups are stabilized. It is.
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
PFA which is a copolymer is represented by the formula:
CF 2 = CFO (CF 2) m X
(Wherein X is a hydrogen atom, a chlorine atom or a fluorine atom, and m is an integer of 1 to 6) or a formula:
CF 2 = CF (O-CF 2 CF (CF 3)) n OC 3 F 7
(Wherein, n is an integer of 1 to 4), and is preferably a copolymer with at least one kind of fluoroalkyl vinyl ether represented by the following formula. Particularly, copolymer of 92 to 99% by weight of tetrafluoroethylene and 1 to 8% by weight of fluoroalkyl vinyl ether Polymers are preferred. FEP is preferably a copolymer of 87 to 96% by weight of tetrafluoroethylene and 4 to 13% by weight of hexafluoropropylene. Among them, PFA is particularly preferred.
[0008]
These melt-processable fluorine-containing resins may be those obtained by copolymerizing other monomers as copolymer components in an amount that does not impair the essential properties of each resin. Other monomers include, for example, tetrafluoroethylene, hexafluoropropylene, perfluoroalkyl vinyl ether, perfluoroalkyl (C 1 -C 10 ) ethylene, perfluoroalkyl (C 1 -C 10 ) allyl ether,
CF 2 = CF [OCF 2 CFR f (CF 2) p ] q OCF 2 (CF 2) r Y
(In the formula, R f is a fluorine atom or a trifluoromethyl group, Y is a halogen atom, p is 0 or 1, q is 0 or an integer of 1 to 5, r is 0 or an integer of 1 to 2; And when 1, R f is a fluorine atom).
[0009]
PFA and FEP are excellent in heat resistance and chemical resistance, and are used in many technical fields including semiconductor-related fields. However, a small amount of a group containing an atom other than a fluorine atom is present at the end of the polymer chain due to an initiator or a chain transfer agent used in the copolymerization of PFA or FEP. Some of these terminal groups, such as acid fluoride polymer terminal groups, are decomposed by heating and corrode metals by eluted fluorine ions. Therefore, in the present invention using a metal powder, a material in which such an unstable terminal group is stabilized is used. Methods for stabilizing unstable end groups are known in the art. For example, a method of amidating by reacting with ammonia, a method of methyl esterifying by reacting with methanol, and a method of perfluorinating by reacting with fluorine gas (Ihara et al., VALQUA REVIEW Vol. 35, No. 3, 34-40) (1991)), but are not limited to these methods.
[0010]
The carbon fibers used in the present invention are added for the purpose of improving dimensional stability, reinforcing properties, friction and wear resistance, and creep resistance. In order to achieve such an object most effectively in a molded sliding part, it is preferable that the composition after mixing has an average fiber diameter of 10 to 30 μm and an aspect ratio of 8 to 300. . However, the fiber must be selected in consideration of the fact that the fiber is broken by shearing during mixing and molding. For this purpose, the average fiber diameter of the carbon fiber before mixing is 10 to 30 μm, and the aspect ratio is 20 to 300. Desirably. Conventionally known carbon fibers can be employed without particular limitation. For example, fibrous substances having a carbon content of 90% by weight or more obtained from rayon, PAN (polyacrylonitrile), pitch and the like as starting materials are exemplified. Similar effects can be expected by using a carbon whisker having a fiber diameter of 1 μm or less manufactured by a vapor growth method or the like.
[0011]
The carbon fiber is blended so as to account for 5 to 45% by volume, preferably 10 to 20% by volume of the essential components. If the compounding amount is less than this, the reinforcing effect by the carbon fiber cannot be obtained, while if it is too large, the fluidity when mixed with the metal powder is impaired, and the effect of the fiber breaking becomes large and the expected effect is obtained. I can't.
[0012]
Metal powders are usually added to improve thermal conductivity, conductivity, compression characteristics, etc., but in the present invention, in addition to those properties, the friction coefficient at high temperatures is reduced, and the frictional resistance is reduced. This has the effect of reducing the fluctuation range. As the metal powder used in the present invention, various kinds of powders such as copper-based, aluminum-based, and iron-based powders can be used alone or as a mixture of two or more kinds. Bronze powder is particularly preferred. As these metal powders, those having a particle size of 20 to 53 μm are used. The particle size range here is such that the opening of the sieve passes through the 53 μm sieve and remains on the 20 μm sieve. When the particle size of the metal powder is larger than 53 μm, the elongation and strength may be reduced. When the particle size is smaller than 20 μm, the characteristics may be deteriorated due to secondary aggregation as in the case where the particle size is larger than 53 μm.
[0013]
The metal powder is blended in an essential component in an amount of 1 to 25% by volume, preferably 3 to 10% by volume. If the amount is more than this range, it is difficult to obtain the effect of reducing the weight of the resin composition.
[0014]
These metal powders and carbon fibers may be subjected to a surface treatment such as a fluorination treatment or a treatment using a coupling agent, if necessary, to improve the affinity with the fluorine-containing resin.
[0015]
In addition, as long as the object of the present invention is not impaired with respect to the sliding resin composition of the present invention, inorganic or organic reinforcing fillers, compatibilizers, and lubricants (carbon fluoride, carbon graphite, molybdenum disulfide) And various additives such as a stabilizer and the like.
[0016]
In preparing the resin composition of the present invention, a known mixing method is employed. For example, each component can be mixed with a mixer such as a V-type blender, tumbler, Henschel mixer or the like, and then kneaded using a melt kneading device such as a twin screw extruder to form pellets. It is also possible to supply carbon fiber and metal powder to the fluorine-containing resin melted in the melt-kneading apparatus on the way.
[0017]
The pellets thus obtained can be formed into a molded product of a desired shape, for example, a sheet, pipe, plate or the like by a machine for molding a thermoplastic resin, such as an injection molding machine, a compression molding machine, or an extrusion molding machine. Can be molded.
[0018]
The obtained molded product is excellent in sliding characteristics and mechanical strength at high temperatures, and thus is suitable for various sealing materials and bearings, for example, sealing for automobiles and sealing for compressors.
[0019]
【Example】
Next, the composition of the present invention will be described based on examples, but the present invention is not limited to only these examples.
[0020]
Reference Examples 1-2
Carbon fiber (M-207S manufactured by Kureha Chemical Industry Co., Ltd., fiber diameter 14.5 μm, aspect ratio 48) and bronze powder (Bro-SD manufactured by Fukuda Metal Foil & Powder Co., Ltd., average particle size 40 μm) The mixture was uniformly mixed with a PFA powder (Neoflon PFA-AP210SH manufactured by Daikin Industries, Ltd.) having stabilized unstable terminal groups in a mixing ratio shown in Table 1 using a Henschel mixer, and then 270 to 300 ° C. with a single screw extruder. And melted and pelletized.
[0021]
The obtained pellets were supplied to an injection molding machine (cylinder temperature: 300 to 400 ° C., mold temperature: 200 ° C.) to prepare test specimens. With respect to the obtained test pieces, the deflection temperature under load, thermal conductivity, and friction coefficient were examined in the following manner. The results are shown in Table 1 and FIG. FIG. 1 is a chart of a friction test of Reference Example 2.
[0022]
(Deflection temperature under load)
The deflection temperature under load is measured with a load of 1.82 N / mm 2 (18.6 kgf / cm 2 ) according to ASTM D648 using a thermal deformation temperature measuring device manufactured by Yasuda Seiki Co., Ltd.
[0023]
(Thermal conductivity)
It is measured using a rapid thermal conductivity meter manufactured by Kyoto Electronics Industry Co., Ltd.
[0024]
(Coefficient of friction)
Using a Suzuki-Matsubara friction and wear tester manufactured by Orientec Co., Ltd.
Load: 0.49 → 0.98 → 1.47 → 1.96 → 2.45 N / mm 2
(Equivalent to 5 → 10 → 15 → 20 → 25 kgf / cm 2 )
Speed: 200 m / min Temperature: 150 ° C
Atmosphere: In oil (Suniso 4GS)
Distance: 1.0 km at each load
Counterpart material: Aluminum (S45C)
The coefficient of friction is measured under the conditions described above.
[0025]
Comparative Examples 1-2
Compositions containing no bronze powder were prepared at the ratios shown in Table 1, pelletized in the same manner as in Reference Example 1, and then injection molded to produce test specimens.
[0026]
The physical properties of each of the obtained test pieces were measured in the same manner as in Reference Example 1. The results are shown in Table 1 and FIG.
[0027]
As is clear from Table 1 and FIG. 1, it can be seen that the composition of the present invention gives a molded article having a small fluctuation range of the coefficient of friction.
[0028]
[Table 1]
Figure 0003578070
[0029]
【The invention's effect】
By combining metal powder and carbon fiber with melt-processable PFA or FEP whose unstable terminal groups are stabilized, it exhibits a low coefficient of friction in sliding at high temperatures and has a friction against changes in load. The present invention provides a molded product suitable for sliding in which the variation width of the coefficient is small, exhibits extremely stable sliding characteristics, and the wear resistance of soft metals such as aluminum is improved both by itself and others.
[Brief description of the drawings]
FIG. 1 is a measurement chart of a coefficient of friction when a load is changed in Reference Example 2 and Comparative Example 2.

Claims (1)

(a)炭素繊維を5〜45容量%および(b)金属粉末(青銅粉末を除く)を1〜25容量%含んでなり、残部が(c)不安定末端基を安定化させた溶融加工可能なテトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体またはテトラフルオロエチレン−ヘキサフルオロプロピレン共重合体からなる摺動部品用樹脂組成物。(A) 5 to 45% by volume of carbon fiber and (b) 1 to 25% by volume of metal powder (excluding bronze powder) , the remainder being (c) Melt processable with stabilized unstable terminal groups And a tetrafluoroethylene-perfluoroalkylvinyl ether copolymer or a tetrafluoroethylene-hexafluoropropylene copolymer.
JP2000278412A 2000-09-13 2000-09-13 Resin composition for sliding parts Expired - Fee Related JP3578070B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000278412A JP3578070B2 (en) 2000-09-13 2000-09-13 Resin composition for sliding parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000278412A JP3578070B2 (en) 2000-09-13 2000-09-13 Resin composition for sliding parts

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP12862592A Division JP3410487B2 (en) 1992-05-21 1992-05-21 Resin composition for sliding parts

Publications (2)

Publication Number Publication Date
JP2001131372A JP2001131372A (en) 2001-05-15
JP3578070B2 true JP3578070B2 (en) 2004-10-20

Family

ID=18763582

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000278412A Expired - Fee Related JP3578070B2 (en) 2000-09-13 2000-09-13 Resin composition for sliding parts

Country Status (1)

Country Link
JP (1) JP3578070B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5094220B2 (en) * 2007-06-06 2012-12-12 日信工業株式会社 High thermal conductive sheet and laser optical device
US8247486B2 (en) * 2008-07-01 2012-08-21 E.I. Du Pont De Nemours And Company Creep resistant fluoropolymer
JP2010254822A (en) * 2009-04-24 2010-11-11 Ube Ind Ltd Thermoplastic resin composition and molding formed thereof
WO2018159378A1 (en) * 2017-03-02 2018-09-07 昭和電工株式会社 Lubricant for magnetic recording medium, and method for producing magnetic recording medium
JP2023172245A (en) * 2022-05-23 2023-12-06 株式会社日立産機システム Sliding material and gas compression machine

Also Published As

Publication number Publication date
JP2001131372A (en) 2001-05-15

Similar Documents

Publication Publication Date Title
US9085695B2 (en) Polymer compound as well as structural parts produced using the compound
WO2012005133A1 (en) Resin composition and molded article
KR20070104885A (en) Fluoropolymer molding process and fluoropolymer molded product
WO2013088964A1 (en) Resin composition and molded article
JPS6158093B2 (en)
JP3052338B2 (en) Sliding material composition and method for producing the same
JP3410487B2 (en) Resin composition for sliding parts
JPS58160353A (en) Resin composition
WO2019215304A1 (en) Polymer compositions
JP3235223B2 (en) Method for producing polyphenylene sulfide resin composition
JP3578070B2 (en) Resin composition for sliding parts
JP2004210839A (en) Fluororesin composition
US11168210B2 (en) Resin composition
JPH0339110B2 (en)
JP3646678B2 (en) Polyphenylene sulfide resin composition
JP3315688B2 (en) Filler-containing polytetrafluoroethylene composition and molded article thereof
JPH0465866B2 (en)
JPH0160509B2 (en)
JP2007070538A (en) Thermoplastic resin composition for sliding member
JP2961311B1 (en) Polyphenylene sulfide resin composition and molded article thereof
JPS63158362A (en) Seal part material for scroll type compressor
JPS58109554A (en) Lubricating resin composition
JPS58138747A (en) Lubricant resin composition
JP3175372B2 (en) Resin composition for sliding parts
JP2001123063A (en) Straight-chain polyphenylene sulfide resin composition and sliding member

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040330

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040528

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040622

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040705

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080723

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090723

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100723

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees