JP3576354B2 - Inspection method for induction hardened parts - Google Patents

Inspection method for induction hardened parts Download PDF

Info

Publication number
JP3576354B2
JP3576354B2 JP18678697A JP18678697A JP3576354B2 JP 3576354 B2 JP3576354 B2 JP 3576354B2 JP 18678697 A JP18678697 A JP 18678697A JP 18678697 A JP18678697 A JP 18678697A JP 3576354 B2 JP3576354 B2 JP 3576354B2
Authority
JP
Japan
Prior art keywords
quenching
heating
work
workpiece
degree
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP18678697A
Other languages
Japanese (ja)
Other versions
JPH1131579A (en
Inventor
清 門野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihatsu Motor Co Ltd
Original Assignee
Daihatsu Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihatsu Motor Co Ltd filed Critical Daihatsu Motor Co Ltd
Priority to JP18678697A priority Critical patent/JP3576354B2/en
Publication of JPH1131579A publication Critical patent/JPH1131579A/en
Application granted granted Critical
Publication of JP3576354B2 publication Critical patent/JP3576354B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Description

【0001】
【発明の属する技術分野】
本発明は、高周波焼入れ部品の検査方法に関するものである。
【0002】
【従来の技術】
ワークの硬度を部分的に高めるため、部分的に高周波加熱によって焼入れする工程がある。上記焼入れ工程は、例えば図3(a)に示すように、軸状ワーク(1)に円環状焼入れコイル(2)を外嵌し、ワーク(1)を自転させつつコイル(2)に所定の焼入れ電圧及び電流を所定時間印加して高周波誘導加熱により焼入れ加熱した後、所定温度と量の冷却水でワーク(1)を急冷するものである。又、ワークとしては上記軸状ワーク(1)の他、屈曲部を有するワーク、例えばクランクシャフトがある。
【0003】
この時、焼入れ品質は、焼入れ電圧、電流及び時間の加熱条件そして冷却温度や量の冷却条件に影響され、且つ、それらの各条件に応じてワーク(1)の被加熱面(1a)が所定色に変色していく。例えば、焼入れ加熱中は、図3(a)に示すように、ワーク被加熱面(1a)が赤熱し、焼入れ冷却後は、図3(b)に示すように、同じ被加熱面(1a)が黒っぽく変色する。そこで、焼入れ加熱中及び焼入れ冷却後、それぞれワーク被加熱面(1a)の外観の変色状態を作業者が目視でチェックして焼入れ具合を検査している。
【0004】
【発明が解決しようとする課題】
上述の高周波焼入れ部品の検査手段によれば、作業者が目視により焼入れ加熱中及び焼入れ冷却後のワーク外観の変色をチェックして検査しているため、作業者によって検査結果がばらつき、又、見逃しが発生するという不具合がある。
【0005】
本発明の目的は、高周波焼入れ部品の検査工程をファジィ推論により自動化し、作業者による検査のばらつきや見逃しを防止し、且つ、省人化した高周波焼入れ部品の検査方法を提供することである。
【0006】
【課題を解決するための手段】
本発明は、高周波加熱により焼入れしたワークを検査するにあたり、焼入れ加熱中のワークの表面を撮像して所定の焼入れ電圧、電流及び時間の加熱条件におけるワーク表面の明度を検出する工程と、焼入れ加熱後に冷却液で冷却したワークの表面を撮像して上記加熱条件及び所定の冷却温度と液量におけるワーク表面の濃淡度を検出する工程と、焼入れ加熱中の全加熱時間中の各時間におけるワーク表面の明度に関する明度データ及び焼入れ冷却後のワーク表面全周にわたる各位置における濃淡度に関する濃淡度データの基準データに対する一致度をファジィ推論により判別し、各一致度を総合判定して高周波焼入れワークを検査する工程とを含むことを特徴とする
【0007】
【発明の実施の形態】
本発明に係る高周波焼入れ部品の検査方法の実施の形態を図1(a)〜(d)及び図2(a)(b)を参照して以下に説明する。まず図1(a)に示すように、焼入れコイル(3)にワーク(4)を嵌入した後、所定の焼入れ電圧(V)と電流(I)を焼入れコイル(3)に所定時間(t)印加してワーク(4)を焼入れ加熱する。そこで、焼入れ加熱中のワーク(4)を所定方向、例えば上方からカメラ(5)で撮像すると、図1(b)に示すように、所定の焼入れ電圧(Va)と電流(Ia)におけるワーク表面の明度(F)の時間的変化を示すアナログの計測データ曲線(Da)が描かれる。
【0008】
そこで、計測データ曲線(Da)を画像処理して所定の時間座標(ta)(tb)…に分割し、アナログによる計測データ曲線(Da)をデジタル化する。そして、各時間座標(ta)(tb)…における明度(Fa)(Fb)…と基準明度(Fra)(Frb)…との一致度(Ua)(Ub)…をファジィ推論により判定する。更に、全時間座標(ta)(tb)…に亘るファジィ判定により明度(F)の良否を判定する。
【0009】
その際、確率による判定手段により判別する。例えば図2(a)に示すように、焼入れ加熱中の所定の電圧(Va)、電流(Ia)及び時間(t)における明度(F)のファジィ集合のメンバーシップ関数(M){但し、(ZRa)は基準データ、(PSa)(NSa)はずれデータの各ファジィ集合}、及び判定確率(D)を時間座標(ta)(tb)…毎に設定する。そこで、例えば時間(ta)における明度(Fa)の基準データ及びずれデータに対する各適合度(Aa)(Ba)を検知する。そして、適合度(Aa)が大きい程、又、適合度(Ba)が小さい程、基準データに近付くため、それらを判定確率(Da)と比較し、例えばAa>Da>Baの時、時間座標(ta)における明度(Fa)は正常と判定し、その判定作業を全時間座標(ta)(tb)…について行う。その全判定結果から例えば正常判定回数、又は全適合度の乗算値等を目安として明度(F)の良否を判定し、併せて焼入れ加熱状態の良否を判定する。又、他の焼入れ電圧(V)及び電流(I)により同様の判定を行い、最適の加熱条件を選択することが出来る。
【0010】
又、焼入れ加熱後のワーク(4)を所定の冷却温度と量の冷却水で冷却した後、側方からワーク(4)の全周囲を囲む。例えば図1(c)に示すように、3台のカメラ(6)(7)(8)により図示点線を各カメラ毎の視野境界線として側方からワーク(4)の全周囲を囲む。そこで、ワーク側表面を全方位から撮像すると、図1(d)に示すように、所定の加熱条件及び冷却温度(Θa)と量(Qa)におけるワーク表面の濃淡度(L)の場所的変動を示すアナログの計測データ曲線(Db)が描かれる。尚、(Ea)(Eb)(Ec)はそれぞれカメラ(6)(7)(8)による各視野を示し、3個の視野(Ea)(Eb)(Ec)で全視野を収める。又、カメラの数を4台、5台等に増やし、4個以上の視野で全視野を収めても良い。
【0011】
そこで、計測データ曲線(Db)を画像処理して所定の視野座標(Xa)(Xb)…毎に分割し、アナログによる計測データ曲線(Db)をデジタル化する。そして、各視野座標(Xa)(Xb)…における濃淡度(La)(Lb)…と基準濃淡度(Lra)(Lrb)…との一致度(Va)(Vb)…をファジィ推論により判定する。更に、全視野座標(Xa)(Xb)…に亘るファジィ判定により濃淡度(L)の良否を判定する。
【0012】
その際、確率による判定手段により判別する。例えば図2(b)に示すように、焼入れ加熱時の所定の加熱条件(電圧、電流、時間)及び所定の冷却温度(Θa)と量(Qa)における焼入れ冷却後の濃淡度(L)のファジィ集合のメンバーシップ関数(N){但し、(ZRb)は基準データ、(PSb)(NSb)はずれデータの各ファジィ集合}、及び判定確率(G)を各視野座標(Xa)…毎に設定する。そこで、例えば視野座標(Xa)における濃淡度(La)の基準データ及びずれデータに対する各適合度(Ab)(Bb)を検知する。そして、適合度(Ab)が大きい程、又、適合度(Bb)が小さい程、基準データに近付くため、それらを判定確率(Ga)と比較し、例えばAb>Ga>Bbの時、視野座標(Xa)における濃淡度(La)は正常と判定し、その判定作業を全視野座標(Xa)(Xb)…について行う。その全判定結果から例えば正常判定回数、又は全適合度の乗算値等を目安として濃淡度(L)の良否を判定し、併せて焼入れ品質の良否を判定する。又、他の加熱及び冷却条件により同様の判定を行い、最適の加熱及び冷却条件を選択することが出来る。
【0013】
更に、明度(F)及び濃淡度(L)の判定結果から焼入れ具合を総合判定する。尚、時間及び視野の座標分割数が多い程、判定精度が高くなるため、必要に応じて適宜設定する。
【0014】
【発明の効果】
本発明によれば、高周波焼入れ部品を検査する際、焼入れ加熱中の部品表面の明度及び焼入れ冷却後の部品表面の濃淡度を計測して基準データに対する一致度をファジィ推論により判定して検査したから、高周波焼入れ部品の検査工程が自動化されて省人化され、且つ、作業者による検査のばらつきや見逃しを防止出来、検査精度が大幅に向上する。
【図面の簡単な説明】
【図1】(a)は高周波焼入れ加熱中のワーク及びその撮像カメラを示す側断面図。(b)は図1(a)のカメラによって撮像したワークの明度の時間的変化を示すグラフ。(c)は焼入れ冷却後のワークの撮像カメラを示す上面図。(d)は図1(c)のカメラによって撮像したワークの濃淡度の場所的変化を示すグラフ。
【図2】(a)は焼入れ加熱中のワークの明度のメンバーシップ関数。(b)は焼入れ冷却後のワークの濃淡度のメンバーシップ関数。
【図3】(a)は高周波焼入れ加熱中を示すワークと焼入れコイルの斜視図。(b)は焼入れ冷却後のワークを示す側面図。
【符号の説明】
4 ワーク
F 明度
L 濃淡度
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an inspection method for induction hardened parts.
[0002]
[Prior art]
In order to partially increase the hardness of the work, there is a step of partially quenching by high-frequency heating. In the quenching step, for example, as shown in FIG. 3A, an annular quenching coil (2) is externally fitted to an axial work (1), and a predetermined rotation is applied to the coil (2) while rotating the work (1). After applying a quenching voltage and current for a predetermined time and quenching and heating by high-frequency induction heating, the work (1) is rapidly cooled with a predetermined temperature and amount of cooling water. Examples of the work include a work having a bent portion, for example, a crankshaft, in addition to the shaft-like work (1).
[0003]
At this time, the quenching quality is affected by the heating conditions of the quenching voltage, current and time, and the cooling conditions of the cooling temperature and amount, and the heated surface (1a) of the work (1) is determined in accordance with each of these conditions. It changes color. For example, during quenching and heating, the workpiece heated surface (1a) glows red as shown in FIG. 3A, and after quenching and cooling, the same heated surface (1a) as shown in FIG. 3B. Turns blackish. Therefore, during quenching heating and after quenching and cooling, the worker visually checks the discoloration state of the appearance of the workpiece heated surface (1a) to check the quenching condition.
[0004]
[Problems to be solved by the invention]
According to the above-mentioned inspection means for induction hardened parts, since the operator visually checks the discoloration of the work appearance during quenching heating and after quenching and cooling, the inspection result varies depending on the operator, or is overlooked. There is a problem that occurs.
[0005]
SUMMARY OF THE INVENTION An object of the present invention is to provide an inspection method for an induction hardened part, which automates an inspection process of the induction hardened part by fuzzy inference, prevents variation and oversight of the inspection by an operator, and saves labor.
[0006]
[Means for Solving the Problems]
The present invention provides a process for inspecting a work hardened by high-frequency heating, in which the surface of the work being hardened and heated is imaged to detect the brightness of the work surface under heating conditions of a predetermined hardening voltage, current and time. A step of imaging the surface of the work cooled by the cooling liquid later to detect the density of the work surface at the above-mentioned heating conditions and a predetermined cooling temperature and liquid amount; and a work surface at each time during the entire heating time during the quenching heating. Inspection of high-frequency quenched work by judging the degree of coincidence of lightness data on lightness of light and lightness data on lightness at each position over the entire circumference of the work surface after quenching and cooling with reference data by fuzzy inference and comprehensively judging each degree of coincidence And the step of performing
BEST MODE FOR CARRYING OUT THE INVENTION
An embodiment of an inspection method for an induction hardened component according to the present invention will be described below with reference to FIGS. 1 (a) to 1 (d) and FIGS. 2 (a) and 2 (b). First, as shown in FIG. 1 (a), after a work (4) is inserted into a hardening coil (3), a predetermined hardening voltage (V) and a current (I) are applied to the hardening coil (3) for a predetermined time (t). The workpiece (4) is quenched and heated by applying the voltage. Then, when the work (4) during quenching and heating is imaged by a camera (5) from a predetermined direction, for example, from above, as shown in FIG. 1B, the work surface at a predetermined hardening voltage (Va) and a current (Ia) is obtained. An analog measurement data curve (Da) showing the temporal change of the brightness (F) is drawn.
[0008]
Therefore, the measurement data curve (Da) is image-processed and divided into predetermined time coordinates (ta) (tb)..., And the analog measurement data curve (Da) is digitized. Then, the degree of coincidence (Ua) (Ub)... Between the lightness (Fa) (Fb)... And the reference lightness (Fra) (Frb) at each time coordinate (ta) (tb). Further, the quality (F) is determined by fuzzy determination over all time coordinates (ta) (tb).
[0009]
At that time, the determination is made by the determination means based on the probability. For example, as shown in FIG. 2A, a membership function (M) of a fuzzy set of lightness (F) at a predetermined voltage (Va), current (Ia) and time (t) during quenching heating, where (M) ZRa) sets reference data, (PSa) (NSa) each fuzzy set の of outlier data, and determination probability (D) for each time coordinate (ta) (tb). Therefore, for example, the respective fitness levels (Aa) and (Ba) with respect to the reference data and the shift data of the brightness (Fa) at time (ta) are detected. Then, as the fitness (Aa) is larger and the fitness (Ba) is smaller, the reference data is closer to the reference data. Therefore, these are compared with the determination probability (Da). For example, when Aa>Da> Ba, the time coordinate is calculated. The lightness (Fa) at (ta) is determined to be normal, and the determination operation is performed for all time coordinates (ta) (tb). From the results of all the determinations, the quality (F) of the lightness (F) is determined based on, for example, the number of times of normal determination or the multiplied value of the total fitness, and the quality of the quenching heating state is also determined. Further, the same determination is made based on other quenching voltage (V) and current (I), and the optimum heating condition can be selected.
[0010]
Further, the work (4) after quenching and heating is cooled with a predetermined cooling temperature and a predetermined amount of cooling water, and then the work (4) is entirely surrounded from the side. For example, as shown in FIG. 1 (c), three cameras (6), (7) and (8) surround the entire periphery of the work (4) from the side with the illustrated dotted line as a visual field boundary for each camera. Therefore, when the work-side surface is imaged from all directions, as shown in FIG. 1D, the spatial variation of the work surface density (L) under a predetermined heating condition, cooling temperature (及 び a), and quantity (Qa) is obtained. , An analog measurement data curve (Db) is drawn. Note that (Ea), (Eb), and (Ec) indicate the fields of view by the cameras (6), (7), and (8), respectively, and the three fields of view (Ea), (Eb), and (Ec) cover the entire field of view. Alternatively, the number of cameras may be increased to four, five, or the like to cover the entire field of view with four or more visual fields.
[0011]
Therefore, the measurement data curve (Db) is image-processed and divided into predetermined visual field coordinates (Xa), (Xb)..., And the analog measurement data curve (Db) is digitized. Then, the degree of coincidence (Va) (Vb)... Between the shades (La) (Lb)... And the reference shades (Lra) (Lrb)... At each view coordinate (Xa) (Xb). . Further, the quality of the shading (L) is determined by fuzzy determination over the entire visual field coordinates (Xa) (Xb).
[0012]
At that time, the determination is made by the determination means based on the probability. For example, as shown in FIG. 2 (b), predetermined heating conditions (voltage, current, time) at the time of quenching heating, and the density (L) after quenching and cooling at a predetermined cooling temperature (Θa) and an amount (Qa) are determined. Fuzzy set membership function (N) {where (ZRb) is reference data, (PSb) (NSb) each fuzzy set of outliers}, and determination probability (G) is set for each view coordinate (Xa) ... I do. Therefore, for example, the degree of conformity (Ab) and (Bb) with respect to the reference data and the shift data of the shading (La) in the visual field coordinates (Xa) are detected. Then, as the fitness (Ab) is larger and the fitness (Bb) is smaller, the data becomes closer to the reference data. Therefore, they are compared with the judgment probability (Ga). For example, when Ab>Ga> Bb, the field of view coordinates The density (La) in (Xa) is determined to be normal, and the determination operation is performed for all visual field coordinates (Xa) (Xb). From the results of all the determinations, for example, the quality of the shading (L) is determined based on, for example, the number of normal determinations or the multiplied value of the overall fitness, and the quality of the quenching quality is also determined. Further, the same judgment is made based on other heating and cooling conditions, and the optimum heating and cooling conditions can be selected.
[0013]
Further, the degree of hardening is comprehensively determined from the determination results of the lightness (F) and the shading (L). Note that the greater the number of divisions of time and field coordinates, the higher the accuracy of determination.
[0014]
【The invention's effect】
According to the present invention, when inspecting an induction hardened part, the brightness of the part surface during quenching heating and the density of the part surface after quenching and cooling were measured, and the degree of coincidence with reference data was determined and inspected by fuzzy inference. Thus, the inspection process of the induction hardened parts is automated, and labor is saved, and the inspection can be prevented from being uneven or overlooked by the operator, and the inspection accuracy is greatly improved.
[Brief description of the drawings]
FIG. 1A is a side sectional view showing a workpiece during induction hardening and heating and an imaging camera thereof. 2B is a graph illustrating a temporal change in the brightness of the workpiece imaged by the camera in FIG. (C) is a top view showing the imaging camera of the workpiece after quenching and cooling. FIG. 2D is a graph showing a spatial change in the density of the work imaged by the camera of FIG.
FIG. 2 (a) is a membership function of the brightness of a workpiece during quenching and heating. (B) is a membership function of the density of the work after quenching and cooling.
FIG. 3A is a perspective view of a workpiece and a quenching coil during induction hardening and heating. (B) is a side view showing the work after quenching and cooling.
[Explanation of symbols]
4 Work F Lightness L Shading

Claims (1)

高周波加熱により焼入れしたワークを検査するにあたり、焼入れ加熱中のワークの表面を撮像して所定の焼入れ電圧、電流及び時間の加熱条件におけるワーク表面の明度を検出する工程と、焼入れ加熱後に冷却液で冷却したワークの表面を撮像して上記加熱条件及び所定の冷却温度と液量におけるワーク表面の濃淡度を検出する工程と、焼入れ加熱中の全加熱時間中の各時間におけるワーク表面の明度に関する明度データ及び焼入れ冷却後のワーク表面全周にわたる各位置における濃淡度に関する濃淡度データの基準データに対する一致度をファジィ推論により判別し、各一致度を総合判定して高周波焼入れワークを検査する工程とを含むことを特徴とする高周波焼入れ部品の検査方法。In inspecting a workpiece quenched by high-frequency heating, a step of imaging the surface of the workpiece during quenching and heating, and detecting the brightness of the workpiece surface under heating conditions of a predetermined quenching voltage, current and time, and using a coolant after quenching and heating. A step of imaging the surface of the cooled work to detect the density of the work surface at the above-mentioned heating conditions and the predetermined cooling temperature and liquid amount; and a lightness relating to the lightness of the work surface at each time during the entire heating time during the quenching heating. determine the fuzzy inference the degree of coincidence with respect to the reference data of the shading degree data about shading degree at each position across the workpiece surface the entire circumference after the data and quenching cooling, and a step of inspecting the induction hardening work by comprehensively determining the degree of matching Inspection method of induction hardened parts characterized by including.
JP18678697A 1997-07-11 1997-07-11 Inspection method for induction hardened parts Expired - Fee Related JP3576354B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18678697A JP3576354B2 (en) 1997-07-11 1997-07-11 Inspection method for induction hardened parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18678697A JP3576354B2 (en) 1997-07-11 1997-07-11 Inspection method for induction hardened parts

Publications (2)

Publication Number Publication Date
JPH1131579A JPH1131579A (en) 1999-02-02
JP3576354B2 true JP3576354B2 (en) 2004-10-13

Family

ID=16194576

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18678697A Expired - Fee Related JP3576354B2 (en) 1997-07-11 1997-07-11 Inspection method for induction hardened parts

Country Status (1)

Country Link
JP (1) JP3576354B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006291249A (en) 2005-04-06 2006-10-26 Ntn Corp Equipment for producing steel-made member, thin member for bearing and thrust bearing
JP4582339B2 (en) * 2006-03-27 2010-11-17 トヨタ自動車株式会社 High frequency heat treatment apparatus and heat treatment method
CN113720841B (en) * 2021-08-25 2024-02-09 武汉飞能达激光技术有限公司 Laser quenching quality monitoring method and application thereof

Also Published As

Publication number Publication date
JPH1131579A (en) 1999-02-02

Similar Documents

Publication Publication Date Title
US5631465A (en) Method of interpreting thermographic data for non-destructive evaluation
JP3597439B2 (en) Diagnosis method for paint deterioration of painted steel
US8393784B2 (en) Characterization of flaws in composites identified by thermography
CN113781446B (en) Method and device for detecting greasy dirt on glass fiber surface, storage medium and electronic equipment
JP3576354B2 (en) Inspection method for induction hardened parts
JPH11108759A (en) Defect inspecting method and device therefor
JP3568871B2 (en) Degradation evaluation method for inspection of pipe inner surface corrosion
JP2011191252A (en) Surface quality evaluation method of metal and surface quality evaluation apparatus of metal
JP4856647B2 (en) Method and display device for outputting measured values
WO2004056271A3 (en) Method for determining normal measurements for a patient
SG186010A1 (en) A method for examining the surface composition of planar structures
CN110836806A (en) Magnetic-elastic grinding burn detection method for acid-corrosion-resistant steel gear
JP2004279317A (en) Painting management system
JP2019207114A (en) Acceptance/rejection determination method and acceptance/rejection determination device for dull-finished material surface
JP3667886B2 (en) Application state detection device using visual sensor
JP2022166369A (en) Device and method for determining state of corrosion and quality evaluation device
CN116539600A (en) Quick large-area film quality detection method
US5619319A (en) Apparatus for acquiring data used to evaluate and reproduce the color of a sample on the basis of the chroma and glossiness of the sample
JP2004170374A (en) Apparatus and method for detecting surface defect
JP2005098911A (en) Tooth contact inspecting method for gear wheel, tooth contact inspecting system therefor, and control program for controlling the tooth contact inspecting system for the same
JP3498120B2 (en) High-precision measuring method and apparatus for uneven gloss
JP2847665B2 (en) Automatic inspection method for non-metallic inclusions using color images
Bidanda et al. Development of a spatter index for automated welding inspection using computer vision
JPH09145637A (en) Method for judging grade of roughness defect
JP2022166376A (en) Device and method for determining state of polishing and quality evaluation device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040415

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040611

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040705

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040707

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090716

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees