JPH09145637A - Method for judging grade of roughness defect - Google Patents

Method for judging grade of roughness defect

Info

Publication number
JPH09145637A
JPH09145637A JP7305940A JP30594095A JPH09145637A JP H09145637 A JPH09145637 A JP H09145637A JP 7305940 A JP7305940 A JP 7305940A JP 30594095 A JP30594095 A JP 30594095A JP H09145637 A JPH09145637 A JP H09145637A
Authority
JP
Japan
Prior art keywords
grindstone
defect
trace
area ratio
area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP7305940A
Other languages
Japanese (ja)
Inventor
Hiroyuki Uchida
洋之 内田
Seiji Ota
聖司 太田
Masami Suzuki
正巳 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP7305940A priority Critical patent/JPH09145637A/en
Publication of JPH09145637A publication Critical patent/JPH09145637A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Image Analysis (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide the method for judging the grades of the roughness defects, which can quantitatively judge the grades of the roughness defects of a material under inspection. SOLUTION: The surface of a cold rolled steel plate, which is ground with a grindstone, is photographed with a microscope (step S1). Then, the mark of the grindstone on the microscope photograph is manually colored (step S2). The colored part is extracted by imaging using a computer (step S3). Then, the area ratio or the colored part is computed (step S4). Thus, the grade of the defect is judged based on the area ratio of the grindstone mark obtained in this way.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、鋼板、アルミ板な
どの表面に生ずる凹凸性欠陥の等級を判定する凹凸性欠
陥の等級判定方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for determining the grade of uneven defects that determines the grade of uneven defects that occur on the surface of a steel plate, an aluminum plate or the like.

【0002】[0002]

【従来の技術】鋼板、アルミ板などの製造工程におい
て、その品質管理あるいは品質保証を推進するために
は、これらの表面に発生する表面欠陥を検出することが
重要であり、例えば、冷延鋼板の製造プロセスにおいて
は、さまざまな連続工程を経て最終的に冷延コイルとい
う形で出荷されるまでのプロセスの中で、表面自動検査
装置による欠陥検出、あるいはオペレータによる目視検
査が行われ、製品表面は厳重に品質管理されている。
2. Description of the Related Art In order to promote quality control or quality assurance in the manufacturing process of steel sheets, aluminum sheets, etc., it is important to detect surface defects occurring on these surfaces. In the manufacturing process of, the product surface is checked for defects by an automatic surface inspection device or visually inspected by an operator during the process until it is shipped in the form of cold rolled coil after various continuous steps. Is strictly quality controlled.

【0003】冷延鋼板の表面欠陥の一つに、鋼板表面の
わずかな凹凸不良によって発生する凹凸性欠陥がある
が、この種の欠陥には、人間の目視検査では検出不可能
なものが多いため、砥石を用いて鋼板の一部分を研削処
理し、欠陥を浮かび上がらせた後に目視検査を行う、い
わゆる砥石掛け検査によって検出がなされるのが普通で
ある。
One of the surface defects of the cold-rolled steel sheet is an irregularity defect caused by a slight irregularity defect on the surface of the steel sheet, and many of these types of defects cannot be detected by visual inspection by humans. Therefore, it is usual to detect by a so-called grindstone mounting inspection, in which a part of the steel plate is ground by using a grindstone and a defect is exposed and then a visual inspection is performed.

【0004】目視では検出困難な凹凸性欠陥が研削処理
によって検出され易くなる理由は、凹凸性欠陥が凹型の
欠陥であるか凸型の欠陥であるかにより、砥石によって
研削された痕(以下、砥石痕と称する)の表面形状がそ
れぞれ相違し、さらに、これら欠陥部の砥石痕の光沢
が、健全部の光沢と相違するため、これら光沢の差によ
って判別され易くなるためである。
The reason why the unevenness defect, which is difficult to detect visually, is easily detected by the grinding process is that the unevenness defect is a concave defect or a convex defect. This is because the surface shapes of the grindstone traces) are different from each other, and the gloss of the grindstone traces of these defective portions is different from the gloss of the sound portion.

【0005】このような凹凸性欠陥は、製造プロセスに
おいて、ロール表面に微小な異物が付着したり、あるい
はロール自体にわずかな凹凸性の変形が発生したりした
結果、これら異物やロール自体の変形が鋼板表面に転写
されて発生することが多い。そのため、ロール円周に相
当するピッチで周期的、あるいは連続的に欠陥が発生す
るため製品全体が不良品になることが多い。また、連続
工程で欠陥が発生した場合は、欠陥が発見されアクショ
ンがとられるまで不良品の製造が続くので大きな損失を
招くことがある。
Such unevenness defects are caused by the deposition of minute foreign matter on the roll surface or the slight deformation of the unevenness of the roll itself in the manufacturing process, resulting in the deformation of the foreign matter and the roll itself. Are often transferred to the surface of the steel sheet. Therefore, defects are generated periodically or continuously at a pitch corresponding to the circumference of the roll, and the entire product often becomes defective. Further, when a defect occurs in a continuous process, manufacturing of defective products continues until a defect is found and an action is taken, which may cause a large loss.

【0006】このような凹凸性欠陥が発生すると、例え
ば、自動車外板用の冷延鋼板をプレス成型する時に、欠
陥部が、欠陥のない健全部より強い力で擦られたり、あ
るいは引き伸ばされたりするため、プレス成形後の成形
品の表面粗さが、欠陥部と健全部との間に差異を生じ、
その差異が、塗装後も表面に残ることがある。そこで、
表面性状に対する要求の厳しい冷延鋼板については、製
造プロセスにおいては軽度な表面欠陥でも見逃さないよ
うに厳重な品質管理が行われ、製品の出荷に際しては不
良品が出荷されないよう厳重な検査が行われるのが普通
である。
[0006] When such an unevenness defect occurs, for example, when press-forming a cold-rolled steel sheet for an automobile outer panel, the defective portion is rubbed or stretched with a stronger force than a sound portion having no defect. Therefore, the surface roughness of the molded product after press molding causes a difference between the defective part and the sound part,
The difference may remain on the surface even after painting. Therefore,
For cold-rolled steel sheets with strict requirements for surface properties, strict quality control is performed in the manufacturing process so that even minor surface defects are not overlooked, and strict inspections are carried out when shipping products to prevent defective products from being shipped. Is normal.

【0007】しかし、一方で、冷延鋼板でも用途によ
り、軽度の欠陥は問題とならない場合もある。そこで、
凹凸性欠陥の等級を的確に判定し、製品の用途に応じた
適正な検査基準によって不良品の選別を行う必要があ
る。従来、このような凹凸性欠陥の等級判定は、熟練し
た砥石かけ検査の検査員による目視判定により行われて
いる。
On the other hand, on the other hand, even in the case of cold-rolled steel sheet, depending on the application, slight defects may not be a problem. Therefore,
It is necessary to accurately judge the grade of the uneven defects and select defective products according to the appropriate inspection standard according to the application of the product. Conventionally, the grade determination of such irregularity defects has been performed by visual inspection by an inspector who is a skilled whetstone inspection.

【0008】[0008]

【発明が解決しようとする課題】しかし、このような熟
練者による凹凸性欠陥の等級判定は、人間の感覚に依存
するものであるため、検査員の個人差によって等級に差
が生じることや、同一検査員であっても種々の要因によ
り判定がばらつくことがある。そのため、検出すべき欠
陥の等級の判定の幅が広がり、安全をみて必要以上に厳
しい判定が行われることになり勝ちである。
However, since the grade determination of uneven defects by such a skilled person depends on the human sense, there is a difference in grade due to individual differences among inspectors, and Even the same inspector may have different judgments due to various factors. For this reason, the range of determination of the grade of the defect to be detected is widened, and more strict determination than necessary is made in view of safety.

【0009】このような事情から、凹凸性欠陥の等級を
自動的に判定する装置の開発が鋭意進められているが、
このような自動判定装置を開発するに当たり、被検査材
の欠陥部と健全部の凹凸の度合いを定量的に表す指標が
見いだせなかったため、凹凸性欠陥の等級を自動的に判
定する装置は、いまだ実用化されるに至っていない。本
発明は、上記の事情に鑑み、被検査材の凹凸性欠陥の等
級を定量的に判定することのできる凹凸性欠陥の等級判
定方法を提供することを目的とする。
Under these circumstances, the development of an apparatus for automatically determining the grade of uneven defects has been eagerly advanced.
In developing such an automatic determination device, since an index that quantitatively expresses the degree of unevenness of the defect portion and the sound portion of the inspected material could not be found, the device that automatically determines the grade of the unevenness defect is still available. It has not been put to practical use. The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a method for determining the grade of an irregularity defect capable of quantitatively determining the grade of an irregularity defect of an inspected material.

【0010】[0010]

【課題を解決するための手段】上記の目的を達成する本
発明の凹凸性欠陥の等級判定方法は、砥石を用いた研削
処理により被検査材表面上の所定の被検査領域内に形成
された砥石痕の面積を測定し、砥石痕の面積を上記被検
査領域の面積で除算して砥石痕面積率を求め、砥石痕面
積率に基づいて被検査材の凹凸性欠陥の等級を判定する
ことを特徴とする。
According to the method for determining the grade of irregularity defects of the present invention, which achieves the above object, a method of forming an uneven defect is formed in a predetermined inspection area on a surface of an inspection material by a grinding process using a grindstone. Measure the area of the grindstone trace, divide the area of the grindstone trace by the area of the area to be inspected to obtain the grindstone trace area ratio, and judge the grade of the irregularity defect of the material to be inspected based on the grindstone trace area ratio. Is characterized by.

【0011】ここで、上記本発明の凹凸性欠陥の等級判
定方法において、砥石を用いた研削処理により被検査材
表面上の所定の被検査領域内に形成された砥石痕の面積
を測定するに当たり、被検査領域を、検出すべき欠陥の
大きさに応じた面積に区分された複数の区分領域毎に砥
石痕の面積を測定し、各区分領域毎の砥石痕の面積を各
区分領域の面積で除算して各区分領域毎の砥石痕面積率
を求め、各区分領域毎の砥石痕面積率から砥石痕面積率
の平均な値及びばらつきの程度を表す指標を求め、上記
各区分領域毎の砥石痕面積率を上記砥石痕面積率の平均
な値及びばらつきの程度を表す指標で正規化することに
より正規化砥石痕面積率を求め、上記砥石痕面積率に代
わり、正規化砥石痕面積率に基づいて被検査材の凹凸性
欠陥の等級を判定することが好ましい。
Here, in the above-described method for determining the degree of irregularity defects according to the present invention, in measuring the area of a grindstone trace formed in a predetermined area to be inspected on the surface of the material to be inspected by a grinding process using a grindstone. , The area to be inspected, the area of the grindstone trace is measured for each of a plurality of divided areas divided into areas according to the size of the defect to be detected, and the area of the grindstone trace for each divided area is the area of each divided area Calculate the grindstone trace area ratio for each divided area by dividing by, obtain an index indicating the average value of the grindstone trace area ratio and the degree of variation from the grindstone trace area ratio for each divided area, for each of the above divided areas Obtain the normalized whetstone trace area ratio by normalizing the whetstone trace area ratio with an index representing the average value and the degree of variation of the whetstone trace area ratio, instead of the above whetstone trace area ratio, the normalized whetstone trace area ratio Judging the grade of irregularity defect of the material to be inspected based on Rukoto is preferable.

【0012】さらに、上記正規化砥石痕面積率をしきい
値処理することにより欠陥が存在する区分領域を抽出
し、抽出された各区分領域のうち、隣接する複数の区分
領域について、これら複数の区分領域を一つのブロック
とし、隣接する区分領域の存在しない独立した区分領域
についてはその区分領域一つを一つのブロックとし、そ
れぞれのブロック毎に、下記式で表わされる欠陥評価指
標Dを求め、その欠陥評価指標Dに基づいて被検査材の
凹凸性欠陥の等級を判定することも好ましい態様であ
る。
Further, the above-mentioned normalized grindstone trace area ratio is subjected to threshold value processing to extract a segmented region having a defect, and among a plurality of segmented regions extracted, a plurality of these segmented regions adjacent to each other are extracted. The divided area is set as one block, and for the independent divided areas in which adjacent divided areas do not exist, one of the divided areas is set as one block, and the defect evaluation index D represented by the following formula is obtained for each block, It is also a preferable embodiment to judge the grade of the unevenness defect of the material to be inspected based on the defect evaluation index D.

【0013】D=w2 ・Σ{w1 ・k(i,j)} ここで、ブロックを構成する抽出された各区分領域毎の
砥石痕面積率をk(i,j)とし、各砥石痕面積率k
(i,j)に応じて定まる重みをw1 とし、上記検出す
べき欠陥の大きさに応じて定まる重みをw2 とした。
D = w 2 · Σ {w 1 · k (i, j)} Here, let k (i, j) be the grindstone trace area ratio for each of the extracted divided regions forming the block. Mark area ratio k
The weight determined according to (i, j) is w 1, and the weight determined according to the size of the defect to be detected is w 2 .

【0014】[0014]

【発明の実施の形態】以下に、本発明の実施形態につい
て説明する。本発明者らは、凹凸性欠陥の等級判定方法
を開発するに当たり、砥石掛けを行った後の鋼板の表面
性状について詳細な調査を行った結果、熟練者の目視判
定による欠陥等級と、砥石痕面積率、即ち、所定の被検
査領域内の砥石痕の面積を被検査領域の面積で除算した
ものとの間に高い相関があることを見いだした。
Embodiments of the present invention will be described below. The inventors of the present invention, in developing a method for determining the grade of uneven defects, as a result of a detailed investigation of the surface properties of the steel sheet after being subjected to a whetstone, the defect grade by visual judgment by an expert, and a whetstone mark. It has been found that there is a high correlation with the area ratio, that is, the area of the grindstone trace in a predetermined inspection area divided by the area of the inspection area.

【0015】また、凸型の欠陥では、砥石痕面積率が大
きいほど欠陥が明瞭に観察されるために重欠陥と判定さ
れ、砥石痕面積率が小さいほどぼやけて観察されるため
に軽欠陥と判定されること、また、凹型の欠陥では、砥
石痕面積率が小さいほど重欠陥と判定され、砥石痕面積
率が大きいほど軽欠陥と判定されることなどがわかっ
た。
Further, in the case of a convex defect, a defect having a larger grindstone trace area ratio is observed more clearly because the defect is more clearly observed, and a defect having a smaller grindstone trace area ratio is observed as being blurred and thus a light defect. It was found that, as for the concave defect, the smaller the grindstone trace area ratio, the larger the defect, and the smaller the grindstone trace area ratio, the lighter defect.

【0016】これらの知見に基づき、種々研究の結果、
次の実施形態に示す凹凸性欠陥の等級判定方法を開発す
るに至った。本実施形態では、冷延鋼板に発生する押し
込み痕と呼ばれる凹凸性欠陥の等級判定について説明す
る。図1は、砥石痕面積率を測定する手順を示す流れ図
である。
Based on these findings, the results of various studies,
The present invention has led to the development of a method for determining the grade of uneven defects shown in the following embodiment. In this embodiment, the grade determination of the uneven defect called an indentation mark generated in the cold rolled steel sheet will be described. FIG. 1 is a flow chart showing a procedure for measuring a grindstone trace area ratio.

【0017】図1に示すように、砥石掛けによって研削
処理された冷延鋼板の表面を顕微鏡で撮影し(ステップ
S1)、次にその顕微鏡写真の砥石痕部分を人手で着色
し(ステップS2)、次にそれをコンピュータを用いた
画像処理により着色部を抽出し(ステップS3)、次に
着色部の面積率を計算する(ステップS4)。面積率
は、欠陥のほぼ中央付近の縦3.3mm×横2.5mm
の大きさの領域について測定する。
As shown in FIG. 1, the surface of the cold-rolled steel sheet ground by grinding with a grindstone is photographed with a microscope (step S1), and then the grindstone trace portion of the micrograph is manually colored (step S2). Then, the colored portion is extracted by image processing using a computer (step S3), and then the area ratio of the colored portion is calculated (step S4). The area ratio is 3.3 mm in length x 2.5 mm in width near the center of the defect.
Measure the area of size.

【0018】こうして求めた砥石痕面積率に基づいて凹
凸性欠陥の等級を判定する。着色された部分と非着色部
分とは画像処理によって容易に識別できるために、面積
率計算を高速、かつ高精度で行うことができる。なお、
この実施形態では、顕微鏡写真を撮影した後、画像処理
を行っているが、顕微鏡にカメラを取り付け、カメラで
撮像した画像信号を直接、コンピュータに入力し、画像
処理過程で砥石痕部分と非磁石痕部分とを識別するよう
にしてもよい。
The grade of the irregularity defect is judged based on the grindstone trace area ratio thus obtained. Since the colored portion and the non-colored portion can be easily identified by image processing, the area ratio calculation can be performed at high speed and with high accuracy. In addition,
In this embodiment, image processing is performed after a micrograph is taken. However, a camera is attached to the microscope, the image signal captured by the camera is directly input to the computer, and the grindstone trace portion and the non-magnet are input in the image processing process. You may make it identify a trace part.

【0019】図2は、砥石痕面積率を求めるために用い
た前記顕微鏡写真をスケッチした模式図の一例を示す。
図2のうち、縦線を施された部分が砥石痕21の部分で
あり、白抜きの部分が非砥石痕部分22である。このよ
うな、砥石痕の部分と非砥石痕部分から成るパターンの
うちの対象とする測定領域内の砥石痕部分の面積が測定
され、その面積が測定領域の面積で除算されて砥石痕面
積率が求められる。
FIG. 2 shows an example of a schematic diagram sketching the micrograph used for obtaining the grindstone trace area ratio.
In FIG. 2, the part with vertical lines is the part of the grindstone trace 21, and the white part is the non-grindstone part 22. Such, the area of the grindstone trace portion in the target measurement region of the pattern consisting of the grindstone trace portion and the non-grindstone trace portion is measured, and the area is divided by the area of the measurement region Is required.

【0020】このようにして砥石痕面積率を求めた同一
の被検査材の欠陥について、熟練者による目視判定が行
われ、凸型欠陥では軽欠陥から重欠陥までを等級Aから
等級Fまでの6段階評価により判定し、凹型欠陥では軽
欠陥から重欠陥までを等級A’から等級E’までの5段
階評価により判定した結果を図3に示す。図3は、本実
施形態による砥石痕面積率と、従来の目視判定による等
級判定結果との関係を示すグラフである。
With respect to defects of the same material to be inspected for which the grindstone trace area ratio is obtained in this manner, a visual judgment is made by a skilled person, and from convex defects to light defects to heavy defects, grades A to F are evaluated. FIG. 3 shows the results of the judgment by the 6-level evaluation, and the concave defect from the light defect to the heavy defect by the 5-level evaluation from the grade A ′ to the grade E ′. FIG. 3 is a graph showing the relationship between the grindstone trace area ratio according to the present embodiment and the conventional grade determination result by visual determination.

【0021】判定の結果は、図3に示すように、等級A
から等級Eまでの5段階の凸型欠陥と、等級A’から等
級C’までの3段階の凹型欠陥とが検出され、従来の目
視判定による等級判定結果と砥石痕面積率との間には強
い相関があることが認められる。そこで砥石痕面積率に
より、従来の定性的な等級判定に代わる定量的な等級判
定を行うことができる。砥石痕面積率による等級判定で
は、凸型欠陥の場合は、砥石痕面積率が健全部より高い
ほど重欠陥であると等級判定し、また、凹型欠陥の場合
は、砥石痕面積率が健全部より低いほど重欠陥であると
判定する。
As a result of the judgment, as shown in FIG.
5 grade convex defects from grade E to grade E and 3 grade concave defects from grade A'to grade C'are detected, and between the grade judgment result by conventional visual judgment and the grindstone trace area ratio. It is recognized that there is a strong correlation. Therefore, it is possible to perform quantitative grade determination instead of the conventional qualitative grade determination based on the grindstone trace area ratio. In the grade judgment based on the grindstone area ratio, in the case of a convex defect, the higher the grindstone area ratio than the sound part, the more it is judged as a heavy defect, and in the case of the concave defect, the grindstone area ratio is the sound part. The lower the value, the more severe the defect is determined.

【0022】次に、正規化砥石痕面積率による等級判定
方法について説明する。判定すべき被検査領域表面を、
検出したい欠陥の大きさよりも小さい面積の区分領域に
区分し、各区分領域の二次元座標系上の位置を番地i,
jを用いて表す。この各区分領域毎に砥石痕の面積を測
定し、砥石痕面積率x(i,j)を求める。
Next, a grade judging method based on the normalized area ratio of the traces of the whetstone will be described. The surface of the inspection area to be judged,
It is divided into divided areas having an area smaller than the size of the defect to be detected, and the position of each divided area on the two-dimensional coordinate system is the address i,
It is represented by using j. The area of the grindstone trace is measured for each of these divided regions, and the grindstone trace area ratio x (i, j) is obtained.

【0023】次いで、健全部における砥石痕面積率の平
均M及び標準偏差σを求め、(1)式に従って砥石痕面
積率x(i,j)を正規化し、正規化砥石痕面積率を求
める。 k(i,j)={x(i,j)−M}/σ ・・・・・(1) (1)式は、健全部を基準とするために砥石痕面積率x
(i,j)と平均Mとの差を求め、さらに、それを標準
偏差σで除算することにより、砥石痕面積率x(i,
j)を正規化するための計算式である。
Next, the average M and the standard deviation σ of the grindstone trace area ratios in the sound portion are obtained, and the grindstone trace area ratio x (i, j) is normalized according to the equation (1) to obtain the normalized grindstone trace area ratio. k (i, j) = {x (i, j) −M} / σ (1) Since the expression (1) is based on the sound portion, the grindstone trace area ratio x
The difference between (i, j) and the average M is obtained, and the difference is divided by the standard deviation σ to obtain the grindstone trace area ratio x (i,
It is a calculation formula for normalizing j).

【0024】ここで、区分領域の大きさが最小欠陥の大
きさと等しいと、砥石掛けの状態によって突発的に異常
な値の砥石痕面積率が算出される場合があり、その場
合、それがノイズによるものか欠陥によるものかの判別
がつきにくい。そこで、そのような異常値の発生を防ぐ
ため、区分領域の大きさを、検出したい最小欠陥の面積
の1/2よりも小さくすることが望ましい。
Here, if the size of the divided area is equal to the size of the minimum defect, a grindstone trace area ratio of an unexpectedly abnormal value may be calculated depending on the grindstone mounting state. It is difficult to distinguish whether it is due to a defect or a defect. Therefore, in order to prevent the occurrence of such an abnormal value, it is desirable that the size of the divided area be smaller than 1/2 of the area of the smallest defect to be detected.

【0025】(1)式によって得られた正規化砥石痕面
積率k(i,j)のうち、所定の第1のしきい値以上の
ものを凸型欠陥と判定し、所定の第2のしきい値以下の
ものを凹型欠陥と判定する。正規化砥石痕面積率を用い
て欠陥の等級を判定すると、被検査材の表面粗さ、砥石
の粒度、砥石の押し付け力、砥石掛け回数などのような
砥石掛け条件が変わっても、欠陥の等級を正しく判定で
きる。
Among the normalized whetstone trace area ratios k (i, j) obtained by the equation (1), those having a predetermined first threshold value or more are judged to be convex defects, and predetermined second defects are determined. Those below the threshold value are judged to be concave defects. If the grade of the defect is determined using the normalized grindstone trace area ratio, even if the grindstone applying conditions such as the surface roughness of the inspected material, the grain size of the grindstone, the pressing force of the grindstone, the number of times the grindstone is applied, etc. The grade can be judged correctly.

【0026】図7は、このような砥石掛け条件による影
響を補正する本願の第2の発明を説明するものであり、
砥石痕の面積率を一定の大きさで区分けした区分領域に
おいて測定し、その測定値の度数分布を示すものであ
る。図に示すように、例えば条件Aの砥石掛けは、条件
Bの砥石掛けに比較して、砥石を強く掛けているため
に、砥石痕の平均面積率が例えば40%で、条件Bの2
0%よりも大きくなっている。
FIG. 7 illustrates the second invention of the present application for correcting the influence of such a grindstone mounting condition.
The area ratio of the grindstone marks is measured in a divided area divided into a certain size, and the frequency distribution of the measured values is shown. As shown in the figure, for example, the grindstone under condition A has a stronger grindstone than the grindstone under condition B, so that the average area ratio of the grindstone marks is, for example, 40%, and
It is larger than 0%.

【0027】また、その掛け具合についてもばらついた
掛け方をしているために、砥石痕の面積率のばらつきは
標準偏差にして例えば5%になり、条件Bの2%よりも
大きくなっているとする。このような砥石掛けの状態に
おいては、例えば同じ等級Bの凸欠陥であっても、欠陥
部の砥石痕の平均面積率は、健全部に比較して、条件A
では10%大きくなったとすると、条件Bでは例えば4
%程度しか大きくならず、条件Aよりも増加量が小さく
なる。増加量が小さくなる理由は砥石の掛け方が弱いた
めである。このため、砥石掛けの状態が異なると、同じ
等級の欠陥であっても健全部の砥石痕面積率からの砥石
痕面積率の差では等級を判定できない場合がある。
Further, since the degree of hanging is also varied, the standard deviation of the area ratio of the grindstone is, for example, 5%, which is larger than 2% of the condition B. And In such a state where the grindstone is applied, for example, even in the case of convex defects of the same grade B, the average area ratio of the grindstone traces of the defective portion is higher than that of the sound portion by the condition A.
Then, if it becomes 10% larger, then under condition B, for example, 4
However, the amount of increase is smaller than that of the condition A. The reason why the amount of increase is small is that the method of applying the grindstone is weak. For this reason, if the states of the grindstones are different, even if the defects have the same grade, it may not be possible to determine the grade by the difference in the grindstone trace area ratio from the grindstone trace area ratio of the sound portion.

【0028】本発明者等は、人間の目視判定ではこのよ
うな砥石掛け条件の差も考慮しながら等級判定を行って
いることを知見して、健全部の砥石掛け状態を基準とし
てその相対的な差を求め、さらに砥石掛け状態のばらつ
きを補正するために標準偏差との比率を求めて正規化砥
石痕面積率により欠陥の等級が判定できることを見いだ
した。第(1)式によれば、図7に示した凸欠陥は、条
件Aの砥石掛けではk(i,j)=10/5=2、条件
Bの砥石掛けでも正規化砥石痕面積率は、k(i,j)
=4/2=2となり、同じ等級の欠陥として評価でき
る。
The inventors of the present invention have found that in visual judgment by humans, the grade judgment is performed while taking into consideration such a difference in the grindstone mounting conditions, and the relative condition is determined based on the grindstone mounted state of the sound part. It was found that the grade of the defect can be judged by the normalized area ratio of the traces of the whetstone by obtaining the difference and further calculating the ratio with the standard deviation to correct the variation of the whetstone mounting state. According to the equation (1), the convex defect shown in FIG. 7 has a normalized grinding wheel trace area ratio of k (i, j) = 10/5 = 2 in the condition A grindstone and even in the condition B grindstone. , K (i, j)
= 4/2 = 2, which can be evaluated as defects of the same grade.

【0029】また、図7では凸欠陥を例にして説明した
が、凹欠陥では、欠陥を示す度数分布が健全部の平均値
よりも小さい側に表れることとなり、補正した砥石痕の
面積率k(i,j)が負の値となって計算される。次い
で、第3発明について説明する。凸型欠陥の場合は、正
規化砥石痕面積率k(i,j)が所定の第1のしきい値
以上の区分領域がひとかたまりとなって存在する場合、
そのかたまりを一つのブロックと見なし、そのブロック
の等級判定を行う。凹型欠陥の場合は、所定の第2のし
きい値以下の区分領域について同様の処理を行えばよ
い。
In FIG. 7, the convex defect is taken as an example, but in the case of the concave defect, the frequency distribution indicating the defect appears on the side smaller than the average value of the sound part, and the corrected area ratio k of the grindstone mark is k. (I, j) is calculated as a negative value. Next, the third invention will be described. In the case of a convex defect, when there is a group of segmented regions having a normalized grindstone trace area ratio k (i, j) of a predetermined first threshold value or more,
The block is regarded as one block, and the grade of the block is judged. In the case of a concave defect, the same processing may be performed on the segmented region having a predetermined second threshold value or less.

【0030】先ず、凸型欠陥の場合について詳しく説明
する。最初に、全区分領域の中から、前述の正規化砥石
痕面積率k(i,j)が所定の第1のしきい値以上の区
分領域、即ち凸型欠陥が存在する区分領域を抽出する。
次に、抽出された各区分領域のうち、隣接する複数の区
分領域がひとかたまりとなって存在するものについて、
これら複数の区分領域を一つのブロックとする。
First, the case of a convex defect will be described in detail. First, a segmented region in which the above-described normalized grindstone trace area ratio k (i, j) is equal to or larger than a predetermined first threshold value, that is, a segmented region in which a convex defect exists is extracted from all the segmented regions. .
Next, among each of the extracted segmental areas, for a plurality of adjacent segmental areas that exist as a group,
One of these blocks is a block.

【0031】ひとかたまりとなって存在する区分領域を
見つけるには、抽出された区分領域に隣接している各区
分領域が、上記抽出された区分領域であるか否かを調べ
ればよい。例えば、隣接する上下左右方向(4連結近
傍)、あるいは、隣接する上下左右方向及び斜方向(8
連結近傍)のいずれかの区分領域が所定の第1のしきい
値以上の時は同じかたまりと見なし、第1のしきい値未
満の時は同じかたまりではないとして、順次、抽出され
た区分領域について同様の処理を続ければよい。
In order to find a segmented area that exists as a group, it is sufficient to check whether or not each segmented area adjacent to the extracted segmented area is the extracted segmented area. For example, adjacent up / down / left / right directions (near 4 connections), or adjacent up / down / left / right directions and diagonal directions (8
If any of the divided areas (in the vicinity of the connection) is equal to or larger than a predetermined first threshold value, it is regarded as the same cluster, and if it is less than the first threshold value, the same cluster is not considered to be the same cluster, and the extracted segment areas are sequentially extracted. The same processing may be continued for.

【0032】このようにして上記処理が終了したら、そ
れぞれのブロックを構成する抽出された区分領域につい
ての正規化砥石痕面積率k(i,j)の総和を求めれ
ば、砥石痕の面積率が健全部と比較して差があり、か
つ、ひとかたまりとなっている区分領域のみを凸型欠陥
として抽出することができる。凹型欠陥の場合は、所定
の第2のしきい値以下の区分領域を抽出し、次いで、抽
出された各区分領域のうち、ひとかたまりとなっている
ものを一つのブロックとし、凸型欠陥の場合と同様、そ
れぞれのブロックを構成する抽出された区分領域につい
て正規化砥石痕面積率の総和を求めればよい。
When the above processing is completed in this way, the sum of the normalized grindstone trace area ratios k (i, j) for the extracted segmental areas that make up each block is calculated to find the area ratio of the grindstone traces. It is possible to extract only a segmented area that has a difference compared with a sound portion and is a block as a convex defect. In the case of a concave defect, a segmented area equal to or smaller than a predetermined second threshold value is extracted, and then a block of the extracted segmented areas is regarded as one block. Similarly to the above, the sum of the normalized grindstone trace area ratios may be calculated for the extracted segmental areas that make up each block.

【0033】ところで、上記総和では、凸型欠陥の場合
と凹型欠陥の場合とでしきい値が異なるなど、欠陥の発
生原因、欠陥の種類、被検査材の種類、砥石掛け処理の
状態などに応じて等級判定方法を変える必要がある。そ
こで、欠陥の種類その他種々の条件に関係なく、常に一
定の基準で評価することができるように、次に示すよう
な欠陥評価指標を設定する。
By the way, in the above total, the threshold value is different between the case of the convex defect and the case of the concave defect, such as the cause of the defect, the type of the defect, the type of the material to be inspected, the state of the grindstone treatment, etc. It is necessary to change the grade judgment method accordingly. Therefore, the following defect evaluation index is set so that the defect can be always evaluated with a constant reference regardless of the type of defect and various other conditions.

【0034】即ち、上記の処理終了後それぞれのブロッ
クを構成する抽出された各区分領域毎の砥石痕面積率を
k(i,j)とし、各砥石痕面積率k(i,j)に応じ
て定まる重みをw1 とし、検出すべき欠陥の大きさに応
じて定まる重みをw2 とした時、式 D=w2 ・Σ{w1 ・k(i,j)} ・・・・・(2) によって表される欠陥評価指標Dを求め、欠陥評価指標
Dに基づいて被検査材の凹凸性欠陥の等級を判定する。
That is, after the above processing is finished, the grindstone trace area ratio for each of the extracted divided regions forming each block is k (i, j), and the grindstone trace area ratio k (i, j) Where w 1 is the weight determined by the above and w 2 is the weight determined according to the size of the defect to be detected, the equation D = w 2 · Σ {w 1 · k (i, j)} The defect evaluation index D represented by (2) is obtained, and the grade of the uneven defect of the inspected material is determined based on the defect evaluation index D.

【0035】このような欠陥評価指標Dを求めるのは、
欠陥の種類によっては、砥石痕面積率k(i,j)の値
と欠陥等級との間に正比例関係が成り立たず、砥石痕面
積率k(i,j)の値の増加に応じて加速度的に欠陥等
級が上昇するものがあり、また、欠陥によっては、欠陥
の大きさと欠陥等級とが比例しない場合があるからであ
る。
The defect evaluation index D is obtained as follows.
Depending on the type of the defect, there is no direct proportional relationship between the value of the grindstone trace area ratio k (i, j) and the defect grade, and the acceleration increases as the value of the grindstone trace area ratio k (i, j) increases. In some cases, the defect grade increases, and depending on the defect, the defect size and the defect grade may not be proportional.

【0036】しかし、上記(2)式により求めた欠陥評
価指標Dを用いれば、凸型欠陥の場合、小さくても明瞭
に観察される欠陥は、砥石痕面積率が健全部よりも著し
く大きいため欠陥評価指標Dが大きくなり、大きくても
ぼやけて観察される欠陥は、砥石痕面積率が健全部より
僅かに大きいだけであるため欠陥評価指標Dが小さくな
る。即ち、目視による等級判定で重欠陥と判定されるも
のほど欠陥評価指標Dが大きくなり、目視による等級判
定で軽欠陥と判定されるものほど欠陥評価指標Dが小さ
くなる。
However, if the defect evaluation index D obtained by the above equation (2) is used, in the case of a convex defect, a defect that is clearly observed even if it is small has a significantly larger grindstone trace area ratio than a sound part. The defect evaluation index D becomes large, and even if the defect evaluation is large, the defect evaluation index D becomes small because the defect rate of the grindstone is slightly larger than that of the sound portion. That is, the defect evaluation index D becomes larger as the defect is visually judged to be a heavy defect, and the defect evaluation index D becomes smaller as the defect is visually judged to be the light defect.

【0037】一方、凹型欠陥の場合は、欠陥評価指標D
が負の値となり、欠陥評価指標Dが小さいほど重欠陥で
あり、欠陥評価指標Dが大きいほど軽欠陥であることを
表す。
On the other hand, in the case of a concave defect, the defect evaluation index D
Is a negative value, and a smaller defect evaluation index D indicates a heavy defect, and a larger defect evaluation index D indicates a light defect.

【0038】[0038]

【実施例】測定対象は冷延鋼板に発生した、目視判定に
より軽欠陥から重欠陥までを等級Aから等級Fまでの6
段階評価により判定された凸型欠陥であり、砥石痕面積
率を測定する区分領域の大きさを0.25mm×0.2
5mmに設定して砥石痕面積率x(i,j)を測定し
た。また、欠陥が発生していない健全部についても同じ
条件で砥石痕面積率を測定し、次いで、(1)式に従い
正規化砥石痕面積率k(i,j)を求めた。第1のしき
い値を1.0とし、砥石痕面積率k(i,j)が第1の
しきい値以上である欠陥が存在する区分領域を抽出し、
(2)式に従って欠陥評価指標Dを求めた。欠陥評価指
標Dを計算する際の重みw2 は、欠陥の面積に応じて、
φ2mm以上の欠陥ではw2 =1、φ2mm未満の欠陥
ではw2=1.4に設定している。また、重みw1 は、
本実施形態では全てw1 =1に設定している。
[Embodiment] The object to be measured is 6 from the grade A to the grade F, which is generated from cold rolled steel sheets, from light defects to heavy defects by visual judgment.
It is a convex defect determined by the graded evaluation, and the size of the divided area for measuring the grindstone trace area ratio is 0.25 mm × 0.2.
The area ratio x (i, j) of the grindstone was set to 5 mm and measured. Further, the grindstone trace area ratio was also measured under the same conditions for a sound portion where no defect occurred, and then the normalized grindstone trace area ratio k (i, j) was obtained according to the equation (1). A first threshold value is set to 1.0, and a segmented area in which a defect having a grindstone trace area ratio k (i, j) is equal to or larger than the first threshold value is extracted,
The defect evaluation index D was obtained according to the equation (2). The weight w 2 when calculating the defect evaluation index D is determined according to the area of the defect.
For defects of φ2 mm or more, w 2 = 1 and for defects of less than φ2 mm, w 2 = 1.4. Also, the weight w 1 is
In this embodiment, all are set to w 1 = 1.

【0039】例えば、図4は、目視判定で等級Cの凸型
欠陥と判定された欠陥部における正規化砥石痕面積率、
及び、健全部における正規化砥石痕面積率をそれぞれ示
す図である。図4(a)には、目視判定で欠陥等級Cと
判定された凸型欠陥41を含む被検査領域40内の各区
分領域毎の正規化砥石痕面積率k(i,j)が示されて
いる。各区分領域毎の正規化砥石痕面積率の値は四角柱
の高さで示され、四角柱の上面に斜線の施された四角柱
は上記第1のしきい値未満の区分領域であることを表
し、四角柱の上面が白抜きである四角柱は上記第1のし
きい値以上の区分領域であることを表している。
For example, FIG. 4 shows a normalized grindstone trace area ratio in a defect portion which is judged to be a convex defect of grade C by visual judgment,
It is a figure which respectively shows the normalized grindstone trace area ratio in a sound part. FIG. 4A shows the normalized grindstone trace area ratio k (i, j) for each divided area in the inspected area 40 that includes the convex defect 41 that is visually determined to have the defect grade C. ing. The value of the normalized grindstone trace area ratio for each divided area is indicated by the height of the square pillar, and the square pillar with diagonal lines on the upper surface of the square pillar is a divided area below the first threshold value. The square prism having the white upper surface of the square prism indicates that it is a segmented region of the first threshold value or more.

【0040】図4(a)では、一点鎖線で囲んだ部分4
1が検出されるので、凸型欠陥と判定できる。一方、図
4(b)は、健全部における各区分領域毎の正規化砥石
痕面積率が示されているが、二点鎖線で囲んだ部分は砥
石掛けのムラによる凹凸42であるにもかかわらず、し
きい値が妥当でないために欠陥として誤判定される恐れ
がある。しかし、欠陥評価指標Dを求めることにより、
図4(a)の凸型欠陥41では、D=92.2が得ら
れ、後述の図5により等級Cの欠陥と判定される。ま
た、図4(b)の凸型欠陥42ではD=13.4が得ら
れるので、後述の図5に示すように、軽欠陥AのD値5
0よりも小さいので凸型欠陥として誤判定されることは
ない。
In FIG. 4A, a portion 4 surrounded by a one-dot chain line
Since 1 is detected, it can be determined as a convex defect. On the other hand, FIG. 4B shows the normalized grindstone trace area ratio for each of the divided areas in the sound part, but the portion surrounded by the two-dot chain line is unevenness 42 due to unevenness of the grindstone mounting. However, since the threshold value is not appropriate, it may be erroneously determined as a defect. However, by obtaining the defect evaluation index D,
For the convex defect 41 of FIG. 4A, D = 92.2 is obtained, and it is determined to be a defect of grade C according to FIG. 5 described later. In addition, since D = 13.4 is obtained for the convex defect 42 of FIG. 4B, the D value of the light defect A is 5 as shown in FIG.
Since it is smaller than 0, it is not erroneously determined as a convex defect.

【0041】図5は、凸型欠陥について求めた欠陥評価
指標Dと目視判定による欠陥等級との関係を示すグラフ
である。各データは、欠陥の大きさを直径2mm以上、
2mm未満に層別してプロットされているが、欠陥の大
きさに関係なく、欠陥評価指標Dと目視判定による欠陥
等級とはよい相関を示しており、このように、欠陥評価
指標Dを用いることにより、砥石掛けの条件や、欠陥の
大きさによらない定量的な欠陥等級の判定ができる。
FIG. 5 is a graph showing the relationship between the defect evaluation index D obtained for convex defects and the defect grade by visual judgment. Each data shows the size of the defect is 2 mm or more in diameter,
Although it is plotted as stratified to less than 2 mm, the defect evaluation index D and the defect grade by visual judgment show a good correlation regardless of the size of the defect. Thus, by using the defect evaluation index D, , It is possible to quantitatively judge the defect grade regardless of the condition of the grindstone and the size of the defect.

【0042】凹型欠陥についても、冷延鋼板に発生し
た、目視判定により軽欠陥から重欠陥までを等級A’か
ら等級E’までの5段階評価により判定された欠陥につ
いて、第2のしきい値を−1.4とし、砥石痕面積率K
(i,j)が第2のしきい値以下である欠陥が存在する
区分領域を抽出し、(2)式に従って欠陥評価指標Dを
求めた。
Regarding the concave type defect, the second threshold value is given to the defect which is generated in the cold-rolled steel sheet and is judged by the five-level evaluation from the light defect to the heavy defect by the grade A'to the grade E'by visual judgment. Is set to -1.4, and the whetstone trace area ratio K
A segmented area in which a defect having (i, j) is equal to or less than the second threshold value is extracted, and the defect evaluation index D is obtained according to the equation (2).

【0043】図6は、本実施形態により凹型欠陥につい
て求めた欠陥評価指標Dと目視判定による欠陥等級との
関係を示すグラフである。図6に示すように、凹型欠陥
についても、欠陥評価指標Dと目視判定による欠陥等級
にはよい相関が見られる。このように欠陥評価指標Dを
求めることにより、凹凸性欠陥の欠陥等級をより的確に
判定することができる。
FIG. 6 is a graph showing the relationship between the defect evaluation index D obtained for concave defects according to this embodiment and the defect grade by visual judgment. As shown in FIG. 6, also for the concave defect, a good correlation is found between the defect evaluation index D and the defect grade by visual judgment. By thus obtaining the defect evaluation index D, it is possible to more accurately determine the defect grade of the uneven defect.

【0044】[0044]

【発明の効果】以上説明したように、本発明の凹凸性欠
陥の等級判定方法によれば、従来、定性的に評価される
ほかなかった凹凸性欠陥の欠陥等級を、砥石痕面積率に
よって定量的に判定することができるため、検査員によ
る人為的な判定ミスを防止することができる。
As described above, according to the method for determining the degree of unevenness defects of the present invention, the defect grade of unevenness defects, which has hitherto been qualitatively evaluated, is quantified by the grindstone trace area ratio. Since it is possible to make a decision manually, it is possible to prevent a mistaken decision made by an inspector.

【0045】また、従来不明確であった、有害欠陥であ
るか無害欠陥であるかの判定を砥石痕面積率によって明
確に行うことができるため、必要以上に厳しい欠陥検査
を実施することがなくなり、製品の歩留りを向上させる
ことができる。さらに、従来、熟練者に依存するほかな
かった凹凸性欠陥の等級判定作業を自動化することがで
きる。
Further, since it is possible to clearly determine whether the defect is a harmful defect or a harmless defect by the grindstone trace area ratio, which has been unclear in the past, it is possible to prevent a stricter defect inspection than necessary. , The product yield can be improved. Further, it is possible to automate the grade determination work of uneven defects, which conventionally depends on an expert.

【図面の簡単な説明】[Brief description of the drawings]

【図1】砥石痕面積率を測定する手順を示す流れ図であ
る。
FIG. 1 is a flowchart showing a procedure for measuring a grindstone trace area ratio.

【図2】砥石痕面積率を求めるために用いた前記顕微鏡
写真をスケッチした模式図の一例である。
FIG. 2 is an example of a schematic diagram sketching the microphotograph used for obtaining a grindstone trace area ratio.

【図3】本実施形態による砥石痕面積率と、従来の目視
判定による等級判定結果との関係を示すグラフである。
FIG. 3 is a graph showing a relationship between a grindstone trace area ratio according to the present embodiment and a conventional grade determination result by visual determination.

【図4】目視判定で等級Cの凸型欠陥と判定された欠陥
部における正規化砥石痕面積率、及び、健全部における
正規化砥石痕面積率をそれぞれ示す図である。
FIG. 4 is a diagram showing a normalized grindstone trace area ratio in a defective portion which is determined to be a convex defect of grade C by visual judgment, and a normalized grindstone trace area ratio in a sound portion.

【図5】凸型欠陥について求めた欠陥評価指標Dと目視
判定による欠陥等級との関係を示すグラフである。
FIG. 5 is a graph showing a relationship between a defect evaluation index D obtained for a convex defect and a defect grade by visual judgment.

【図6】凹型欠陥について求めた欠陥評価指標Dと目視
判定による欠陥等級との関係を示すグラフである。
FIG. 6 is a graph showing the relationship between the defect evaluation index D obtained for concave defects and the defect grade by visual judgment.

【図7】砥石掛け条件による影響を補正する本願の第2
の発明を説明するための図である。
FIG. 7 is a second view of the present application for correcting the influence of the grindstone mounting condition.
FIG. 3 is a diagram for explaining the invention of FIG.

【符号の説明】[Explanation of symbols]

21 砥石痕 22 非砥石痕 40 被検査領域 42 凹凸 21 grindstone trace 22 non-grindstone trace 40 inspected area 42 unevenness

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 砥石を用いた研削処理により被検査材表
面上の所定の被検査領域内に形成された砥石痕の面積を
測定し、 該砥石痕の面積を前記被検査領域の面積で除算して砥石
痕面積率を求め、 該砥石痕面積率に基づいて被検査材の凹凸性欠陥の等級
を判定することを特徴とする凹凸性欠陥の等級判定方
法。
1. An area of a grindstone trace formed in a predetermined inspected region on a surface of an inspected material by a grinding process using a grindstone is measured, and the area of the grindstone trace is divided by the area of the inspected region. Then, the grindstone trace area ratio is obtained, and the grade of the unevenness defect of the material to be inspected is determined based on the grindstone trace area ratio.
【請求項2】 砥石を用いた研削処理により被検査材表
面上の所定の被検査領域内に形成された砥石痕の面積を
測定するに当たり、該被検査領域を、検出すべき欠陥の
大きさに応じた面積に区分された複数の区分領域毎に砥
石痕の面積を測定し、 該各区分領域毎の砥石痕の面積を該各区分領域の面積で
除算して該各区分領域毎の砥石痕面積率を求め、 該各区分領域毎の砥石痕面積率から砥石痕面積率の平均
な値及びばらつきの程度を表す指標を求め、 前記各区分領域毎の砥石痕面積率を前記砥石痕面積率の
平均な値及びばらつきの程度を表す指標で正規化するこ
とにより正規化砥石痕面積率を求め、 前記砥石痕面積率に代わり、該正規化砥石痕面積率に基
づいて被検査材の凹凸性欠陥の等級を判定することを特
徴とする請求項1記載の凹凸性欠陥の等級判定方法。
2. The size of a defect to be detected in the inspected area when measuring the area of a grindstone trace formed in a predetermined inspected area on the surface of the inspected material by a grinding process using a grindstone. The area of the grindstone trace is measured for each of the plurality of divided areas divided according to the area, and the area of the grindstone trace for each of the divided areas is divided by the area of each of the divided areas to obtain the grindstone of each of the divided areas. The scratch area ratio is obtained, and the index indicating the average value of the grindstone area ratio and the degree of variation is obtained from the grindstone area ratio for each of the divided areas, and the grindstone area ratio for each of the divided areas is defined as the grindstone area. Obtain the normalized grindstone trace area ratio by normalizing with an index representing the average value of the rate and the degree of variation, instead of the grindstone trace area ratio, the unevenness of the material to be inspected based on the normalized grindstone trace area ratio The unevenness according to claim 1, wherein the grade of the property defect is determined. Grade determination method of the defect.
【請求項3】 前記正規化砥石痕面積率をしきい値処理
することにより欠陥が存在する区分領域を抽出し、 該抽出された各区分領域のうち、隣接する複数の区分領
域について、これら複数の区分領域を一つのブロックと
し、 隣接する区分領域の存在しない独立した区分領域につい
ては該区分領域一つを一つのブロックとし、それぞれの
ブロック毎に、下記式で表わされる欠陥評価指標Dを求
め、該欠陥評価指標Dに基づいて被検査材の凹凸性欠陥
の等級を判定することを特徴とする請求項2記載の凹凸
性欠陥の等級判定方法。 D=w2 ・Σ{w1 ・k(i,j)} ここで、ブロックを構成する抽出された各区分領域の番
地をi,jとし、該各区分領域毎の砥石痕面積率をk
(i,j)とし、該各砥石痕面積率k(i,j)に応じ
て定まる重みをw1 とし、前記検出すべき欠陥の大きさ
に応じて定まる重みをw2 とした。
3. A segmented region having a defect is extracted by thresholding the normalized grindstone trace area ratio, and a plurality of adjacent segmented regions are extracted from the extracted segmented regions. Is defined as one block, and for independent segmented areas where adjacent segmented areas do not exist, one segmented area is defined as one block, and a defect evaluation index D represented by the following formula is obtained for each block. 3. The method for determining the grade of irregularity defects according to claim 2, wherein the grade of irregularity defects of the material to be inspected is determined based on the defect evaluation index D. D = w 2 · Σ {w 1 · k (i, j)} Here, the address of each of the extracted divided regions forming the block is i, j, and the grindstone trace area ratio of each of the divided regions is k.
(I, j), the weight determined according to each grindstone trace area ratio k (i, j) was w 1, and the weight determined according to the size of the defect to be detected was w 2 .
JP7305940A 1995-11-24 1995-11-24 Method for judging grade of roughness defect Withdrawn JPH09145637A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7305940A JPH09145637A (en) 1995-11-24 1995-11-24 Method for judging grade of roughness defect

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7305940A JPH09145637A (en) 1995-11-24 1995-11-24 Method for judging grade of roughness defect

Publications (1)

Publication Number Publication Date
JPH09145637A true JPH09145637A (en) 1997-06-06

Family

ID=17951134

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7305940A Withdrawn JPH09145637A (en) 1995-11-24 1995-11-24 Method for judging grade of roughness defect

Country Status (1)

Country Link
JP (1) JPH09145637A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005292066A (en) * 2004-04-05 2005-10-20 Daikin Ind Ltd Condition diagnostic device, condition diagnostic program, and condition diagnostic system
CN110083967A (en) * 2019-05-07 2019-08-02 湖北工业大学 A kind of sbrasive belt grinding process parameter optimizing and evaluation index mathematical model modeling method
CN112414327A (en) * 2020-11-17 2021-02-26 中国三峡建设管理有限公司 Handheld concrete roughness three-dimensional detection device and method
CN113640293A (en) * 2021-09-15 2021-11-12 鞍钢股份有限公司 Method for determining hypereutectoid steel reticular cementite grade

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005292066A (en) * 2004-04-05 2005-10-20 Daikin Ind Ltd Condition diagnostic device, condition diagnostic program, and condition diagnostic system
CN110083967A (en) * 2019-05-07 2019-08-02 湖北工业大学 A kind of sbrasive belt grinding process parameter optimizing and evaluation index mathematical model modeling method
CN112414327A (en) * 2020-11-17 2021-02-26 中国三峡建设管理有限公司 Handheld concrete roughness three-dimensional detection device and method
CN112414327B (en) * 2020-11-17 2022-08-09 中国三峡建设管理有限公司 Handheld concrete roughness three-dimensional detection device and method
CN113640293A (en) * 2021-09-15 2021-11-12 鞍钢股份有限公司 Method for determining hypereutectoid steel reticular cementite grade

Similar Documents

Publication Publication Date Title
US10267747B2 (en) Surface defect inspecting device and method for steel sheets
US10041888B2 (en) Surface defect inspecting device and method for hot-dip coated steel sheets
US20050007364A1 (en) Method for sorting ununiformity of liquid crystal display panel sorting apparatus, and information recorded medium with recorded program for executing this sorting
CN114677369B (en) Automobile tire production quality monitoring and analyzing system based on artificial intelligence
CN104568956A (en) Machine vision based detection method for strip steel surface defects
CN108445008A (en) Method for detecting surface defects of strip steel
US20030151739A1 (en) Method and apparatus for measuring ripple and distortion in a transparent material
JPH08189904A (en) Surface defect detector
US10024775B2 (en) Method and device for determining the abrasion properties of a coated flat product
JPH09145637A (en) Method for judging grade of roughness defect
JP3289869B2 (en) Surface distortion judgment method
CN114998354A (en) Steel belt roll mark detection method based on graph filtering
US11880969B2 (en) Belt examination system and computer-readable non-transitory recording medium having stored belt examination program
US11768159B2 (en) Belt examination system and computer-readable non-transitory recording medium having stored belt examination program
JPH09138200A (en) Method for determining surface defect of strip material
KR101024598B1 (en) Surface inspection method using algorithm calculating variance of variance on surface brightness
KR102383577B1 (en) A method for inspecting a skeleton wafer
JP4258041B2 (en) Nonuniformity defect inspection apparatus and method, and recording medium recorded with nonuniformity defect inspection program
TWI663395B (en) Steel strip crease detection method
JPH0989533A (en) Inspecting method for surface state
JP2004170374A (en) Apparatus and method for detecting surface defect
JPH11279936A (en) Creping capability measurement system for creped woven fabric and creping capability measurement
JP2929096B2 (en) Surface inspection device for inspection object having curved surface
CN114881915B (en) Symmetry-based mobile phone glass cover plate window area defect detection method
JPH05143717A (en) Grain pattern measuring method

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20030204