JP3575996B2 - Powder coating and manufacturing method using PET resin product as raw material - Google Patents

Powder coating and manufacturing method using PET resin product as raw material Download PDF

Info

Publication number
JP3575996B2
JP3575996B2 JP22050298A JP22050298A JP3575996B2 JP 3575996 B2 JP3575996 B2 JP 3575996B2 JP 22050298 A JP22050298 A JP 22050298A JP 22050298 A JP22050298 A JP 22050298A JP 3575996 B2 JP3575996 B2 JP 3575996B2
Authority
JP
Japan
Prior art keywords
powder
crystallinity
resin
pet resin
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP22050298A
Other languages
Japanese (ja)
Other versions
JP2000053892A (en
Inventor
幸久 津吹
Original Assignee
株式会社セイシン企業
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社セイシン企業 filed Critical 株式会社セイシン企業
Priority to JP22050298A priority Critical patent/JP3575996B2/en
Priority to KR10-1998-0043092A priority patent/KR100370702B1/en
Publication of JP2000053892A publication Critical patent/JP2000053892A/en
Application granted granted Critical
Publication of JP3575996B2 publication Critical patent/JP3575996B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D167/00Coating compositions based on polyesters obtained by reactions forming a carboxylic ester link in the main chain; Coating compositions based on derivatives of such polymers
    • C09D167/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/02Homopolymers or copolymers of acids; Metal or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/03Powdery paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/20Diluents or solvents

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Paints Or Removers (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、回収PET製品を原料として金属表面に高強度塗膜を形成できる塗装用粉末とその製造法に関する。
【0002】
PET(ポリエチレンテレフタレート)樹脂は金属表面に対する密着性が小さい上、焼付塗膜を形成しても塗膜の結晶化が進行してヒビ割れを起こしたり剥離し易いので粉体塗料として利用されていない。また、PET樹脂その他の熱可塑性樹脂は、一般に耐熱性が低い上、弾性があるため常温で機械粉砕を行なうと破砕粒子に長さ1mm以上の糸状又はひげ状突起を生じ、所謂粉体として取り扱うことができなくなる。一般に静電塗装用粉末の粒度は5 ̄150μm(平均粒径40μm)であり、流動浸漬用粉末は60 ̄350μm(平均粒径150μm)であることが要求される。従って粉体塗料等に要求される微粉末(5 ̄350μm)を通常の機械粉砕によって製造することは非常に困難であって、液体窒素による冷凍粉砕法によって行なっているのが現状である。冷凍粉砕では大量の液体窒素が必要で、粉砕機械その他の周辺装置も低温に耐えられる特殊な仕様にする必要があることから設備も大掛かりになり粉砕コストも高くなる。
【0003】
【発明が解決しようとする課題】
本発明は、最近社会問題にもなっているペットボトル等の食品容器の回収品を原料として静電塗装や流動浸漬法に適用できるPET 樹脂粉末を提供するものであって、金属表面に強固に密着し機械的強度の大きな塗膜を形成できると共に粉末化工程で高価な設備を要せずに機械的に粉砕できる方法を提供するものである。
【0004】
【課題を解決するための手段】
本発明は、回収PET製品を機械粉砕によりフレーク状にしたもの或は、これをルーダー等により溶融混練してペレット状としたもの100重量部に対し、 ポリブチレンテレフタレート樹脂又はポリエチレンナフタレート樹脂5〜40重量部、好ましくは20重量部前後を変性剤として添加してルーダ一等により溶融混練して複合化ペレットとした後、これを約170℃で所要時間加熱して結晶化度を35%以上としてから常温機械粉砕するものである。
変性剤の添加量が少ないと金属密着性の改善度が低い上、耐衝撃強度が弱くなる傾向があるから、所望する塗膜性能に応じて添加量を調整する。
変性剤を添加した組成物ぺレットの結晶化度(DSC分析による)は20〜30%程度であってこれを通常の方法で機械粉砕すると粉砕粒子表面にひげ状突起を生じて粉体塗料として利用できないものになる。
しかしながら結晶化度を35%以上に 高めると常温下で機械粉砕してもひげ状突起がない粒子が多く得られる他、結晶化度に比例して粉砕処理時間も短縮される。
結品化温度は166±10℃、実際には170℃で数時間加熱処理する。
なお、後述する実施例2、3、5、6および7は参考例である。
【0005】
【実施例1】
PETボトルの回収品から再生されたPET樹脂ペレット(市販品)とポリブチレンテレフタレート(PBT)樹脂(宇部興産(株)、PET1000F01)及び二酸化チタン(石原産業(株)、CR−97)を表1の配合比でタンブラーに投入して混合し、二軸押出機(PMT−32、アイ・ケー・ジー(株))により270℃で混練押出したヒモ状物(ストランド)を水中を通して引張り直径2mm程度とした後、カッターによって3mm程度の長さに切断し夫々のペレットとした。
【0006】
【表1】

Figure 0003575996
【0007】
得られたペレットの結晶化度はいずれも30%以下であって、このペレットを常温粉砕すると粉砕粒子表面に1 ̄2mmのひげ状突起を生じ、粉体塗料として取扱うことができない。
前記ペレットをオイルジャケット付のコニカルブレンダーを用い、170℃で6時間加熱処理を行なうことによって結晶化度は35%以上になる。放冷して常温まで冷却した後、回転刃の間隔0.4mm、回転数5000rpmの高速スパイラルミル((株)セイシン企業製、SP−420型、定格出力22kW)に処理量30kg/hでテーブルフィーダーにより供給し粉砕を行ない、更に、この粉砕産物について300μmのスクリーンを装着した分級機(ハイボルターNR−450S、新東京機械(株))を用い300μm以上の粗粉を除去し、これを前述の高速スパイラルミルに戻す閉回路粉砕を1時間行なった。得られた粉末の平均粒子径約180μm(粒径範囲45 ̄355μm)であった。上記加熱処理時間を17時間としたときの各配合の結晶化度は表2のようであって、結晶化度に比例して粉砕機の負荷電流も減少した。粒度分布の測定には、篩い分け測定器((株)セイシン企業製、PRS−85)を用いた。
【0008】
【表2】
Figure 0003575996
【0009】
【実施例2】
PETボトルの回収品から再生されたPET樹脂ペレット80kgとポリカーボネート樹脂(帝人、パンライト、K−1300)20kg及び二酸化チタン(石原産業(株)、CR−97)2.63kgをタンブラーに投入して混合を行ない、以後実施例1と同様の装置及び条件で混練して粗大ペレットとした。このペレットの結晶化度が35%以上となる加熱時間は8時間を要した。粉砕機を1時間運転後、平均粒子径190μm(粒径範囲:53 ̄425μm)の粉末が得られた。同一の粗大ペレットを170℃で17時間加熱処理すると結晶化度は41%となり、40時間の加熱処理によって結晶化度は45%となって、平均粒子径180μm(粒径範囲:53 ̄425μm)の粉末を得ることができた。
【0010】
【実施例3】
PETボトルの回収品から再生されたPET樹脂ペレット100kgとエチレンアクリル酸共重合樹脂(ダウケミカル、プリマコール3460)5kg及び二酸化チタン(石原産業(株)、CR−97)2.63kgをタンブラーに投入して混合を行ない、以後実施例1と同様の装置で混練及び粉砕を行なった。結晶化度35%とするまでの加熱時間は8.5時間であったが、更に加熱を続け17時間で結晶化度は39%となった。このペレットを1時間粉砕したところ平均粒子径200μm(粒径範囲:53 ̄425μm)の粉末が得られた。
【0011】
【実施例4】
PETボトルの回収品から再生されたPET樹脂ペレット80kgとポリエチレンナフタレート樹脂(帝人)20kg及び二酸化チタン(石原産業(株)、CR−97)2.63kgをタンブラーに投入して混合を行ない、以後実施例1と同様の装置で混練及び粉砕を行なった。170℃で35%までの加熱時間は6時間であったが、更に10時間加熱を継続して結晶化度を52%として1時間粉砕したところ平均粒子径190μm(粒径範囲:45 ̄425μm)の粉末を得た。
【0012】
【実施例5】
PETボトルの回収品から再生されたPET樹脂ペレット80kgとマレイン化ポリエチレン ((株)仲田コーティング)20kg及び二酸化チタン(石原産業(株)、CR−97)2.63kgをタンブラーに投入して混合を行ない、以後実施例1と同様の条件で混練及び粉砕を行なった。170℃、10時間加熱処理による結晶化度は約36%であって、平均粒子径210μm(粒径範囲:75 ̄425μm)の粉末を得た。
上記各実施例による粉末粒度は、機械粉砕を1時間継続した場合であって粉砕時間を長くすることによって小径粒子の割合が増すことは当然である。従って実際の製造においては用途に応じた粉砕時間で粉砕した後、所定の粒子範囲に分級する。
【0013】
【実施例6】
実施例1で作成したPET樹脂、ポリブチレンテレフタレート樹脂と二酸化チタンの混合物ペレット2kgをジメチルアセトアミド40リットルを入れたジャケット付攪拌式溶解槽に投入し、172℃に加熱して溶解させた。水冷によって60℃以下まで冷却して粒子を析出させた後、フィルタープレスにより濾過を行ない溶剤を分離し、この濾過ケーキを攪拌式真空乾燥機に入れて12rpm、70℃、真空度10Torrとして乾燥し粉末を得た。収率は重量比で95%であった。更に、この粉末をジェットミル((株)セイシン企業、FS−4)に処理量1kg/hで供給して団粒を解砕し、平均粒子径45μm(粒径範囲:10 ̄128μm)の微粉末を得た。粒度分布は、レーザー回折散乱方式粒度分布測定機((株)セイシン企業、LMS−30)を用い、分散媒としてドデシル硫酸ナトリウム0.1%水溶液を用い更に超音波による分散を行ないつつ測定を行なった。
【0014】
【実施例7】
実施例2の混合物ペレット2kgをジメチルアセトアミド40リットルを入れたジャケット付攪拌式溶解槽に投入し、170℃に加熱して溶解させた。水冷によって60℃以下まで冷却して粒子を析出させた後、フィルタープレスにより濾過を行ない溶剤を分離し、この濾過ケーキを攪拌式真空乾燥機に入れて12rpm、70℃、真空度10Torrとして乾燥し粉末を得た。収率は重量比で95%であった。更にこの粉末をジェットミル((株)セイシン企業、FS−4)に処理量1kg/hで供給して団粒の解砕を行い、平均粒子径40μm(粒径範囲10 ̄128μm)の微粉末を得た。粒度分布の測定は実施例6と同一の方法によった。
【0015】
(塗膜試験)
実施例1 ̄5によって製造した粉末を300メッシュ篩で分級して夫々を流動浸漬槽に入れ、この中に表面温度300℃に加熱したSS鋼板(50×100×1.5tmm)を3秒間浸漬し、厚さ約400μmの塗膜を形成して塗膜試験の試験片とした。
また、実施例6,7によって製造した微粉末を、静電塗装機(日本パーカーライジング製)を用い印加電圧−50kVで上記と同様の鋼板に4秒間吹付け後、350℃に加熱した電気炉中に2分間入れ膜厚50μm程度の塗膜を形成した。
これらの試験片についてJIS K5400に準じ基盤目密着性試験(テープ剥離法、2mm角、25目)及びデュポン式衝撃試験機(東洋精機、高さ1m、錘:300g、先端半径7mm)による衝撃試験及び鉛筆硬さの測定を行なった。これらの測定は室温23±2℃のもとで行なった。
結果は下表の通りである。
【0016】
【表3】
Figure 0003575996
【0017】
【表4】
Figure 0003575996
【0018】
絶縁破壊試験結果
実施例1、配合4の粉末を塗装した試験片についてJIS−C−2110に準拠して試験を行なった。
【0019】
【表5】
Figure 0003575996
【0020】
上記絶縁性能は、膜厚が同等の市販PET塗膜製品のほぼ2倍の数値である。
【0021】
【効果】
本発明は、回収ペットボトルを原料としてその金属密着性を向上させると共に常温下で機械粉砕して静電塗装用及び流動浸漬用樹脂粉末とすることができ、更に、形成塗膜が耐衝撃性や硬度を備えて強固であるから種々なコーティング材料として利用可能であり、PET製品の回収利用が促進される。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a coating powder capable of forming a high-strength coating film on a metal surface using a recovered PET product as a raw material, and a method for producing the same.
[0002]
PET (polyethylene terephthalate) resin is not used as a powder coating because it has low adhesion to metal surfaces, and even when a baked coating film is formed, crystallization of the coating film progresses and cracks easily occur or peel off. . In addition, PET resins and other thermoplastic resins generally have low heat resistance and are elastic, so if mechanical pulverization is performed at room temperature, thread-like or whisker-like projections with a length of 1 mm or more are generated in the crushed particles, and are treated as so-called powders. You can't do that. Generally, the particle size of the powder for electrostatic coating is required to be 5 to 150 μm (average particle size: 40 μm), and the powder for fluid immersion is required to be 60 to 350 μm (average particle size: 150 μm). Therefore, it is very difficult to produce fine powder (5 ̄350 μm) required for powder coatings and the like by ordinary mechanical pulverization, and at present it is performed by a freeze pulverization method using liquid nitrogen. In the case of freeze grinding, a large amount of liquid nitrogen is required, and the grinding machine and other peripheral devices also need to be specially designed to withstand low temperatures, so that the equipment becomes large and the grinding cost increases.
[0003]
[Problems to be solved by the invention]
The present invention provides a PET resin powder that can be applied to electrostatic coating or a fluid immersion method by using a recovered product of a food container such as a PET bottle, which has recently become a social problem, and provides a PET resin powder that can strongly adhere to a metal surface. It is an object of the present invention to provide a method capable of forming a coating film having high mechanical strength in close contact and mechanically pulverizing a powdering step without using expensive equipment.
[0004]
[Means for Solving the Problems]
The present invention relates to a product obtained by pulverizing a recovered PET product into a flake shape by mechanical pulverization or a product obtained by melting and kneading the product into a pellet by using a ruder or the like. Polybutylene terephthalate resin or polyethylene naphthalate resin is added as a modifier in an amount of 5 to 40 parts by weight, preferably about 20 parts by weight, and melt-kneaded with a rudder or the like to form a composite pellet, which is required at about 170 ° C. Heating is carried out for a time to bring the crystallinity to 35% or more and then mechanical pulverization at room temperature.
If the amount of the modifier is small, the degree of improvement in metal adhesion is low and the impact strength tends to be weak. Therefore, the amount of the modifier is adjusted according to the desired coating film performance.
The crystallinity (by DSC analysis) of the composition pellet containing the modifier is about 20 to 30%. When this is mechanically pulverized by a usual method, whiskers are formed on the surface of the pulverized particles to obtain powder coating. Will be unavailable.
However, when the crystallinity is increased to 35% or more, many particles without whiskers are obtained even when mechanically pulverized at room temperature, and the pulverization time is shortened in proportion to the crystallinity .
The product is heated at 166 ± 10 ° C., and actually 170 ° C. for several hours.
Examples 2, 3, 5, 6, and 7 described below are reference examples.
[0005]
Embodiment 1
Table 1 shows PET resin pellets (commercially available) and polybutylene terephthalate (PBT) resin (Ube Industries, Ltd., PET1000F01) and titanium dioxide (Ishihara Sangyo Co., Ltd., CR-97) regenerated from the collected PET bottles. The mixture is charged into a tumbler at a mixing ratio of, and a string-like material (strand) kneaded and extruded at 270 ° C. with a twin-screw extruder (PMT-32, IG Co., Ltd.) is drawn through water and pulled about 2 mm in diameter. After that, it was cut into a length of about 3 mm by a cutter to obtain respective pellets.
[0006]
[Table 1]
Figure 0003575996
[0007]
Each of the obtained pellets has a crystallinity of 30% or less, and when the pellets are pulverized at room temperature, whiskers of 1-2 mm are formed on the surface of the pulverized particles and cannot be handled as a powder coating.
By heating the pellets at 170 ° C. for 6 hours using a conical blender with an oil jacket, the crystallinity becomes 35% or more. After standing to cool to room temperature, a high-speed spiral mill (SP-420, manufactured by Seishin Enterprise Co., Ltd., type SP-420, rated output 22 kW) with a rotating blade interval of 0.4 mm and a rotation speed of 5,000 rpm is processed at a processing rate of 30 kg / h. The mixture was supplied by a feeder and pulverized. Further, the pulverized product was removed using a classifier equipped with a 300 μm screen (Hibolter NR-450S, Shin-Tokyo Machinery Co., Ltd.) to remove coarse powder of 300 μm or more. Closed circuit pulverization returning to the high speed spiral mill was performed for 1 hour. The average particle diameter of the obtained powder was about 180 μm (particle diameter range: 45 to 355 μm). Table 2 shows the crystallinity of each composition when the heat treatment time was 17 hours, and the load current of the pulverizer also decreased in proportion to the crystallinity. For the measurement of the particle size distribution, a sieving measuring device (PRS-85, manufactured by Seishin Enterprise Co., Ltd.) was used.
[0008]
[Table 2]
Figure 0003575996
[0009]
Embodiment 2
80 kg of PET resin pellets, 20 kg of polycarbonate resin (Teijin, Panlite, K-1300) and 2.63 kg of titanium dioxide (Ishihara Sangyo Co., Ltd., CR-97) reclaimed from the collected PET bottle are put into a tumbler. The mixture was mixed, and thereafter kneaded with the same apparatus and conditions as in Example 1 to obtain coarse pellets. The heating time required for the crystallinity of the pellet to be 35% or more required 8 hours. After operating the pulverizer for 1 hour, a powder having an average particle size of 190 μm (particle size range: 53 ̄425 μm) was obtained. When the same coarse pellets are heat-treated at 170 ° C. for 17 hours, the crystallinity becomes 41%, and by the heat treatment for 40 hours, the crystallinity becomes 45%, and the average particle diameter is 180 μm (particle diameter range: 53 ̄425 μm). Was obtained.
[0010]
Embodiment 3
100 kg of PET resin pellets, 5 kg of ethylene acrylic acid copolymer resin (Dow Chemical, Primacol 3460) and 2.63 kg of titanium dioxide (Ishihara Sangyo Co., Ltd., CR-97) are put into a tumbler from recycled PET bottles. Then, kneading and pulverization were carried out in the same apparatus as in Example 1. The heating time until the degree of crystallinity was 35% was 8.5 hours, but heating was continued for 17 hours, and the degree of crystallinity was 39%. When the pellets were pulverized for 1 hour, a powder having an average particle diameter of 200 μm (particle diameter range: 53 ̄425 μm) was obtained.
[0011]
Embodiment 4
80 kg of PET resin pellets, 20 kg of polyethylene naphthalate resin (Teijin), and 2.63 kg of titanium dioxide (Ishihara Sangyo Co., Ltd., CR-97) reclaimed from the collected PET bottle are put into a tumbler and mixed. Kneading and pulverization were performed in the same apparatus as in Example 1. The heating time up to 35% at 170 ° C. was 6 hours, but the heating was continued for another 10 hours and the crystallinity was 52%, and the mixture was pulverized for 1 hour. The average particle size was 190 μm (particle size range: 45 ̄425 μm). Was obtained.
[0012]
Embodiment 5
80 kg of PET resin pellets, 20 kg of maleated polyethylene (Nakada Coating Co., Ltd.) and 2.63 kg of titanium dioxide (Ishihara Sangyo Co., Ltd., CR-97) reclaimed from the collected PET bottle are put into a tumbler and mixed. Thereafter, kneading and pulverization were performed under the same conditions as in Example 1. The degree of crystallinity by heat treatment at 170 ° C. for 10 hours was about 36%, and powder having an average particle size of 210 μm (particle size range: 75 ̄425 μm) was obtained.
The particle size of the powder according to each of the above-described embodiments is a case where mechanical pulverization is continued for 1 hour, and it is natural that the ratio of small-diameter particles increases by lengthening the pulverization time. Therefore, in actual production, after crushing for a crushing time according to the use, the particles are classified into a predetermined particle range.
[0013]
Embodiment 6
2 kg of a mixture pellet of the PET resin, polybutylene terephthalate resin and titanium dioxide prepared in Example 1 was charged into a jacketed stirring dissolution tank containing 40 liters of dimethylacetamide, and heated to 172 ° C. to dissolve. After cooling to 60 ° C. or less to precipitate particles by water cooling, the solution is filtered by a filter press to separate the solvent, and the filter cake is put into a stirring vacuum dryer and dried at 12 rpm, 70 ° C. and a degree of vacuum of 10 Torr. A powder was obtained. The yield was 95% by weight. Further, this powder was supplied to a jet mill (FS-4, Seishin Enterprise Co., Ltd.) at a processing rate of 1 kg / h to crush the aggregates, and the fine particles having an average particle size of 45 μm (particle size range: 10 ̄128 μm) were obtained. A powder was obtained. The particle size distribution is measured using a laser diffraction / scattering type particle size distribution analyzer (Seishin K.K., LMS-30), using a 0.1% aqueous solution of sodium dodecyl sulfate as a dispersion medium, and further performing ultrasonic dispersion. Was.
[0014]
Embodiment 7
2 kg of the mixture pellets of Example 2 were charged into a jacketed stirring dissolution tank containing 40 liters of dimethylacetamide, and heated to 170 ° C. to dissolve. After cooling to 60 ° C. or less to precipitate particles by water cooling, the solution is filtered by a filter press to separate the solvent, and the filter cake is put into a stirring vacuum dryer and dried at 12 rpm, 70 ° C. and a degree of vacuum of 10 Torr. A powder was obtained. The yield was 95% by weight. Further, this powder was supplied to a jet mill (FS-4, Seishin Enterprise Co., Ltd.) at a processing rate of 1 kg / h to disintegrate the aggregates to obtain a fine powder having an average particle diameter of 40 μm (particle diameter range: 10 ̄128 μm). Got. The particle size distribution was measured by the same method as in Example 6.
[0015]
(Coating film test)
Example 1 The powder produced according to # 5 was classified with a 300 mesh sieve, and each was placed in a fluidized immersion tank, into which an SS steel plate (50 × 100 × 1.5 tmm) heated to a surface temperature of 300 ° C. was immersed for 3 seconds. Then, a coating film having a thickness of about 400 μm was formed and used as a test piece for a coating film test.
An electric furnace heated to 350 ° C. after spraying the fine powder produced in Examples 6 and 7 onto the same steel plate as above at an applied voltage of −50 kV for 4 seconds using an electrostatic coating machine (manufactured by Nippon Parker Rising). The coating was put in the container for 2 minutes to form a coating film having a thickness of about 50 μm.
For these test pieces, a substrate adhesion test (tape peeling method, 2 mm square, 25 stitches) and an impact test using a DuPont impact tester (Toyo Seiki, height 1 m, weight: 300 g, tip radius 7 mm) according to JIS K5400 And the pencil hardness was measured. These measurements were performed at room temperature of 23 ± 2 ° C.
The results are shown in the table below.
[0016]
[Table 3]
Figure 0003575996
[0017]
[Table 4]
Figure 0003575996
[0018]
Insulation Breakdown Test Results Test pieces coated with the powder of Example 1 and Formulation 4 were tested according to JIS-C-2110.
[0019]
[Table 5]
Figure 0003575996
[0020]
The insulation performance is almost twice as large as that of a commercially available PET film product having the same film thickness.
[0021]
【effect】
The present invention can improve the metal adhesion of a recovered PET bottle as a raw material, and can be mechanically pulverized at room temperature to obtain a resin powder for electrostatic coating and fluid immersion . Since it is strong with high hardness, it can be used as various coating materials , and the recovery and utilization of PET products is promoted.

Claims (2)

PET樹脂成型品の回収物から得た細片100重量部とポリブチレンテレフタレート樹脂又はポリエチレンナフタレート樹脂5〜40重量部が混合溶融された組成物がペレットとされた後、加熱処理によって結晶化度を35%以上とされて常温機械粉砕され、粒径を350μm以下とされてなる塗装用粉末。After a composition obtained by mixing and melting 100 parts by weight of a strip obtained from a collected PET resin product and 5 to 40 parts by weight of a polybutylene terephthalate resin or a polyethylene naphthalate resin is formed into pellets , the crystallinity is determined by heat treatment. Is powdered for coating at room temperature and mechanically pulverized to have a particle size of 350 μm or less. PET樹脂成型品の回収物から得た細片100重量部とポリブチレンテレフタレート樹脂又はポリエチレンナフタレート樹脂5〜40重量部を混合溶融してなる組成物をペレットとした後、170℃以上に加熱処理して結晶化度を35%以上としてから常温機械粉砕することを特徴とする塗装用粉末の製造方法。After pelletizing a composition obtained by mixing and melting 100 parts by weight of a strip obtained from a collected PET resin product and 5 to 40 parts by weight of a polybutylene terephthalate resin or a polyethylene naphthalate resin , heat treatment is performed at 170 ° C. or more. A process for mechanically pulverizing at room temperature after reducing the crystallinity to 35% or more.
JP22050298A 1998-08-04 1998-08-04 Powder coating and manufacturing method using PET resin product as raw material Expired - Fee Related JP3575996B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP22050298A JP3575996B2 (en) 1998-08-04 1998-08-04 Powder coating and manufacturing method using PET resin product as raw material
KR10-1998-0043092A KR100370702B1 (en) 1998-08-04 1998-10-12 Powder Coating Prepared From PET Resin Products As Raw Material And Process For the Preparation Thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22050298A JP3575996B2 (en) 1998-08-04 1998-08-04 Powder coating and manufacturing method using PET resin product as raw material

Publications (2)

Publication Number Publication Date
JP2000053892A JP2000053892A (en) 2000-02-22
JP3575996B2 true JP3575996B2 (en) 2004-10-13

Family

ID=16752050

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22050298A Expired - Fee Related JP3575996B2 (en) 1998-08-04 1998-08-04 Powder coating and manufacturing method using PET resin product as raw material

Country Status (2)

Country Link
JP (1) JP3575996B2 (en)
KR (1) KR100370702B1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3828923B2 (en) 2003-08-25 2006-10-04 桜宮化学株式会社 Metal coating and metal container coated with the coating
JP4896413B2 (en) * 2005-02-22 2012-03-14 旭化成ケミカルズ株式会社 Fine powder made of polytrimethylene terephthalate composition
JP2014112480A (en) * 2012-12-05 2014-06-19 Dic Corp Separator for nonaqueous electrolyte battery
KR101964361B1 (en) 2019-01-02 2019-04-01 주식회사 그래핀 코어 Manufacturing method of oriented polymer paint composition using wasted polyethylene terephthalate, and paint composition manufactured by the method
KR102054859B1 (en) 2019-09-17 2019-12-13 주식회사 그래핀 코어 Manufacturing apparatus for wasted polyethylene terephthalate microparticles, manufacturing method of paint composition using thereof, and paint composition manufactured by the method
CN113088108A (en) * 2021-03-31 2021-07-09 广西福宝信科技有限公司 Preparation method of modified coal ash and application of modified coal ash in metal powder coating

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR950014916B1 (en) * 1992-07-02 1995-12-18 김태완 Method for recycling waste plastic
KR19980015220A (en) * 1996-08-20 1998-05-25 전성원 Recycling method and recycled material of PET needle punch carpet

Also Published As

Publication number Publication date
JP2000053892A (en) 2000-02-22
KR20000015752A (en) 2000-03-15
KR100370702B1 (en) 2003-05-17

Similar Documents

Publication Publication Date Title
US4220511A (en) Treatment of sintered poly-tetrafluoroethylene with irradiation and heat to produce a grindable material
JP5093834B2 (en) Biodegradable resin powder and method for producing the same
JP5290144B2 (en) Method for producing silver-based powder composite for electrical contact materials and powder composite produced thereby
JPH08503721A (en) Manufacturing method of coating material
JPS60163935A (en) Spherical powder of ultra-high-molecular-weight polyolefin
JP3575996B2 (en) Powder coating and manufacturing method using PET resin product as raw material
US3154530A (en) Preparation of polyethylene powders
JPH04202329A (en) Production of tetrafluoroethylene copolymer powder
Chatterjee et al. Novel synthesis of crystalline polystyrene nanoparticles (nPS) by monomer atomization in microemulsion and their effect on thermal, rheological, and mechanical properties of polypropylene (PP)
CN110769663B (en) Recyclable liquid metal slurry for electromagnetic shielding and preparation method and application thereof
CN1205290C (en) Powder paint contg. polyethylene glycol terephthalate, and method for preparing same
JPS591415B2 (en) Polyester manufacturing method
JPS62199705A (en) Production of fine-grained copper powder
EP0990684B1 (en) Powder coating prepared from pet resin products as raw material and process for the preparation thereof
JP5358132B2 (en) Method for producing composite fine particles
JPS63139921A (en) Production of powder
JPH10287844A (en) Powdered paint from polyethylene terephthalate resin product
KR101709270B1 (en) Apparatus and method for processing wasted powder coating
JP3159947B2 (en) Room temperature pulverization method for PET resin
JP2003002979A (en) Method for producing of fluorine polymer powder
JPH0627131B2 (en) Method for producing chlorinated polyolefin
US3277186A (en) Hydrogenated bisphenol a
JP2007332365A (en) Fabrication process of polyester fine particles
JPH02182809A (en) Production of fine granular copper powder
JPH0762075B2 (en) Method for producing composite powder containing simple substance of saturated polyester resin and powder of other substances

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040514

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040706

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees