JP3574553B2 - High-gloss, high-color mixed yarn - Google Patents
High-gloss, high-color mixed yarn Download PDFInfo
- Publication number
- JP3574553B2 JP3574553B2 JP30407997A JP30407997A JP3574553B2 JP 3574553 B2 JP3574553 B2 JP 3574553B2 JP 30407997 A JP30407997 A JP 30407997A JP 30407997 A JP30407997 A JP 30407997A JP 3574553 B2 JP3574553 B2 JP 3574553B2
- Authority
- JP
- Japan
- Prior art keywords
- section
- fiber
- yarn
- flat cross
- cross
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Artificial Filaments (AREA)
- Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、衣料用に適した糸条に関し、具体的には、シルクの様な高級感のある光沢感と扁平極細繊維によるソフトドライな触感を持ちつつ、極細繊維であるにも拘わらず良好な発色性を有する高光沢・高発色性に優れた混繊糸及びその製造方法に関する。
【0002】
【従来の技術】
従来より、光沢感に優れた糸条として異型断面繊維が知られている。中でも、扁平断面繊維は反射面の大きさから非常に光沢感が強い。しかし、扁平断面繊維の光沢感は、ギラギラと光るものであり、高級感に欠ける。また、シルク調の光沢感を持つ素材として三角断面繊維が良く知られているが、シルクベルベット調の高級感を持つに至っていない。
【0003】
異型断面繊維、特に、扁平断面繊維は、そのエッジを持つ構造からドライタッチである。
しかしそのドライタッチは、粗硬感があり、繊細さに欠ける。ソフトでありつつドライタッチとするためには、単繊維繊度の細デニール化が必要であるが、極細繊維は発色性に劣ることも良く知られている。扁平断面の場合、同じ単繊維繊度の丸断面繊維に比べ、厚みが薄くなるため、一層発色性に劣る。
【0004】
【課題を解決するための手法】
本発明者らは、シルクベルベット調の優雅な光沢感とソフトドライなタッチであり、更に良好な発色性を有する糸条を鋭意検討した結果、本発明に到達した。すなわち、本発明は、繊維断面の長径をlとし短径をdとしたときに(l/d)で表わされる断面扁平度が3〜10、単繊維繊度が0.2〜0.8デニールである扁平断面繊維からなる糸条を側糸として含む混繊糸であって、該混繊糸中には扁平断面繊維の3本以上が扁平断面の長径方向に沿って並列した構造と扁平断面単繊維が並列していない構造とが共存し、並列構造に寄与している扁平断面繊維が、混繊糸中に含まれるすべての扁平断面繊維の50%以上を占めることを特徴とする高光沢・高発色性混繊糸である。
【0005】
【発明の実施の形態】
シルクベルベット調の優雅な光沢を持ちつつソフトドライタッチであるためには、極細扁平断面形状が必要である。ここで、重要なポイントは、扁平断面単繊維の3本以上が扁平断面に沿って並列する構造が特定割合以上混繊糸中に存在することである。この構造を図1に示す。図2は対照例として扁平断面極細繊維が比較的ランダムな方向を向いているものである。
なお、扁平断面単繊維の3本以上が偏平断面に沿って並列する構造とは、扁平断面単繊維と隣に存在する扁平断面繊維の位置が長径の1/3以上長径方向にずれていないこと及び最も離れている部分の距離が短径の2倍以上離れていない構造を意味するものである。図3−1は本発明でいう並列構造に相当するものであり、図3−2は並列構造となっていないことを表わす図である。
また、並列構造に寄与する扁平断面単繊維の構成比率は、糸条の電子顕微鏡写真を撮影し、上記の定義に従って各構成単糸数を全構成単糸数との比として求めることができる。
本発明の混繊糸には、隣合う扁平断面繊維同士が該繊維断面の長径方向に沿って並列し、かかる構造を呈する扁平断面繊維群が、混繊糸の中心から外方へ向かって立ち上がっているような構造を含む。このため、混繊糸に入射した光が隣接する扁平断面単繊維間で反射、内部吸収を繰り返し、肉眼に入る正反射光が減少し、視覚上、混繊糸に濃く艶のある部分が存在する。また、本発明の混繊糸は、扁平断面繊維が並列していない構造も含むため、肉眼に直接入る正反射光も存在する。そのため、布帛とした場合、濃く艶のある部分と光沢部分が混在し、シルクベルベット調の高級感が得られるのである。
【0006】
このシルクベルベット調の外観を得るためには、扁平断面繊維の3本以上が扁平断面の長径方向にほぼ沿って並列する構造が必要である。並列する扁平断面単繊維が2本では、単繊維間の反射、内部吸収効果が得られないので好ましくない。また、この3本以上が並列する構造は、混繊糸を構成する全扁平断面繊維の50%以上を占めていなければならない。50%未満では、単繊維間の反射、内部吸収効果が得られないので好ましくない。より好ましくは、65%以上85%以下である。
【0007】
扁平断面繊維の断面扁平度l/dは、その光沢感から3〜10が必要である。l/dが3未満では反射面が小さく、ベルベット効果が得られないため好ましくない。また、l/dが10を超えると、扁平繊維が折れ曲がり易く、上記のような並列構造が得られ難く、ギラギラした光沢となるため好ましくない。好ましくは、l/d 4〜6の範囲が良い。
【0008】
扁平断面繊維は、そのエッジ構造から非常にドライ感が強い。シルクベルベット調外観と粗硬感のあるドライタッチでは、布帛としてアンバランスである。従って、極細化が必要である。ベルベット調外観に合うソフトドライタッチを得るためには、0.2〜0.8デニールが必要である。該繊維の単繊維繊度が0.2デニール未満では、ぬめり感が出てドライ感が減少する、また、単繊維繊度が細すぎ発色性に劣るため好ましくない。単繊維繊度が0.8デニールを超えると、充分なソフトタッチが得られないため好ましくない。より好ましくは、0.25〜0.6デニールである。
【0009】
また、本発明の混繊糸において、扁平断面極細繊維の一部が平行状態で立ち上がった構造で側糸として配置させるためには糸長差が必要となる。糸長差を持つ素材として構造加工糸タイプと構造延伸糸タイプがあるが、本発明の混繊糸は、構造延伸糸の一種、異収縮混繊糸である必要がある。仮撚を施す構造加工糸タイプは、断面変形が大きく良好な扁平断面が得られないためである。
異収縮混繊糸として充分な糸長差を確保するためには、芯糸に用いるポリエステルフィラメント糸条として沸水収縮率12%以上の高収縮ポリエステルフィラメントが必要である。より好ましくは20%以上、35%以下が好ましい。芯糸の沸水収縮率が大きい場合、糸長差が拡大し、芯糸の収縮によって側糸たる扁平断面極細繊維糸条が、極度に曲げられ扁平断面極細繊維の並列構造が崩れるためベルベット調効果が得られないのである。
【0010】
側糸に用いる扁平断面繊維の沸水収縮率は4%以下である必要がある。側糸の沸水収縮率が4%を超える場合、扁平断面繊維同士が密着し団子状態となる。この状態では、一種の丸断面繊維の様になるため扁平単繊維間での光の反射、内部吸収効果が減少し、ベルベット調効果が得られないため好ましくない。
また、扁平断面繊維の沸水収縮率は、−3%以下、(すなわち、自発伸長率 3%以上)も好ましくない。すなわち、自発伸長する過程で扁平断面の平行状態が崩れランダム化するためである。従って、側糸たる扁平断面極細繊維の沸水収縮率は−3%〜4%、より好ましくは、−1%〜2%がよい。
【0011】
次に、本発明の混繊糸の製造方法について述べる。
まず、重要な点は、扁平断面極細繊維が、溶解割繊タイプの複合繊維から製造方法される点である。簡便には、極細扁平断面糸を紡糸し側糸に使用すれば良いと考えられるが、この手法では、極細扁平断面単繊維が3本以上並列する構造は得られ難い。すなわち、紡糸−延伸の製糸工程及びエアー加工工程での張力状態、特に、エアー加工工程は糸条のマイグレーションを行なう工程であるため、扁平断面極細繊維がランダムな方向を向き並列しないのである。従って、本発明の混繊糸の構造は、高収縮糸と極細扁平断面糸からは得られないのである。
【0012】
本発明の糸条構造は、このように、溶解割繊タイプの複合繊維からしか得られないが、この複合繊維についても、かなりの工夫が必要である。
まず、分割割繊処理により極細扁平断面糸を与える複合繊維として、ナイロン/ポリエステルの積層構造複合繊維が良く知られている。このナイロン/ポリエステルの積層構造繊維の欠点は、染色堅牢度にあることも良く知られている。すなわち、分散染料でポリエステル側を染めた場合、ナイロンが分散染料で汚染され、濃色での堅牢度が著しく劣るのである。従って、シルクベルベット調の濃い色の表現できないため、本発明の目的から外れる。
また、このナイロン/ポリエステルの積層構造繊維は分割割繊後、単繊維同士が密着する形態を取り、並列というより団子状態となり、シルクベルベット調の効果が得られ難いため好ましくない。
【0013】
以上の観点から、分割割繊処理後において混繊糸中で扁平断面極細繊維同士が密着することなく並列する形態を得るためには、溶解分割タイプの複合繊維を用いて混繊糸を製造することが好ましい。この場合、アルカリ易溶解性ポリマー(a)と該ポリマー(a)よりアルカリ溶解速度の遅いポリマー(b)とからなる複合繊維を使用することが必要である。
すなわち、上記のポリマー(a)、(b)を繊維断面において交互に複数層に貼り合わされた複合構造として繊維化を行ない、得られた複合繊維のポリマー(a)をすべて溶解除去しポリマー(b)をそのままの状態で残すことにより、上述の並列構造を混繊糸中に形成することが可能となるのである。
この場合、ポリマー(a)の溶解速度は、ポリマー(b)のそれの10倍以上、より好ましくは30倍〜300倍である。溶解速度が10倍未満の場合、アルカリ処理時にポリマー(a)のみでなく、ポリマー(b)もかなり溶解するため好ましくない。また、溶解速度が300倍を超える場合、風合い出し処理を含めた染色加工のコントロールが難しいため好ましくない。
【0014】
ポリマー(b)としては、通常のポリエチレンテレフタレートやポリブチレンテレフタレートなどのホモポリエステルが好ましく使用され、ポリマー(a)としては、アルカリ溶解速度を高めるために、例えば、5ナトリウムスルホイソフタル酸を1.5乃至5モル%程度共重合したポリエチレンテレフタレートや、これらにさらにポリエチレングリコールを1乃至10重量%共重合するかまたは混合することによって得られる変性ポリエステルが好ましく使用される。
【0015】
このポリマー(a)及びポリマー(b)の構成重量比率は、1/2〜1/4でなければならない。重量比率が1/2を超える場合、ポリマー(a)を溶解除去後のポリマー(b)間の隙間が大きくなる。そのため、染色加工時に極細扁平断面単繊維が移動しやすくなり、並列しなくなる比率が大きくなり、シルクベルベット調効果が減少するため好ましくない。また、重量比率が1/4未満の場合、ポリマー(a)を溶解除去後のポリマー(b)間の隙間が小さくなる。そのため、極細扁平断面単繊維同士が密着しやすく、あたかも1本の繊維の様な団子状態となるため、シルクベルベット効果が減少し好ましくない。
【0016】
アルカリ溶解分割処理前の複合繊維の断面形状は、丸断面でも扁平断面でもどちらでも良い。好ましくは、L/Dが1.5〜3の扁平断面であれば、溶解分割処理後において一層大きなシルクベルベット調の効果が得られる。これは、同一単繊維繊度であっても、丸断面複合繊維をアルカリ処理して得られる扁平断面極細繊維と扁平断面複合繊維をアルカリ処理して得られる扁平断面極細繊維とを比較すると、扁平断面複合繊維をアルカリ処理して得られる扁平断面極細繊維の方がl/dが小さく、肉厚の扁平繊維となるため、みかけの発色性が向上すること及び、例え極細扁平断面単糸同士が密着する形態となっても1本の丸断面繊維の様な団子状態になり難いためと推定されるが、詳細は不明である。結果として、扁平断面複合繊維をアルカリ処理して得られる扁平断面極細繊維を用いたものの方が、濃色の表現が可能となり、よりシルクベルベット調効果が大きい。
【0017】
なお、この複合繊維におけるポリマー(a)とポリマー(b)との複合形態は、両ポリマーが交互に5層以上に貼り合わされた積層構造であることが必要である。本発明の混繊糸において極細扁平断面単繊維が3本以上並列に並ぶ構造は、ポリマー(a)層を溶解させて残留したポリマー(b)が層状で、並列構造を形成されるのであり、そのためにはポリマー(b)層が3層以上なければならない。積層構造が5層とは、ポリマー(a)が2層、ポリマー(b)が3層の構造であり、本発明の混繊糸の糸条構造を作る最低の積層構造である。一方、積層構造が15層以上の場合、ポリマー(a)層が非常に薄くなり、アルカリ分割処理の安定性、分割後の積層構造の崩れ等の経筋が発生しやすい等の欠点が多くなるため、あまり好ましくない。
【0018】
上述のような複合繊維は、ポリマー(a)とポリマー(b)とを、所定の貼り合わせ構造となるように複合溶融紡糸し、破断伸度(DE)70〜180%の高配向性フィラメントとし、130〜190℃、25%以下の過剰供給率で弛緩熱処理を行い、沸水収縮率を4%以下とすることができる。また、弛緩熱処理に先立って、必要に応じ、延伸温度 100℃以上で〔(DE/100)+1〕×0.6〜0.75倍の延伸倍率で延伸処理を行なう。
延伸処理を行なうか、行なわないかは、破断伸度100%程度前後で変わる。すなわち、未延伸糸の状態のまま、弛緩熱処理を行なうと配向結晶化が全く進まず、実用強度が不足するため、破断伸度によっては延伸処理が必要となる。その場合、延伸温度が100℃未満では、シックアンドシン構造が発生しやすくなるため好ましくない。また、延伸倍率が、〔(DE/100)+1〕×0.6倍未満でもシックアンドシン構造が発生するため好ましくない。延伸倍率が〔(DE/100)+1〕×0.75倍を超えると、配向が進み過ぎ、弛緩処理を施しても濃色効果が弱いため好ましくない。従って、複合繊維の配向結晶化を進めないことがポイントとなる。
【0019】
破断伸度が70%未満の場合、紡糸工程での配向化が進み過ぎ、弛緩処理を施しても濃色化効果が得られないため、好ましくない。また、破断伸度が180%を超える場合、数式〔1〕の延伸倍率では、シックアンドシン糸となる。このシックアンドシン糸の未延伸部は配向結晶化が進んでいないため非常にアルカリ減量速度が速く、アルカリ処理での穴開き欠点となるため好ましくない。より好ましくは、破断伸度90〜120%である。
【0020】
弛緩熱処理は、ヒーター温度130〜190℃、25%以下の過剰供給率で行なわなければならない。ヒーター温度が130℃未満の場合、沸水収縮率が4%以下とならないため好ましくない。また、ヒーター温度が190℃を超える場合、結晶化が進みすぎ、濃色効果が弱くなるため好ましくない。また、過剰供給率が25%以上では、シックアンドシン構造が発生するため好ましくない。より好ましくは、ヒーター温度140〜170℃、過剰供給率3〜15%である。
【0021】
このようにして得られた複合繊維は、高収縮性フィラメント糸条Aと空気絡合処理を施し複合糸条とされる。これは、異収縮混繊糸としてふくらみ感を得るために必要である。なお、この場合の空気絡合処理は、染色加工時の異収縮効果の発現を大きくするため、交絡数30〜80個/mとすることが望ましい。
【0022】
複合糸条は、アルカリ処理に供されて、アルカリ易溶解性ポリマー(a)が溶解除去され、本発明で目的とする高光沢・高発色性の混繊糸が得られる。このアルカリ処理は、複合糸条の状態で行なっても良いが、製編織後の染色加工時に行なう方が、布帛の状態において上記した扁平断面繊維の並列構造が形成・維持され易いので望ましい。
【0023】
なお、アルカリ処理は、苛性ソーダを使用し、20g/l以上の濃度、減量促進剤を使用せず、1段で行なうことが必要である。すなわち、均一、安定に溶解除去を行なう事を目的に、低濃度のアルカリ液で一度処理した後、高濃度のアルカリ液で処理する手法があるが、この手法では、理由は不明であるが、本発明で目的とする光沢感が得られないのである。
【0024】
【実施例】
以下、本発明を実施例で説明するが、本発明は実施例に限定されるものではない。
【0025】
実施例1
常法により得られたポリエチレンテレフタレートポリマー(b)と5ナトリウムスルホイソフタル酸を2.5モル%共重合したポリエチレンテレフタレートにポリエチレングリコールを6重量%配合した、(b)よりアルカリ溶解速度が約40倍速いポリマー(a)とを重量比率(a)/(b)=1/2、紡糸速度 3700m/minの速度で図4に示すようなL/D 2.3の11層積層型扁平断面形状で複合紡糸し、破断伸度 98%の96デニール/24フィラメントの高配向未延伸糸Xを得た。この糸条Xをホットピン温度120℃、1.386倍で延伸後、ヒーター温度 165℃、過剰供給率 8%で弛緩熱処理を施し、沸水収縮率1.3%とした。その後、かかる低収縮複合繊維糸条と沸水収縮率 21%の35デニール/6フィラメント ポリエステルフィラメント糸条とを交絡数67個/mで空気絡合処理を行い、複合糸条W(110デニール/30フィラメント)を得た。
ついで、この複合糸条Wを双糸で使用し、700t/mの撚りを掛け、5枚サテンの組織で製織後、染色加工工程でアルカリ処理を施し、濃色に染色した。アルカリ処理は、プレセット後、苛性ソーダを使用し、40g/lの濃度、100℃で行なった。
得られた織物は、シルクベルベット調の光沢と良好な発色性、豊かなふくらみ感とソフトドライなタッチであった。
この糸条に含まれる扁平断面極細繊維の単繊維繊度は 平均で約0.35デニールであり、断面扁平度は約3から約6であった。また顕微鏡で糸条の断面観察を行なったところ、扁平断面単繊維の3本以上が扁平断面に沿って並列する構造が扁平断面糸条中68%含有する構造であった。
【図面の簡単な説明】
【図1】本発明の混繊糸における扁平繊維の並列構造を表わした糸条断面図である。
【図2】本発明外の混繊糸の断面図である。
【図3】混繊糸中の扁平断面繊維同士の並列状態を説明するための図である。
【図4】実施例で使用した複合繊維の断面図である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a yarn suitable for clothing, specifically, having a high-grade silky silky feel and a soft dry tactile feel of flat ultrafine fibers, and despite being a fine fiber, good. TECHNICAL FIELD The present invention relates to a mixed fiber having excellent gloss and high color developability having excellent color developability and a method for producing the same.
[0002]
[Prior art]
Conventionally, irregular cross-section fibers have been known as yarns excellent in glossiness. Above all, the flat cross-section fiber has a very strong glossiness due to the size of the reflection surface. However, the glossiness of the flat cross-section fiber is shining and lacks a sense of quality. Also, a fiber having a triangular cross section is well known as a material having a silky luster, but it does not have a silky velvet-like luxury.
[0003]
The irregular cross-section fiber, particularly the flat cross-section fiber, has a dry touch due to the structure having the edge.
However, the dry touch is rough and lacks in delicacy. In order to obtain a dry touch while being soft, it is necessary to reduce the denier of the single fiber fineness. However, it is well known that ultrafine fibers are inferior in color development. In the case of a flat cross section, since the thickness is smaller than that of a round cross section fiber having the same single fiber fineness, the coloring property is further inferior.
[0004]
[Method to solve the problem]
Means for Solving the Problems The present inventors have intensively studied a yarn having silky velvet-like elegant glossiness and soft dry touch, and further excellent color development, and as a result, have reached the present invention. That is, in the present invention, when the major axis of the fiber cross section is 1 and the minor axis is d, the cross section flatness represented by (l / d) is 3 to 10, and the single fiber fineness is 0.2 to 0.8 denier. A mixed fiber comprising a yarn having a flat cross section as a side yarn, wherein the mixed fiber has a structure in which three or more flat cross fibers are arranged in parallel along the major axis direction of the flat cross section. A high-gloss fabric characterized by the fact that the flat cross-section fibers contributing to the parallel structure coexist with the structure in which the fibers are not arranged in parallel, and occupy 50% or more of all the flat cross-section fibers contained in the mixed yarn. It is a highly colored mixed yarn.
[0005]
BEST MODE FOR CARRYING OUT THE INVENTION
In order to have a soft silky touch while having a silky velvet-like elegant luster, an extremely thin flat cross-sectional shape is required. Here, an important point is that a structure in which three or more of the flat cross-section single fibers are arranged in parallel along the flat cross section exists in the mixed fiber at a specific ratio or more. This structure is shown in FIG. FIG. 2 shows a comparative example in which flat cross-section ultrafine fibers are oriented in a relatively random direction.
The structure in which three or more flat cross-section single fibers are arranged in parallel along the flat cross-section means that the position of the flat cross-section single fiber and the adjacent flat cross-section fiber are not displaced in the long-axis direction by 1/3 or more of the long diameter. And the distance of the most distant portion is not more than twice the minor axis. FIG. 3-1 corresponds to the parallel structure referred to in the present invention, and FIG. 3-2 is a diagram showing that the structure is not parallel.
Further, the composition ratio of the flat cross-section single fibers contributing to the parallel structure can be obtained by taking an electron micrograph of the yarn and determining the number of each constituent single yarn as the ratio with the total number of the single yarns according to the above definition.
In the mixed fiber of the present invention, adjacent flat cross-section fibers are arranged in parallel along the major axis direction of the fiber cross section, and a flat cross-section fiber group having such a structure rises outward from the center of the mixed fiber. Including such structures. For this reason, the light incident on the mixed yarn repeats reflection and internal absorption between adjacent flat cross-section single fibers, reducing the amount of specularly reflected light entering the naked eye, and there is a thick, glossy portion in the mixed yarn visually. I do. Moreover, since the mixed fiber of the present invention also includes a structure in which the flat cross-section fibers are not arranged side by side, there is also specularly reflected light that directly enters the naked eye. Therefore, in the case of a fabric, a dark glossy portion and a glossy portion are mixed, and a silky velvet-like luxury is obtained.
[0006]
In order to obtain the silk velvet-like appearance, a structure is required in which three or more flat cross-section fibers are arranged in parallel along the major axis direction of the flat cross section. It is not preferable that two flat cross-section single fibers are arranged in parallel, since the effects of reflection and internal absorption between the single fibers cannot be obtained. Further, the structure in which three or more fibers are arranged in parallel must occupy 50% or more of the total flat cross-section fibers constituting the mixed fiber. If it is less than 50%, it is not preferable because the effects of reflection and internal absorption between single fibers cannot be obtained. More preferably, it is 65% or more and 85% or less.
[0007]
The cross-sectional flatness l / d of the flat cross-section fiber needs to be 3 to 10 in view of its glossiness. When 1 / d is less than 3, the reflection surface is small and the velvet effect cannot be obtained, which is not preferable. On the other hand, if 1 / d is more than 10, the flat fibers are easily bent, and it is difficult to obtain the above-mentioned parallel structure, resulting in glaring, which is not preferable. Preferably, the range of 1 / d 4 to 6 is good.
[0008]
The flat cross section fiber has a very strong dry feeling due to its edge structure. With a silk velvet appearance and a dry touch with a rough and hard feel, the fabric is unbalanced. Therefore, it is necessary to make it extremely fine. To obtain a soft dry touch that matches the velvet appearance, 0.2 to 0.8 denier is required. If the single fiber fineness of the fiber is less than 0.2 denier, a dry feeling is reduced due to a slimy feeling, and the single fiber fineness is too thin and poor in color development. If the single fiber fineness exceeds 0.8 denier, a sufficient soft touch cannot be obtained, which is not preferable. More preferably, it is 0.25 to 0.6 denier.
[0009]
Further, in the mixed fiber of the present invention, a difference in yarn length is required in order to arrange as a side yarn in a structure in which a part of the flat cross section ultrafine fiber rises in a parallel state. There are a structurally processed yarn type and a structurally drawn yarn type as a material having a yarn length difference, and the mixed fiber of the present invention needs to be a kind of structurally drawn yarn, a different shrinkage mixed fiber. This is because the structurally processed yarn type in which false twisting is performed has a large cross-sectional deformation and cannot obtain a good flat cross section.
In order to ensure a sufficient difference in yarn length as a different shrinkage mixed fiber yarn, a high shrinkage polyester filament having a boiling water shrinkage ratio of 12% or more is required as a polyester filament yarn used for the core yarn. More preferably, it is 20% or more and 35% or less. When the boiling water shrinkage of the core yarn is large, the difference in yarn length increases, and the shrinkage of the core yarn causes the flat cross section ultrafine fiber yarn to be extremely bent and the parallel structure of the flat cross section ultrafine fiber collapses, resulting in a velvet effect. Cannot be obtained.
[0010]
The boiling water shrinkage of the flat section fiber used for the side yarn must be 4% or less. When the boiling water shrinkage ratio of the side yarn exceeds 4%, the flat cross-section fibers adhere to each other to form a dumpling state. In this state, it becomes a kind of fiber having a round cross section, so that light reflection and internal absorption effects between flat single fibers are reduced, and a velvet effect is not obtained, which is not preferable.
Further, the boiling water shrinkage of the flat cross-section fiber is not more than -3%, that is, the spontaneous elongation is not less than 3%. In other words, this is because the parallel state of the flat cross section collapses during the spontaneous elongation process and is randomized. Therefore, the boiling water shrinkage rate of the flat cross section ultrafine fiber as the side yarn is preferably -3% to 4%, more preferably -1% to 2%.
[0011]
Next, a method for producing the mixed fiber of the present invention will be described.
First, an important point is that the flat cross section ultrafine fiber is produced from a melt splitting type conjugate fiber. For convenience, it is considered that an ultra-thin flat-section yarn is spun and used as a side yarn. However, in this method, it is difficult to obtain a structure in which three or more ultra-thin flat-section single fibers are arranged in parallel. That is, since the tension state in the spinning-drawing spinning step and the air processing step, in particular, the air processing step is a step of migrating the yarn, the flat cross section ultrafine fibers are oriented in random directions and are not arranged in parallel. Therefore, the structure of the mixed fiber of the present invention cannot be obtained from the high shrinkage yarn and the ultra-fine flat-section yarn.
[0012]
As described above, the yarn structure of the present invention can be obtained only from a split-fiber composite fiber, but this composite fiber also requires considerable contrivance.
First, a nylon / polyester laminated conjugate fiber is well known as a conjugate fiber that gives an ultrafine flat-section yarn by splitting. It is well known that the drawback of this nylon / polyester laminated structural fiber lies in the color fastness. That is, when the polyester side is dyed with a disperse dye, the nylon is contaminated with the disperse dye, and the fastness in a dark color is extremely poor. Therefore, since it is impossible to express a silk velvet-like dark color, the object of the present invention is deviated.
In addition, the split fibers of the nylon / polyester have a form in which the single fibers adhere to each other after splitting, and are in a dumpling state rather than in a side-by-side manner, and it is difficult to obtain a silk velvet effect.
[0013]
From the above viewpoints, in order to obtain a form in which the ultrafine fibers having a flat cross section are arranged side by side without being in close contact with each other in the mixed fiber after the split splitting process, the mixed fiber is manufactured using a melt splitting type composite fiber. Is preferred. In this case, it is necessary to use a composite fiber composed of the alkali-soluble polymer (a) and the polymer (b) having a lower alkali dissolution rate than the polymer (a).
That is, the polymer (a) and the polymer (b) are fiberized as a composite structure in which a plurality of layers are alternately laminated in a fiber cross section, and the polymer (a) of the obtained composite fiber is completely dissolved and removed. Is left as it is, it is possible to form the above-mentioned parallel structure in the mixed fiber.
In this case, the dissolution rate of the polymer (a) is at least 10 times, more preferably 30 to 300 times that of the polymer (b). If the dissolution rate is less than 10 times, not only the polymer (a) but also the polymer (b) will be considerably dissolved during the alkali treatment, which is not preferable. On the other hand, when the dissolution rate exceeds 300 times, it is difficult to control the dyeing process including the texture treatment, which is not preferable.
[0014]
As the polymer (b), a normal homopolyester such as polyethylene terephthalate or polybutylene terephthalate is preferably used. As the polymer (a), for example, pentasodium sulfoisophthalic acid is used to increase the alkali dissolution rate. Polyethylene terephthalate copolymerized to about 5 to 5 mol% and modified polyester obtained by further copolymerizing or mixing 1 to 10% by weight of polyethylene glycol with these are preferably used.
[0015]
The constituent weight ratio of the polymer (a) and the polymer (b) must be 1/2 to 1/4. When the weight ratio exceeds 1/2, the gap between the polymers (b) after dissolving and removing the polymer (a) becomes large. For this reason, the ultrafine flat cross-section single fiber is liable to move during the dyeing process, the ratio of non-parallelism increases, and the silk velvet effect is reduced, which is not preferable. When the weight ratio is less than 1/4, the gap between the polymers (b) after dissolving and removing the polymer (a) becomes small. For this reason, the ultrafine flat cross-section single fibers are easily adhered to each other, and are in a state of a single fiber, which is undesirable because the silk velvet effect is reduced.
[0016]
The cross-sectional shape of the conjugate fiber before the alkali dissolution splitting treatment may be either a round cross section or a flat cross section. Preferably, if the L / D has a flat cross section of 1.5 to 3, a greater silk velvet-like effect can be obtained after the dissolution division process. This is because the flat cross-section ultrafine fiber obtained by alkali-treating the round cross-section conjugate fiber and the flat cross-section ultra-fine fiber obtained by alkali-treating the flat cross-section conjugate fiber, even if they have the same single fiber fineness, have a flat cross-section. The flat cross section ultrafine fiber obtained by treating the conjugate fiber with alkali has a smaller l / d and is a thick flat fiber, so that the apparent color developability is improved, and even if the ultrafine flat cross section single yarns adhere to each other. This is presumed to be because it is unlikely to be in a state of a single fiber with a round cross section even if the shape is changed, but the details are unknown. As a result, the use of the flat cross section ultrafine fiber obtained by alkali-treating the flat cross section composite fiber enables the expression of a dark color, and has a greater silk velvet effect.
[0017]
The composite form of the polymer (a) and the polymer (b) in the composite fiber needs to have a laminated structure in which both polymers are alternately laminated in five or more layers. In the mixed fiber of the present invention, the structure in which three or more ultra-fine flat cross-section single fibers are arranged in parallel is such that the polymer (b) remaining after dissolving the polymer (a) layer is in a layered form, forming a parallel structure. For this purpose, there must be three or more polymer (b) layers. The five-layer structure means that the polymer (a) has two layers and the polymer (b) has three layers, which is the minimum laminated structure for forming the yarn structure of the mixed fiber of the present invention. On the other hand, when the laminated structure has 15 or more layers, the polymer (a) layer becomes extremely thin, and the drawbacks such as the stability of the alkali dividing treatment and the occurrence of warpage such as collapse of the laminated structure after the division are increased. Therefore, it is not very preferable.
[0018]
The composite fiber as described above is obtained by subjecting the polymer (a) and the polymer (b) to composite melt-spinning so as to have a predetermined bonded structure to form a highly oriented filament having a breaking elongation (DE) of 70 to 180%. The relaxation heat treatment is performed at a temperature of 130 to 190 ° C. and an excess supply rate of 25% or less to reduce the boiling water shrinkage to 4% or less. Prior to the relaxation heat treatment, if necessary, the film is stretched at a stretching temperature of 100 ° C. or higher at a stretching ratio of [(DE / 100) +1] × 0.6 to 0.75 times.
Whether the stretching treatment is performed or not depends on about 100% elongation at break. That is, if the relaxation heat treatment is performed in the state of the undrawn yarn, the oriented crystallization does not proceed at all, and the practical strength is insufficient. Therefore, a drawing treatment is required depending on the breaking elongation. In that case, if the stretching temperature is lower than 100 ° C., a thick and thin structure is easily generated, which is not preferable. Also, if the stretching ratio is less than [(DE / 100) +1] × 0.6, a thick and thin structure occurs, which is not preferable. If the stretching ratio exceeds [(DE / 100) +1] × 0.75, the orientation is excessively advanced, and even if a relaxation treatment is applied, the dark color effect is weak, which is not preferable. Therefore, the point is that the oriented crystallization of the composite fiber is not advanced.
[0019]
If the elongation at break is less than 70%, the orientation in the spinning step proceeds too much, and even if a relaxation treatment is performed, a deepening effect cannot be obtained, which is not preferable. When the elongation at break exceeds 180%, the yarn becomes a thick-and-thin yarn at the draw ratio of Formula [1]. The undrawn portion of this thick and thin yarn is not preferred because the oriented crystallization has not progressed, so that the alkali weight loss rate is very high and a hole is formed in the alkali treatment. More preferably, the elongation at break is 90 to 120%.
[0020]
The relaxation heat treatment must be performed at a heater temperature of 130 to 190 ° C. and an excess supply rate of 25% or less. If the heater temperature is lower than 130 ° C., the boiling water shrinkage does not become 4% or less, which is not preferable. On the other hand, when the heater temperature exceeds 190 ° C., crystallization proceeds excessively, and the dark color effect becomes weak, which is not preferable. On the other hand, if the excess supply rate is 25% or more, a thick and thin structure occurs, which is not preferable. More preferably, the heater temperature is 140 to 170 ° C. and the excess supply rate is 3 to 15%.
[0021]
The conjugate fiber thus obtained is subjected to an air entanglement treatment with the highly shrinkable filament yarn A to form a conjugate yarn. This is necessary in order to obtain a swelling feeling as a hetero-shrinkage mixed fiber. The air entanglement treatment in this case is desirably set to 30 to 80 entanglements / m in order to increase the expression of the different shrinkage effect during the dyeing process.
[0022]
The composite yarn is subjected to an alkali treatment to dissolve and remove the alkali-soluble polymer (a), thereby obtaining a high-gloss, high-color-forming mixed fiber yarn intended in the present invention. This alkali treatment may be performed in the state of the composite yarn, but is preferably performed during the dyeing process after knitting or weaving, because the above-described parallel structure of the flat cross-section fibers is easily formed and maintained in the state of the fabric.
[0023]
The alkali treatment needs to be performed in one stage using caustic soda, a concentration of 20 g / l or more, and no weight loss promoter. In other words, for the purpose of performing uniform and stable dissolution and removal, there is a method of treating once with a low-concentration alkaline solution and then treating with a high-concentration alkaline solution. The luster desired by the present invention cannot be obtained.
[0024]
【Example】
Hereinafter, the present invention will be described with reference to examples, but the present invention is not limited to the examples.
[0025]
Example 1
6% by weight of polyethylene glycol was added to polyethylene terephthalate obtained by copolymerizing polyethylene terephthalate polymer (b) and pentasodium sulfoisophthalic acid (2.5 mol%) obtained by a conventional method. The alkali dissolution rate was about 40 times faster than (b). And a polymer (a) having a weight ratio of (a) / (b) = 1/2, a spinning speed of 3,700 m / min, and an L / D 2.3, 11-layer laminated flat cross-sectional shape as shown in FIG. Composite spinning was performed to obtain a highly oriented undrawn yarn X of 96 denier / 24 filaments having a breaking elongation of 98%. This yarn X was stretched at a hot pin temperature of 120 ° C. and 1.386 times, and then subjected to a relaxation heat treatment at a heater temperature of 165 ° C. and an excess supply rate of 8% to a boiling water shrinkage of 1.3%. Thereafter, the low-shrinkage composite fiber yarn and a 35-denier / 6-filament polyester filament yarn having a boiling water shrinkage rate of 21% are subjected to air entanglement at a tangling rate of 67 pieces / m to obtain a composite yarn W (110 denier / 30). Filament).
Next, this composite yarn W was used as a twin yarn, twisted at 700 t / m, woven in a five-satin structure, subjected to an alkali treatment in a dyeing process, and dyed in a dark color. The alkali treatment was performed at a concentration of 40 g / l at 100 ° C. using caustic soda after presetting.
The resulting fabric had silk velvet-like luster, good color development, rich swelling and a soft dry touch.
The monofilament fineness of the flat cross section ultrafine fibers contained in this yarn was about 0.35 denier on average, and the cross section flatness was about 3 to about 6. Further, when the cross section of the yarn was observed with a microscope, it was found that a structure in which three or more flat cross-section single fibers were arranged in parallel along the flat cross section contained 68% of the flat cross-section yarn.
[Brief description of the drawings]
FIG. 1 is a yarn cross-sectional view showing a parallel structure of flat fibers in a mixed fiber of the present invention.
FIG. 2 is a cross-sectional view of a mixed fiber outside the present invention.
FIG. 3 is a diagram for explaining a parallel state of flat cross-section fibers in a mixed fiber.
FIG. 4 is a cross-sectional view of a conjugate fiber used in an example.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30407997A JP3574553B2 (en) | 1997-11-06 | 1997-11-06 | High-gloss, high-color mixed yarn |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30407997A JP3574553B2 (en) | 1997-11-06 | 1997-11-06 | High-gloss, high-color mixed yarn |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH11140734A JPH11140734A (en) | 1999-05-25 |
JP3574553B2 true JP3574553B2 (en) | 2004-10-06 |
Family
ID=17928784
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP30407997A Expired - Fee Related JP3574553B2 (en) | 1997-11-06 | 1997-11-06 | High-gloss, high-color mixed yarn |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3574553B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5368824B2 (en) * | 2009-02-20 | 2013-12-18 | 東洋紡スペシャルティズトレーディング株式会社 | Composite yarn and woven / knitted fabric using the same |
-
1997
- 1997-11-06 JP JP30407997A patent/JP3574553B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH11140734A (en) | 1999-05-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3574553B2 (en) | High-gloss, high-color mixed yarn | |
JP2970350B2 (en) | Manufacturing method of woven or knitted fabric using mixed yarn of different fineness | |
JP3793288B2 (en) | Method for producing polyester false twisted yarn | |
JP3476588B2 (en) | Polyester composite yarn with strong dyeability | |
JP5012646B2 (en) | Split-type polyamide / polyester composite fibers, woven and knitted fabrics, and textile products | |
JP2001192942A (en) | Bulky finished yarn and method for producing the same | |
JP2954827B2 (en) | Production method of ultrafine fiber | |
JPH05272026A (en) | Water-absorbing woven and knitted fabric | |
JP3946042B2 (en) | Polyester composite processed yarn | |
JP2935008B2 (en) | Polyester core-sheath composite fiber and method for producing the same | |
JP2001214335A (en) | Low-shrinkage polyester slub yarn and combined polyester filament yarn composed thereof | |
JPH08260228A (en) | White pigment-containing fiber | |
JP2963830B2 (en) | Latent micro-crimped polyester thick mottled yarn | |
JPH04361650A (en) | Production of elastic peach-tone knit fabric | |
KR860002172B1 (en) | Polyester bi-shinkage multimixed yarn and knitting method | |
JP3106896B2 (en) | False twisted yarn | |
JP2820589B2 (en) | Latent bulky mixed yarn | |
JPH08291437A (en) | Woven or knit fabric using combined filament yarn of different size and its production | |
JP2001271239A (en) | Combined filament yarn with difference in shrinkage and method for producing the same | |
KR100384362B1 (en) | A texturing yarn with sea-island composition used in warp knitting, and a process of preparing for the same | |
JP2001164436A (en) | Polyester combined filament yarn and woven and knitted fabric using the same | |
JP2920362B2 (en) | Polyester sea core composite fiber yarn and method for producing the same | |
JP3484509B2 (en) | False twisted yarn and manufacturing method thereof | |
JP3509995B2 (en) | Polyester composite yarn with strong dyeability | |
JP2001248034A (en) | Knit or woven fabric consisting of combined filament yarn and method for producing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20040218 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040302 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040511 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040609 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20040629 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20040702 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080709 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090709 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100709 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110709 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120709 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130709 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140709 Year of fee payment: 10 |
|
LAPS | Cancellation because of no payment of annual fees |