JP3573229B2 - Method for producing glycolic acid ester - Google Patents

Method for producing glycolic acid ester Download PDF

Info

Publication number
JP3573229B2
JP3573229B2 JP24789495A JP24789495A JP3573229B2 JP 3573229 B2 JP3573229 B2 JP 3573229B2 JP 24789495 A JP24789495 A JP 24789495A JP 24789495 A JP24789495 A JP 24789495A JP 3573229 B2 JP3573229 B2 JP 3573229B2
Authority
JP
Japan
Prior art keywords
catalyst
reaction
acid ester
glycolic acid
ruthenium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP24789495A
Other languages
Japanese (ja)
Other versions
JPH0987232A (en
Inventor
浩一 平井
靖夫 中村
卓美 真鍋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP24789495A priority Critical patent/JP3573229B2/en
Publication of JPH0987232A publication Critical patent/JPH0987232A/en
Application granted granted Critical
Publication of JP3573229B2 publication Critical patent/JP3573229B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Description

【0001】
【産業上の利用分野】
本発明は、新規な触媒の存在下、シュウ酸ジエステルを水素で水素化することにより、グリコール酸エステルを高い反応速度及び高い選択率で製造する方法に関する。グリコール酸エステルは、ボイラー等の洗浄剤、メッキ用添加剤、エッチング剤、革なめし剤として、また洗剤のビルダーや生分解性ポリマー等の製造原料として非常に有用な化合物である。
【0002】
【従来の技術】
シュウ酸ジエステルを水素で水素化してグリコール酸エステルを製造する方法としては、(1) 炭酸第二銅とクロム酸から得られた触媒の存在下で水素化する方法(例えば特公昭55−42971号公報)、(2) ルテニウム、ニッケル及びラネーニッケルの中から選ばれる触媒の存在下で水素化する方法(特開昭55−40685号公報)、(3) 銅のアンミン錯体がシリカ担体に担持された触媒の存在下で水素化する方法(特公昭60−45938号公報)、(4) 銀又はパラジウムが担持された触媒の存在下で水素化する方法(特公昭62−37030号公報)が知られている。
【0003】
【発明が解決しようとする課題】
しかしながら、(1) の方法には、水素化反応が更に進行してエチレングリコールが副生するためにグリコール酸エステルの選択率が低下し、それに伴ってグリコール酸エステルの分離精製も煩雑になるという問題が存在し、更に廃触媒からのクロムの回収やその際の排水の処理が非常に煩雑であるという環境上の問題も存在している。(2) の方法では、エチレングリコール又はグリコール酸エステルの一方が相対的に多く含まれる反応生成物が得られるものの、グリコール酸エステルを工業的に製造するためには、更に反応速度及び選択率を上げることが必要である。また、(3) 及び(4) の方法には、触媒の活性やグリコール酸エステルの選択率が低いという問題が存在している。
本発明は、上記の問題を解決して、グリコール酸エステルを高い反応速度及び高い選択率で製造できる方法を提供することを課題とするものである。
【0004】
【課題を解決するための手段】
本発明の課題は、比表面積が900m/g以上の担体にルテニウムが担持されている触媒の存在下、シュウ酸ジエステルを水素により水素化することを特徴とするグリコール酸エステルの製造方法によって達成される。
【0005】
以下に本発明を詳しく説明する。
シュウ酸ジエステルとしては、シュウ酸と炭素数1〜6の脂肪族1価アルコールとのジエステルが用いられる。具体的には、シュウ酸ジメチル、シュウ酸ジエチル、シュウ酸ジn−プロピル、シュウ酸ジi−プロピル、シュウ酸ジn−ブチル、シュウ酸ジn−アミル等が挙げられる。これらシュウ酸ジエステルの中では、シュウ酸ジメチル、シュウ酸ジエチル、シュウ酸ジn−プロピル、シュウ酸ジi−プロピル、シュウ酸ジn−ブチル等のシュウ酸と炭素数1〜4の脂肪族1価アルコールとのジエステルが好ましいが、中でもシュウ酸ジメチル及びシュウ酸ジエチルが最も好ましい。
【0006】
触媒としては、比表面積が900m/g以上、好ましくは900〜2600m/gの担体にルテニウムが担持されているものが用いられる。比表面積が900m/g以下の担体を用いると活性(反応速度)もしくは選択性(選択率)が低下するので好ましくない。なお、触媒の比表面積は公知のBET法により測定される。
【0007】
前記担体としては、活性炭、シリカ、アルミナ、チタニア、ジルコニア、ケイ藻土、ゼオライト等が挙げられる。担体の中では活性炭が好ましく、例えばマックスソーブ(関西熱化学製)、白鷺(武田薬品製)、ダイアホープ(三菱化学製)等の市販の活性炭が好適に用いられる。
【0008】
前記担体は粉末、粒状、破砕状、ビーズ状もしくは成型体で使用される。その形状は特に限定されるものではないが、通常、粉末の場合は20〜100μm程度のもの、粒状、破砕状及びビーズ状の場合は4〜200メッシュ程度のもの、成型体の場合は数mm程度のものが用いられる。
【0009】
ルテニウムの担持量は、触媒当たり、ルテニウム金属として通常0.2〜50重量%、好ましくは0.5〜30重量%、更に好ましくは1.0〜20重量%である。
前記担体には、ルテニウムに加えて、更に周期表I族、II族、VII 族、VIII族及びランタノイド族等の他の成分が担持されていても差し支えない。他の成分の担持量は、触媒当たり、金属として通常0.1〜20重量%、好ましくは0.5〜10重量%である。
【0010】
触媒は、可溶性のルテニウム化合物の水又はアルコール溶液に前記担体を添加して、担体にルテニウム化合物を担持させた後、水素等の還元剤で還元処理することによって調製される。このとき、必要に応じて他の金属の化合物が水又はアルコール溶液に添加されて、ルテニウム化合物と共に担体に担持される。
【0011】
前記ルテニウム化合物としては、例えば(1) 塩化ルテニウム、臭化ルテニウム等のルテニウムのハロゲン化物、(2) ルテニウム酸ナトリウム、ルテニウム酸カリウム等のルテニウム酸のアルカリ金属塩、(3) 酢酸ルテニウム、プロピオン酸ルテニウム等のルテニウムの有機酸塩、(4) ヘキサクロロルテニウム酸アンモニウム、ヘキサアンミンルテニウム塩化物、ルテニウムアセチルアセトナート、硝酸ルテニウムニトロシル等のルテニウムの錯塩又は錯体が挙げられる。
【0012】
ルテニウム化合物及び必要に応じて他の金属の化合物を担体に担持させる方法としては、含浸法、浸漬吸着法、混練法、沈着法、蒸発乾固法、共沈法等の通常実施される方法が挙げられるが、通常は簡便であることから含浸法や蒸発乾固法が用いられる。
【0013】
ルテニウム化合物及び必要に応じて他の金属の化合物が担持された触媒の還元処理は、例えば空気中もしくは窒素中120℃付近で該触媒を乾燥した後、水素ガス、ヒドラジン又はギ酸ソーダ等の一般的な還元剤を用いて行われる。水素ガスを用いる還元処理は、通常150〜600℃で1〜10時間行われる。
このようにして得られた触媒はアンモニア水で洗浄された後、水洗、風乾又は加熱処理(窒素気流中、120℃、3時間)され、更に上記と同様に再度還元処理されることが好ましい。
【0014】
前記のように調製された触媒の存在下、シュウ酸ジエステルを水素で水素化してグリコール酸エステルを製造する反応は、液相又は気相で行われる。
液相反応は、例えば攪拌装置を備えた耐圧式反応器を用いて、通常、反応温度が40〜250℃、好ましくは60〜200℃、水素圧が常圧よりも高い圧力、好ましくは10〜150気圧(atm)でバッチ式又は連続式で実施される。このとき、触媒は、シュウ酸ジエステルに対して通常1〜30重量%、好ましくは2〜10重量%用いられる。なお、反応時間は反応温度、反応圧等に依存して広範囲にわたって変動するが、通常30分〜10時間程度で充分である。
反応後、グリコール酸エステルは反応器から抜き出される反応液から蒸留等により容易に分離精製される。
【0015】
液相反応では、必要に応じて溶媒を用いることもできる。
溶媒としては、(1) メタノール、エタノール、n−プロパノール、i−プロパノール、n−ブタノール、i−ブタノール等の炭素数1〜6の脂肪族1価アルコール、(2) ジエチルエーテル、ジn−プロピルエーテル、ジn−ブチルエーテル、エチルブチルエーテル等の炭素数2〜20の非環式脂肪族モノエーテル、(3) ジシクロヘキシルエーテル等の炭素数6〜24の脂環式モノエーテル、(4) エチレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテル、トリエチレングリコールジメチルエーテル等の非環式ポリエーテル、(5) テトラヒドロフラン、ジオキサン、18−クラウン−6等の環式エーテルなどが用いられる。なお、前記脂肪族1価アルコールを用いる場合は、シュウ酸ジエステルと同一のアルコキシ基をもつアルコールを用いることが好ましい。
【0016】
気相反応は、通常、前記触媒を充填した反応管に、気化させたシュウ酸ジエステルと水素ガス等を含む原料ガスを、反応温度が50〜250℃、好ましくは90〜200℃、反応圧が常圧よりも高い圧力、好ましくは2〜100気圧(atm)で供給することによって連続的に実施される。このとき、原料ガスと触媒との接触時間は、通常0.1〜60秒、好ましくは0.5〜30秒である。また、水素とシュウ酸ジエステルとのモル比(水素/シュウ酸ジエステル)は通常2〜100、好ましくは4〜50である。
【0017】
原料ガスにシュウ酸ジエステルを含有させる操作は、例えばシュウ酸ジエステル濃度が10〜40重量%、好ましくは15〜35重量%のシュウ酸ジエステルのアルコール溶液を気化器又は気化層等で加熱蒸発させて、水素ガスや窒素ガスに同伴させることによって行われる。
反応後、グリコール酸エステルは反応管から導出される反応ガスを凝縮させて得られる反応液から蒸留等により容易に分離精製される。
【0018】
【実施例】
次に、実施例及び比較例を挙げて本発明を具体的に説明する。
なお、シュウ酸ジエステル転化率、グリコール酸エステル選択率、グリコール酸エステル空時収量(STY)、触媒当たりのグリコール酸エステル生成速度は次式によりそれぞれ求めた。
【0019】
【数1】

Figure 0003573229
【0020】
【数2】
Figure 0003573229
【0021】
【数3】
Figure 0003573229
【0022】
【数4】
Figure 0003573229
【0023】
実施例1
〔触媒の調製〕
塩化ルテニウム三水和物1.033gを濃塩酸2.5mlに溶解させた溶液を蒸発乾固させた後、乾固物を水5mlに再溶解した。この溶液に担体として比表面積1254m/gの活性炭〔粒状活性炭(粒状白鷺CX:武田薬品製、4mmφ押し出し品)〕7.6gを入れて充分混合し、塩化ルテニウムを活性炭に含浸させた。次いで、この活性炭を耐熱ガラス管に充填し、窒素気流中、120℃で3時間乾燥した後、水素−窒素混合ガス〔水素/窒素(容量比)=1:1〕を100ml/minで流しながら、300℃で1.5時間還元処理を行った。還元処理後、ルテニウムが担持されている活性炭を25%アンモニア水約32mlに浸して1時間静置した。その後、デカンテーションでアンモニア水を除き、該活性炭を約100mlの水で15回洗浄した。次いで、該活性炭を耐熱ガラス管に再度充填し、水素−窒素混合ガス〔水素/窒素(容量比)=1:1〕を100ml/minで流しながら、400℃で7時間還元処理を行った。
【0024】
〔グリコール酸エステルの製造〕
上記の触媒(ルテニウムが担持されている活性炭)2g、シュウ酸ジメチル7.7g及びメタノール80mlを内容積200mlのオートクレーブに仕込み、内部の空気を水素ガスで充分置換した後、水素ガスを40気圧(atm)まで圧入した。昇温して反応温度を130℃に保ち、水素ガスで反応圧を60気圧(atm)に維持して、攪拌下で4.5時間水素化反応を行った。反応終了後、オートクレーブを冷却し、得られた反応液をガスクロマトグラフィーで分析した。
その結果、シュウ酸ジメチル転化率が93.2%、グリコール酸メチル選択率が84.4%で、グリコール酸メチル空時収量(STY)が11.8g/l−溶液・hr、触媒当たりのグリコール酸メチル生成速度が236g/l−触媒・hrであった。
【0025】
実施例2
〔グリコール酸エステルの製造〕
実施例1において、メタノールを30mlに、反応圧を40気圧(atm)に変えたほかは、実施例1と同様に水素化反応と反応液の分析を行った。その結果を表1に示す。
【0026】
実施例3
〔触媒の調製〕
実施例1において担体を比表面積2174m/gの活性炭〔高機能多孔質カーボン(マックスソーブ造粒炭G15H:関西熱化学製、1.5mmφ)〕に変えたほかは、実施例1と同様に触媒を調製した。
〔グリコール酸エステルの製造〕
実施例1において、触媒を上記の触媒2gに変え、反応温度を120℃に変えたほかは、実施例1と同様に水素化反応と反応液の分析を行った。その結果を表1に示す。
【0027】
実施例4
〔触媒の調製〕
実施例1において担体を比表面積1245m/gの活性炭〔クレハ球状活性炭(球状BAC−G−70R:呉羽化学製、0.8mmφ)〕に変えたほかは、実施例1と同様に触媒を調製した。
〔グリコール酸エステルの製造〕
実施例1において触媒を上記の触媒2gに変えたほかは、実施例1と同様に水素化反応と反応液の分析を行った。その結果を表1に示す。
【0028】
実施例5
〔触媒の調製〕
実施例1において担体を比表面積1103m/gの活性炭〔ダイアホープ炭(ダイアホープ106:三菱化学製、1〜2mm破砕品)〕に変えたほかは、実施例1と同様に触媒を調製した。
〔グリコール酸エステルの製造〕
実施例1において触媒を上記の触媒2gに変えたほかは、実施例1と同様に水素化反応と反応液の分析を行った。その結果を表1に示す。
【0029】
実施例6
〔触媒の調製〕
実施例1において担体を比表面積989m/gの活性炭〔ヤシガラ破砕活性炭(ヤシコールLC:大平化学製、2〜4mm粒)〕に変えたほかは、実施例1と同様に触媒を調製した。
〔グリコール酸エステルの製造〕
実施例1において触媒を上記の触媒2gに変えたほかは、実施例1と同様に水素化反応と反応液の分析を行った。その結果を表1に示す。
【0030】
実施例7
〔グリコール酸エステルの製造〕
実施例1において、シュウ酸ジメチルをシュウ酸ジエチル9.5gに、メタノールをエタノール80mlに変えたほかは、実施例1と同様に水素化反応と反応液の分析を行った。その結果を表1に示す。
【0031】
比較例1
〔触媒の調製〕
実施例1において担体を比表面積484m/gの活性炭〔機能性活性炭(モルシーボンXM:武田薬品製、4mmφ円柱)〕に変えたほかは、実施例1と同様に触媒を調製した。
〔グリコール酸エステルの製造〕
実施例1において触媒を上記の触媒2gに変えたほかは、実施例1と同様に水素化反応と反応液の分析を行った。その結果を表1に示す。
【0032】
比較例2
〔触媒の調製〕
実施例1において担体を比表面積830m/gの活性炭(球状活性炭X−7000:武田薬品製、2mmφ球状)に変えたほかは、実施例1と同様に触媒を調製した。
〔グリコール酸エステルの製造〕
実施例1において触媒を上記の触媒2gに変えたほかは、実施例1と同様に水素化反応と反応液の分析を行った。その結果を表1に示す。
【0033】
比較例3
〔触媒の調製〕
実施例1において担体を比表面積268m/gのアルミナ(KHD−24:住友化学製、2〜3mmφ球状)に変えたほかは、実施例1と同様に触媒を調製した。
〔グリコール酸エステルの製造〕
実施例1において触媒を上記の触媒2gに変えたほかは、実施例1と同様に水素化反応と反応液の分析を行った。その結果を表1に示す。
【0034】
比較例4
〔触媒の調製〕
実施例1において担体を比表面積560m/gのゼオライト(ST−34−3:東ソー製、NaY型、1mmφ押し出し品)に変えたほかは、実施例1と同様に触媒を調製した。
〔グリコール酸エステルの製造〕
実施例1において触媒を上記の触媒2gに変えたほかは、実施例1と同様に水素化反応と反応液の分析を行った。その結果を表1に示す。
【0035】
【表1】
Figure 0003573229
【0036】
実施例8
〔触媒の調製〕
実施例1と同様に触媒を調製した。
〔グリコール酸エステルの製造〕
上記の触媒8ml(3.68g)を内径25mm、長さ350mmのステンレス製気相反応管に充填した後、反応管を電気炉中に垂直に設置して触媒層の温度を135℃に加熱制御した。この反応管の上部からシュウ酸ジメチル濃度が20重量%のシュウ酸ジメチルのメタノール溶液13.4g/hrを供給し、これを触媒層上部の気化層で気化させて水素ガスと共に触媒層に供給して水素化反応を行った。なお、このとき、水素とシュウ酸ジメチルとのモル比(水素/シュウ酸ジメチル)は35.4、反応圧は9気圧、接触時間は6.67秒であった。54時間連続して反応を行った後、氷冷トラップに補集された液を実施例1と同様に分析した。その結果、シュウ酸ジメチル転化率が82.2%、グリコール酸メチル選択率が93.6%、グリコール酸メチル空時収量(STY)が196.6g/l−触媒・hrであった。
【0037】
【発明の効果】
本発明により、シュウ酸ジエステルから高い反応速度及び高い選択率でグリコール酸エステルを製造することができる。また、触媒は高活性かつ高選択性であってクロムを含まないので、副生物の生成によってグリコール酸エステルの分離精製が煩雑になるという問題もなく、廃触媒の処理に伴う環境上の問題を引き起こすこともない。[0001]
[Industrial applications]
The present invention relates to a method for producing a glycolic acid ester with a high reaction rate and a high selectivity by hydrogenating an oxalic acid diester with hydrogen in the presence of a novel catalyst. Glycolic acid esters are very useful compounds as cleaning agents for boilers and the like, plating additives, etching agents, leather tanning agents, and as raw materials for producing detergent builders and biodegradable polymers.
[0002]
[Prior art]
The method for producing glycolic acid ester by hydrogenating oxalic acid diester with hydrogen includes (1) a method of hydrogenating in the presence of a catalyst obtained from cupric carbonate and chromic acid (for example, Japanese Patent Publication No. 55-42971). Publication), (2) a method of hydrogenating in the presence of a catalyst selected from ruthenium, nickel and Raney nickel (JP-A-55-40685), and (3) a copper ammine complex supported on a silica carrier. A method of hydrogenating in the presence of a catalyst (Japanese Patent Publication No. 60-45938) and a method of (4) hydrogenating in the presence of a catalyst carrying silver or palladium (Japanese Patent Publication No. 62-37030) are known. ing.
[0003]
[Problems to be solved by the invention]
However, in the method (1), the hydrogenation reaction proceeds further, and ethylene glycol is produced as a by-product, so that the selectivity of the glycolic acid ester is lowered. As a result, the separation and purification of the glycolic acid ester become complicated. There is a problem, and there is also an environmental problem that the recovery of chromium from the spent catalyst and the treatment of wastewater at that time are very complicated. In the method (2), although a reaction product containing a relatively large amount of either ethylene glycol or glycolate is obtained, the reaction rate and the selectivity are further increased in order to industrially produce glycolate. It is necessary to raise. Further, the methods (3) and (4) have a problem that the activity of the catalyst and the selectivity of the glycolic acid ester are low.
An object of the present invention is to solve the above problems and to provide a method for producing a glycolic acid ester with a high reaction rate and a high selectivity.
[0004]
[Means for Solving the Problems]
The object of the present invention is achieved by a method for producing a glycolic acid ester, which comprises hydrogenating an oxalic acid diester with hydrogen in the presence of a catalyst in which ruthenium is supported on a carrier having a specific surface area of 900 m 2 / g or more. Is done.
[0005]
Hereinafter, the present invention will be described in detail.
As the oxalic acid diester, a diester of oxalic acid and an aliphatic monohydric alcohol having 1 to 6 carbon atoms is used. Specific examples include dimethyl oxalate, diethyl oxalate, di-n-propyl oxalate, di-i-propyl oxalate, di-n-butyl oxalate, and di-n-amyl oxalate. Among these oxalic acid diesters, oxalic acid such as dimethyl oxalate, diethyl oxalate, di-n-propyl oxalate, di-i-propyl oxalate, di-n-butyl oxalate, and aliphatic 1 having 1 to 4 carbon atoms are used. Diesters with hydric alcohols are preferred, of which dimethyl oxalate and diethyl oxalate are most preferred.
[0006]
As the catalyst, specific surface area of 900 meters 2 / g or more, preferably is used as ruthenium on a carrier 900~2600m 2 / g are supported. It is not preferable to use a carrier having a specific surface area of 900 m 2 / g or less, because the activity (reaction rate) or selectivity (selectivity) is reduced. The specific surface area of the catalyst is measured by a known BET method.
[0007]
Examples of the carrier include activated carbon, silica, alumina, titania, zirconia, diatomaceous earth, and zeolite. Among the carriers, activated carbon is preferable. For example, commercially available activated carbon such as Maxsorb (manufactured by Kansai Thermochemical), Shirasagi (manufactured by Takeda Pharmaceutical), and Diahope (manufactured by Mitsubishi Chemical) are suitably used.
[0008]
The carrier is used in powder, granular, crushed, beaded or molded form. The shape is not particularly limited, but is usually about 20 to 100 μm in the case of powder, about 4 to 200 mesh in the case of granules, crushed and beads, and several mm in the case of a molded body. The degree is used.
[0009]
The supported amount of ruthenium is usually 0.2 to 50% by weight, preferably 0.5 to 30% by weight, more preferably 1.0 to 20% by weight of ruthenium metal per catalyst.
The carrier may carry other components such as Group I, Group II, Group VII, Group VIII, and Lanthanoids in addition to ruthenium. The loading amount of other components is usually 0.1 to 20% by weight, preferably 0.5 to 10% by weight as metal per catalyst.
[0010]
The catalyst is prepared by adding the above-mentioned carrier to a water or alcohol solution of a soluble ruthenium compound, making the carrier carry the ruthenium compound, and then reducing the same with a reducing agent such as hydrogen. At this time, if necessary, a compound of another metal is added to the water or alcohol solution and supported on the carrier together with the ruthenium compound.
[0011]
Examples of the ruthenium compound include (1) ruthenium halides such as ruthenium chloride and ruthenium bromide, (2) alkali metal salts of ruthenic acid such as sodium ruthenate and potassium ruthenate, and (3) ruthenium acetate and propionic acid. Organic acid salts of ruthenium such as ruthenium, and (4) ruthenium complex salts or complexes such as ammonium hexachlororuthenate, hexaammine ruthenium chloride, ruthenium acetylacetonate and ruthenium nitrosyl nitrate.
[0012]
As a method for supporting a ruthenium compound and, if necessary, a compound of another metal on a carrier, a method usually used such as an impregnation method, an immersion adsorption method, a kneading method, a deposition method, an evaporation to dryness method, and a coprecipitation method is used. Usually, an impregnation method or an evaporation to dryness method is used because of its simplicity.
[0013]
The reduction treatment of a catalyst supporting a ruthenium compound and, if necessary, a compound of another metal is performed, for example, by drying the catalyst in air or nitrogen at around 120 ° C., and then subjecting the catalyst to a general process such as hydrogen gas, hydrazine or sodium formate. This is performed using a suitable reducing agent. The reduction treatment using hydrogen gas is usually performed at 150 to 600 ° C. for 1 to 10 hours.
The catalyst thus obtained is preferably washed with ammonia water, washed with water, air-dried or heat-treated (at 120 ° C. for 3 hours in a stream of nitrogen), and further reduced again as described above.
[0014]
The reaction of hydrogenating oxalic acid diester with hydrogen to produce glycolic acid ester in the presence of the catalyst prepared as described above is performed in a liquid phase or a gas phase.
In the liquid phase reaction, for example, using a pressure-resistant reactor equipped with a stirrer, the reaction temperature is usually 40 to 250 ° C., preferably 60 to 200 ° C., and the hydrogen pressure is higher than normal pressure, preferably 10 to 10 ° C. It is carried out at 150 atm (atm) in a batch or continuous manner. At this time, the catalyst is used usually in an amount of 1 to 30% by weight, preferably 2 to 10% by weight, based on the oxalic acid diester. The reaction time varies over a wide range depending on the reaction temperature, reaction pressure, etc., but usually about 30 minutes to 10 hours is sufficient.
After the reaction, the glycolic acid ester is easily separated and purified from the reaction solution discharged from the reactor by distillation or the like.
[0015]
In the liquid phase reaction, a solvent can be used if necessary.
Examples of the solvent include (1) aliphatic monohydric alcohols having 1 to 6 carbon atoms such as methanol, ethanol, n-propanol, i-propanol, n-butanol and i-butanol, (2) diethyl ether, di-n-propyl Acyclic aliphatic monoethers having 2 to 20 carbon atoms such as ether, di-n-butyl ether and ethyl butyl ether; (3) alicyclic monoethers having 6 to 24 carbon atoms such as dicyclohexyl ether; (4) ethylene glycol dimethyl ether And acyclic polyethers such as diethylene glycol dimethyl ether and triethylene glycol dimethyl ether; and (5) cyclic ethers such as tetrahydrofuran, dioxane and 18-crown-6. When the aliphatic monohydric alcohol is used, it is preferable to use an alcohol having the same alkoxy group as the oxalic acid diester.
[0016]
In the gas phase reaction, usually, a raw material gas containing a vaporized oxalic acid diester and hydrogen gas is charged into a reaction tube filled with the catalyst at a reaction temperature of 50 to 250 ° C, preferably 90 to 200 ° C, and a reaction pressure of It is carried out continuously by feeding at a pressure higher than normal pressure, preferably 2 to 100 atmospheres (atm). At this time, the contact time between the raw material gas and the catalyst is usually 0.1 to 60 seconds, preferably 0.5 to 30 seconds. The molar ratio of hydrogen to oxalic acid diester (hydrogen / oxalic acid diester) is usually 2 to 100, preferably 4 to 50.
[0017]
The operation of containing the oxalic acid diester in the raw material gas is performed, for example, by heating and evaporating an oxalic acid diester alcohol solution having an oxalic acid diester concentration of 10 to 40% by weight, preferably 15 to 35% by weight in a vaporizer or a vaporization layer. , By entraining it with hydrogen gas or nitrogen gas.
After the reaction, the glycolic acid ester is easily separated and purified from the reaction solution obtained by condensing the reaction gas derived from the reaction tube by distillation or the like.
[0018]
【Example】
Next, the present invention will be specifically described with reference to Examples and Comparative Examples.
The oxalic acid diester conversion, glycolic acid ester selectivity, glycolic acid ester space-time yield (STY), and glycolic acid ester generation rate per catalyst were determined by the following equations.
[0019]
(Equation 1)
Figure 0003573229
[0020]
(Equation 2)
Figure 0003573229
[0021]
(Equation 3)
Figure 0003573229
[0022]
(Equation 4)
Figure 0003573229
[0023]
Example 1
(Preparation of catalyst)
A solution prepared by dissolving 1.033 g of ruthenium chloride trihydrate in 2.5 ml of concentrated hydrochloric acid was evaporated to dryness, and the dried matter was redissolved in 5 ml of water. 7.6 g of activated carbon having a specific surface area of 1254 m 2 / g [granular activated carbon (granular Shirasagi C 2 X: extruded by 4 mmφ) manufactured by Takeda Pharmaceutical Co.] was added to the solution and thoroughly mixed, and the activated carbon was impregnated with ruthenium chloride. . Next, this activated carbon was filled in a heat-resistant glass tube, dried in a nitrogen stream at 120 ° C. for 3 hours, and then a hydrogen-nitrogen mixed gas (hydrogen / nitrogen (volume ratio) = 1: 1) was flowed at 100 ml / min. At 300 ° C. for 1.5 hours. After the reduction treatment, the activated carbon carrying ruthenium was immersed in about 32 ml of 25% aqueous ammonia and allowed to stand for 1 hour. Thereafter, ammonia water was removed by decantation, and the activated carbon was washed 15 times with about 100 ml of water. Next, the activated carbon was filled in a heat-resistant glass tube again, and a reduction treatment was performed at 400 ° C. for 7 hours while flowing a hydrogen-nitrogen mixed gas [hydrogen / nitrogen (volume ratio) = 1: 1] at 100 ml / min.
[0024]
[Production of glycolic acid ester]
After charging 2 g of the above-mentioned catalyst (activated carbon supporting ruthenium), 7.7 g of dimethyl oxalate and 80 ml of methanol into an autoclave having an internal volume of 200 ml and sufficiently replacing the internal air with hydrogen gas, the hydrogen gas was replaced with 40 atm ( atm). The temperature was raised to keep the reaction temperature at 130 ° C., the reaction pressure was kept at 60 atm (atm) with hydrogen gas, and the hydrogenation reaction was carried out under stirring for 4.5 hours. After the reaction was completed, the autoclave was cooled, and the obtained reaction solution was analyzed by gas chromatography.
As a result, the conversion rate of dimethyl oxalate was 93.2%, the selectivity of methyl glycolate was 84.4%, the space-time yield (STY) of methyl glycolate was 11.8 g / l—solution · hr, glycol per catalyst. The methyl acid production rate was 236 g / l-catalyst · hr.
[0025]
Example 2
[Production of glycolic acid ester]
The hydrogenation reaction and the analysis of the reaction solution were performed in the same manner as in Example 1 except that methanol was changed to 30 ml and the reaction pressure was changed to 40 atm (atm). Table 1 shows the results.
[0026]
Example 3
(Preparation of catalyst)
In the same manner as in Example 1, except that the carrier was changed to activated carbon having a specific surface area of 2174 m 2 / g [high-performance porous carbon (Maxsorb granulated carbon G15H: manufactured by Kansai Thermochemical, 1.5 mmφ)] in Example 1. A catalyst was prepared.
[Production of glycolic acid ester]
In Example 1, the hydrogenation reaction and the analysis of the reaction solution were performed in the same manner as in Example 1 except that the catalyst was changed to 2 g of the above catalyst and the reaction temperature was changed to 120 ° C. Table 1 shows the results.
[0027]
Example 4
(Preparation of catalyst)
A catalyst was prepared in the same manner as in Example 1, except that the carrier was changed to activated carbon having a specific surface area of 1245 m 2 / g [Kureha spherical activated carbon (spherical BAC-G-70R: manufactured by Kureha Chemical, 0.8 mmφ)] in Example 1. did.
[Production of glycolic acid ester]
The hydrogenation reaction and analysis of the reaction solution were performed in the same manner as in Example 1 except that the catalyst was changed to 2 g of the above catalyst in Example 1. Table 1 shows the results.
[0028]
Example 5
(Preparation of catalyst)
A catalyst was prepared in the same manner as in Example 1 except that the carrier was changed to activated carbon having a specific surface area of 1103 m 2 / g [Diahope charcoal (Diahope 106: manufactured by Mitsubishi Chemical Corporation, 1-2 mm crushed product)] in Example 1.
[Production of glycolic acid ester]
The hydrogenation reaction and analysis of the reaction solution were performed in the same manner as in Example 1 except that the catalyst was changed to 2 g of the above catalyst in Example 1. Table 1 shows the results.
[0029]
Example 6
(Preparation of catalyst)
A catalyst was prepared in the same manner as in Example 1 except that the carrier was changed to activated carbon having a specific surface area of 989 m 2 / g (coconut crushed activated carbon (Yashikoru LC: manufactured by Ohira Chemical Co., Ltd., 2 to 4 mm particles)).
[Production of glycolic acid ester]
The hydrogenation reaction and analysis of the reaction solution were performed in the same manner as in Example 1 except that the catalyst was changed to 2 g of the above catalyst in Example 1. Table 1 shows the results.
[0030]
Example 7
[Production of glycolic acid ester]
The hydrogenation reaction and the analysis of the reaction solution were performed in the same manner as in Example 1 except that dimethyl oxalate was changed to 9.5 g of diethyl oxalate and methanol was changed to 80 ml of ethanol. Table 1 shows the results.
[0031]
Comparative Example 1
(Preparation of catalyst)
A catalyst was prepared in the same manner as in Example 1 except that the carrier was changed to activated carbon having a specific surface area of 484 m 2 / g [functional activated carbon (Morshibon X 2 M: manufactured by Takeda Chemical Co., 4 mmφ cylinder)] in Example 1.
[Production of glycolic acid ester]
The hydrogenation reaction and analysis of the reaction solution were performed in the same manner as in Example 1 except that the catalyst was changed to 2 g of the above catalyst in Example 1. Table 1 shows the results.
[0032]
Comparative Example 2
(Preparation of catalyst)
A catalyst was prepared in the same manner as in Example 1 except that the carrier was changed to activated carbon having a specific surface area of 830 m 2 / g (spherical activated carbon X-7000: manufactured by Takeda Pharmaceutical Co., Ltd., 2 mmφ spherical).
[Production of glycolic acid ester]
The hydrogenation reaction and analysis of the reaction solution were performed in the same manner as in Example 1 except that the catalyst was changed to 2 g of the above catalyst in Example 1. Table 1 shows the results.
[0033]
Comparative Example 3
(Preparation of catalyst)
A catalyst was prepared in the same manner as in Example 1, except that the carrier was changed to alumina having a specific surface area of 268 m 2 / g (KHD-24: manufactured by Sumitomo Chemical Co., Ltd., 2-3 mmφ spherical).
[Production of glycolic acid ester]
The hydrogenation reaction and analysis of the reaction solution were performed in the same manner as in Example 1 except that the catalyst was changed to 2 g of the above catalyst in Example 1. Table 1 shows the results.
[0034]
Comparative Example 4
(Preparation of catalyst)
A catalyst was prepared in the same manner as in Example 1 except that the carrier was changed to zeolite having a specific surface area of 560 m 2 / g (ST-34-3: NaY type, 1 mmφ extruded product, manufactured by Tosoh Corporation).
[Production of glycolic acid ester]
The hydrogenation reaction and analysis of the reaction solution were performed in the same manner as in Example 1 except that the catalyst was changed to 2 g of the above catalyst in Example 1. Table 1 shows the results.
[0035]
[Table 1]
Figure 0003573229
[0036]
Example 8
(Preparation of catalyst)
A catalyst was prepared in the same manner as in Example 1.
[Production of glycolic acid ester]
After filling 8 ml (3.68 g) of the above catalyst into a stainless steel gas-phase reaction tube having an inner diameter of 25 mm and a length of 350 mm, the reaction tube is installed vertically in an electric furnace to control the temperature of the catalyst layer to 135 ° C. did. 13.4 g / hr of a methanol solution of dimethyl oxalate having a dimethyl oxalate concentration of 20% by weight was supplied from the upper part of the reaction tube, and this was vaporized in the vaporization layer above the catalyst layer and supplied to the catalyst layer together with hydrogen gas. To carry out a hydrogenation reaction. At this time, the molar ratio of hydrogen to dimethyl oxalate (hydrogen / dimethyl oxalate) was 35.4, the reaction pressure was 9 atm, and the contact time was 6.67 seconds. After the reaction was continuously performed for 54 hours, the liquid collected in the ice-cooled trap was analyzed in the same manner as in Example 1. As a result, the conversion of dimethyl oxalate was 82.2%, the selectivity for methyl glycolate was 93.6%, and the space-time yield (STY) of methyl glycolate was 196.6 g / l-catalyst · hr.
[0037]
【The invention's effect】
According to the present invention, a glycolic acid ester can be produced from an oxalic acid diester at a high reaction rate and a high selectivity. In addition, since the catalyst is highly active and highly selective and does not contain chromium, there is no problem that the separation and purification of the glycolic acid ester is complicated by the generation of by-products, and the environmental problems associated with the treatment of the spent catalyst are eliminated. No cause.

Claims (1)

比表面積が900m/g以上の活性炭にルテニウムが担持されている触媒の存在下、シュウ酸ジエステルを水素により水素化することを特徴とするグリコール酸エステルの製造方法。A method for producing a glycolic acid ester, comprising hydrogenating an oxalic acid diester with hydrogen in the presence of a catalyst in which ruthenium is supported on activated carbon having a specific surface area of 900 m 2 / g or more.
JP24789495A 1995-09-26 1995-09-26 Method for producing glycolic acid ester Expired - Fee Related JP3573229B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24789495A JP3573229B2 (en) 1995-09-26 1995-09-26 Method for producing glycolic acid ester

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24789495A JP3573229B2 (en) 1995-09-26 1995-09-26 Method for producing glycolic acid ester

Publications (2)

Publication Number Publication Date
JPH0987232A JPH0987232A (en) 1997-03-31
JP3573229B2 true JP3573229B2 (en) 2004-10-06

Family

ID=17170161

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24789495A Expired - Fee Related JP3573229B2 (en) 1995-09-26 1995-09-26 Method for producing glycolic acid ester

Country Status (1)

Country Link
JP (1) JP3573229B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104109093B (en) * 2013-04-16 2016-04-13 中国石油化工股份有限公司 The method of oxalic ester hydrogenation synthesizing of glycolate

Also Published As

Publication number Publication date
JPH0987232A (en) 1997-03-31

Similar Documents

Publication Publication Date Title
WO2001021306A1 (en) Catalysts for hydrogenation of carboxylic acid
EP0056993B1 (en) Process for preparing oxalic acid diesters
US4874888A (en) Process for the preparation of a diester of oxalic acid
JP2002537972A (en) Catalyst carrier, supported catalyst and method for producing 1,2-epoxybutane
JP3573229B2 (en) Method for producing glycolic acid ester
RU2119905C1 (en) Method of synthesis of 1,4-butanediol
JP3546560B2 (en) Production method of glycolic acid ester
JP2523753B2 (en) Method for producing 2,3-dichloropyridine
KR870000035B1 (en) Process for the production of a diester or oxalic acid
EP0126552B1 (en) Process for producing carbonyl compounds
JP3994123B2 (en) Method for producing porous calcium fluoride, catalyst for hydrogenation reaction, and method for producing trihydrofluorocarbon
JP3773293B2 (en) Method for producing ammonia synthesis catalyst
EP1127865B1 (en) Process for producing 1,1,1-Trifluoroacetone
JP2002512992A (en) Production method of hexanediol
JP3921877B2 (en) Method for producing 1,4-cyclohexanedimethanol
JP2002186854A (en) Selective hydrogenation catalyst and method for selective hydrogenation using the same
JP3201057B2 (en) Process for producing glycolic acid ester
JP5028731B2 (en) Method for producing halogenated alcohol
JP2955866B2 (en) Method for producing dialkyl carbonate
JP3744023B2 (en) Process for producing 1,4-butanediol and / or tetrahydrofuran
KR100645665B1 (en) Continuous Process for the Production of S-?-hydroxy-?-butyrolactone
JP2001158754A (en) Method for producing tetrafluorobenzenedimethanol
JPS5980630A (en) Preparation of oxalic acid diester
JP3489179B2 (en) Method for producing hydrofluorocarbon
JP2782871B2 (en) Method for producing neopentyl glycol

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040323

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040518

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040610

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040623

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070709

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080709

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080709

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090709

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100709

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110709

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110709

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110709

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120709

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120709

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120709

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120709

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130709

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130709

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees