JP3572880B2 - Cooling tower - Google Patents

Cooling tower Download PDF

Info

Publication number
JP3572880B2
JP3572880B2 JP22238297A JP22238297A JP3572880B2 JP 3572880 B2 JP3572880 B2 JP 3572880B2 JP 22238297 A JP22238297 A JP 22238297A JP 22238297 A JP22238297 A JP 22238297A JP 3572880 B2 JP3572880 B2 JP 3572880B2
Authority
JP
Japan
Prior art keywords
exhaust gas
cooling tower
opening
gas introduction
tower
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP22238297A
Other languages
Japanese (ja)
Other versions
JPH1163469A (en
Inventor
敬三 浜口
容 長田
和寿 小綿
武彦 稲田
克樹 園田
修一 平田
正人 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Engineering Corp filed Critical JFE Engineering Corp
Priority to JP22238297A priority Critical patent/JP3572880B2/en
Publication of JPH1163469A publication Critical patent/JPH1163469A/en
Application granted granted Critical
Publication of JP3572880B2 publication Critical patent/JP3572880B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/30Technologies for a more efficient combustion or heat usage

Landscapes

  • Chimneys And Flues (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は都市ごみ焼却施設、可燃性廃棄物処理施設等の焼却装置などから排出される排ガスを廃水を生じることなく冷却するための減温塔に関するものである。
【0002】
【従来の技術】
焼却炉等から排出される800℃以上の高温排ガスは、ボイラやエコノマイザ等の熱エネルギー回収手段か、水の蒸発潜熱を利用した水噴射式の冷却塔によって、250〜350℃程度に減温され、後段の電気集塵機などの集塵機に導入され処理されていた。ところが、ごみ焼却において、近年、猛毒であるダイオキシン類が300℃付近の温度において生成することが知られるようになり、300℃付近の集塵処理は敬遠され、200℃以下でバグフィルターを用いた低温集塵が主流となりつつある。
【0003】
排ガスを200℃以下にするためには、ボイラ等により熱回収された250〜350℃程度の排ガスを、例えば、スプレーノズルを用いた水噴霧によりさらに減温する方法が用いられている。すなわち、ボイラと集塵機の間に減温塔を設置させて、ダイオキシン類の発生の少ない200℃以下の低温化を実施するケースが増えている。
【0004】
従来、減温塔は図9または図10に示すように円筒型胴部の下部に排ガス導入ダクトを設置し、上部に排ガス排出ダクトを設置し、排ガスを冷却するために水噴霧スプレーノズルを排ガス導入ダクト上部に設置していた。
【0005】
【発明が解決しようとする課題】
しかしながら、従来の形状の減温塔では、噴霧水の蒸発潜熱により排ガスを冷却するための減温領域である本体胴部において、導入する排ガス流れが均一に胴部断面全体に亘って拡散しないために、噴霧水滴の活発かつ効率的な蒸発が行われずに、未蒸発水滴による塔内壁の濡れ面形成、後段のパグフィルターへの未蒸発水滴の流出、濡れダストの生成によりダストの固着、ダスト排出困難等の問題を生じていた。
【0006】
図7、図8を用いて説明すると、排ガス導入ダクト12から導入された排ガスは減温塔胴部11に至る過程で、十分に拡散できずに、排ガス排出ダクト19に短絡して到達する。すなわち、所定の排ガス滞留時間が得られないために、噴霧水滴の十分な蒸発時間が得られないこと、また排ガス流れが胴部断面において均一でないので、噴霧水滴の蒸発が均一に効果的に行われず、温度分布に偏りが生じること、により噴霧水滴の完全蒸発が得られなくなり、以て上記問題を生じるに至る。
【0007】
これらの問題は、先に述べたように近年の集塵温度の低温下とともにより顕著に発生した問題である。
本発明は集塵温度の低温下にも対応でき、上記問題の発生しない高性能の減温塔を提供するものである。
【0008】
【課題を解決するための手段】
噴霧水滴の効果的な完全蒸発を達成し、以て上記問題点を解決するために、減温塔部におけるガス流れの整流化、均一化を目指し、以下の手段を考案した。
第一に、排ガスを廃水を生じることなく水噴霧により冷却する減温塔であって、排ガス導入部の形状に関して、
イ)排ガス導入ダクトを設置する高さ位置の減温塔胴部周方向に沿って、複数の開口を設置し、
ロ)該開口部をドーナツ状に覆うように排ガス導入ダクトを設置し、
排ガスを減温塔の半径方向に向けて排ガス導入ダクトへ導入し、減温塔胴部周方向に沿って導き、近接した開口部から互いに衝突させながら減温塔内部に誘導すること、
を特徴とする減温塔である。
【0009】
このように減温塔の排ガス導入部を構成することにより、排ガスは減温塔胴部周方向に設置された複数の開口から、誘引ファン等のガス吸引作用により塔内へ比較的低流速で導入され、スプレーノズルの噴霧水滴の蒸発により冷却されながら胴部を通過して排ガス排出部より排出される。複数の開口から塔内へ誘導されるので、近接した開口からの排ガス流が互いに衝突して混合されると同時に、複数の開口であるので、排ガス導入速度が低流速となり胴部断面において均一な上向流となる。
【0010】
すなわち、噴霧水滴の蒸発に関わる減温塔胴部において、排ガス流れが均一であるので、スプレーノズルにより水噴霧を行った際に効果的に噴霧水滴の蒸発がなされる作用が得られる。
【0011】
第二に、排ガスを廃水を生じることなく水噴霧により冷却する減温塔であって、排ガス導入部の形状に関して、
ハ)排ガス導入ダクトを設置する位置の減温塔胴部周方向に沿って、複数の開口を設置し、
ニ)複数に分岐した排ガス導入ダクトを前記開口部に接続する、ことを特徴とする減温塔である。
【0012】
この場合も、複数の開口から排ガスを導入するので第一の発明と同様の作用が得られる。。
第三に、請求項1または請求項2において、複数の開口は排ガス導入ダクトに近い側が開口割合が小さくなるように設置することを特徴とする減温塔である。
【0013】
このように開口割合を設置すると、排ガス導入部に近い側の開口部からの排ガス排出量が相対的に減少すると同時に、排ガス導入部に遠い側の開口部からの排ガス排出量が相対的に増加する。これは、排ガス導入ダクトに近い側の開口部の方が圧力損失が小さいので、より多くの排ガスが流出しやすいことを考慮し、より均一の量の排ガス導入を行うためである。したがって、排ガス導入部において、第一または第二の発明の作用がより効果的に得られる。
【0014】
第四に、請求項1〜3のいずれか1つにおいて、開口部の平均ガス流速が5m/s以下となるように開口部の全面積を設置することを特徴とする減温塔である。
【0015】
このように開口部の全面積を設定し、開口部における平均ガス流速を小さくすると、導入された排ガスが胴部断面において、中心部の流速が極端に速くなることなく、より均一に胴部での排ガス上向流が得られる。5m/s以上とすると、開口部から胴部に導入される排ガスが、塔断面の中心部に集中し、排ガスの上向流が軸中心付近に偏って、均一な排ガス流れが達成されにくくなるので、好ましくない。
【0016】
第五に、排ガス排出部の形状に関して、請求項1〜4の排ガス導入ダクトが排ガス排出ダクトであることを特徴とする減温塔である。
第一から第四の発明で述べた排ガス導入部の形状をそのまま排ガス排出部の形状として用いても、排ガスが均一になる作用が得られる。
【0017】
減温塔胴部におけるガスの均一さは排ガス導入部の形状に大きく影響されるが、排ガス排出部の形状がガスの流れを大きく偏らせるものであると、減温塔胴部においてもガス流れの均一さが損なわれることがある。そこで、このように排ガス排出部の形状を設定することにより、排ガスが従来の側面に設置されたーつのダクトによる偏った排ガス排出ではなく、複数の排出口により排ガスを排出するので、均一に排ガスを排出することが可能となる。
【0018】
また、排ガス排出ダクトを排ガス排出部の側面に設置するので、減温塔を設置する際に、従来の排ガス排出ダクトが塔上部に設置されるような不必要に垂直方向の長さを大きくする必要なく、コンパクトな垂直長さの減温塔が得られる。
【0019】
第六に、排ガスを廃水を生じることなく水噴霧により冷却する減温塔であつて、排ガス導入部が請求項1〜4による排ガス導入部の形状で、排ガス排出部が請求項5による形状であることを特徴とする減温塔である。
【0020】
上記、第一から第四で示した排ガス導入部の形状を有し、第六に示した排ガス排出部の形状を同時に有することにより、第一から第六の作用が相乗的に得られる。
【0021】
第七に、排ガスを水噴霧により冷却するスプレーノズルの設置位置を、請求項1における開口部に対して塔内ガス流れの下流側に設置し、塔断面において水噴霧流の対称性が得られるように、塔胴部周方向にスプレーノズルを複数本設置することを特徴とする請求項1〜6のいずれか1つに記載の減温塔である。
【0022】
このように水噴霧のためのスプレーノズルを設置することにより、スプレーノズルの水滴噴霧流が対面の内壁に衝突することなく、すなわち、内壁が水噴霧により濡れ面を形成することなく、胴部断面において対称的な水噴霧流が得られ、水噴霧流の均一性および、塔内の完全蒸発が効果的に得られる。
【0023】
【発明の実施の形態】
図1〜図6は、本発明に係わる減温塔の一実施形態を示す図である。
図7、図8は、本発明と比較のため従来の減温塔を示す図である。
ここで、1は減温塔外塔または本体胴部、2は排ガス導入ダクト、5はダスト捕集ホッパ部、6はダスト排出部、7は排ガス導入部における開口部、8は排ガス排出部における開口部、9は排ガス排出ダクト、10はスプレーノズル、11は減温塔本体胴部、12は排ガス導入ダクト、15はダスト捕集ホッパ部、16はダスト排出部、19は排ガス排出ダクトである。
【0024】
以下、図1〜図6に基づいて本発明の実施形態を説明する。
焼却炉などから排出されボイラなどにより熱回収されたあとの200℃以上の排ガスは、減温塔下部に設置される排ガス導入ダクト2を介して、減温塔1に導入され、スプレーノズル10(但し,簡単化のため図1〜図4においてはスプレーノズルを示していない。図5に記載)による水噴霧の結果、水滴の有する蒸発潜熱により排ガスは冷却されて、減温塔上部に設置される排ガス排出ダクト9から排出される。排出された排ガスは後段に設置される集塵機に導入される。但し、ここで述べた焼却炉、ボイラ、集塵機は図示していない。
【0025】
減温塔で減温された排ガスの温度は、後段の集塵機の条件やその他運転に係わる条件によって異なるが、例えば、ごみ焼却施設に設置される減温塔の場合は、150〜200℃のダイオキシン類の発生のごく少ない低温度に冷却することが近年、大いに望まれている。減温塔での温度降下、すなわち、入口温度と出口温度の差は、減温塔の大きさやスプレーノズルの噴霧性能にもよるが、通常、30〜200℃程度である。
【0026】
図1に示すのは、排ガス導入ダクト2を設置する位置の減温塔胴部1の周方向に沿って、複数の開口7を設置し、該開口部をドーナツ状に覆うように排ガス導入ダクト2を設置した場合の排ガス導入部の形状である。
【0027】
排ガス導入ダクト2から導入された排ガスは胴部1の周方向に複数設置された開口部7から、誘引フアン等のガス吸引作用により、塔内へ比較的低流速で導入され、スブレーノズルの噴霧水滴の蒸発により冷却されながら胴部1を通過して排ガス排出部(図示しない)より排出される。
【0028】
複数の開口から塔内へ誘導されるので、近接した開口からの排ガス流が互いに衝突して混合されると同時に、複数の開口であるので、排ガス導入速度が低流速となり胴部断面において均一な上向流となる。すなわち、噴霧水滴の蒸発に関わる減温塔胴部において、排ガス流れが均一であるので、スプレーノズルにより水噴霧を行った際に効果的に噴霧水滴の蒸発がなされる。
【0029】
図2に示すのは、排ガス導入ダクト2を設置する位置の減温塔胴部1の周方向に沿って、複数の開口7を設置し、複数に分岐した排ガス導入ダクト2を前記開口部7に接続する排ガス導入部の形状である。
【0030】
この場合も、図1と同様に複数の開口から排ガスを導入するので第一の発明と同様の作用が得られる。
また、開口部7における平均ガス流速は5m/s以下となるように、開口部の全面積を設定するのが望ましい。このように開口部における平均ガス流速を小さくすると、導入された排ガスが胴部断面において、中心部の流速が極端に速くなることなく、より均一に胴部での排ガス上向流が得られる。5m/s以上とすると、開口部から胴部に導入される排ガスが、塔断面の中心部に集中し、排ガスの上向流が軸中心付近に偏って、均一な排ガス流れが達成されにくくなるので、好ましくない。
【0031】
さらに、排ガス導入部の開口部7を図3に示すように、排ガス導入口に近い側の開口割合が小さくなるように設置してもよい。このように設置すると、排ガス導入部に近い側の開口部からの排ガス導入量が相対的に減少すると同時に、排ガス導入部に遠い側の開口部からの排ガス導入量が相対的に増加する。
【0032】
これは、排ガス導入ダクトに近い側の開口部の方が圧力損失が小さいので、より多くの排ガスが流出しやすいことを考慮し、より均一の量の排ガス排出を行うためである。したがって、排ガス導入部において、図1または図2で示した効果がより確実に得られる。
【0033】
図4に示すのは、本発明の排ガス導入部の形状を、排ガス排出部に用いた場合を示す図である。排ガス導入部の形状を排ガス排出部に用いても、同等にガス流れが均一になる効果が得られる。また、開口割合を排ガス排出口に近い側を小さくしてもよい。
【0034】
さらに、図5に示すように排ガス導入部の形状と排ガス排出部の形状を、同時に組み合わせて用いてもよく、すでに述べた効果がより顕著に得られることは言うまでもない。
【0035】
次に、水噴霧のためのスプレーノズル10は、排ガス導入部の二重塔部分より上部に設置し、塔断面において水噴霧流の対称性が得られるように、塔胴部周方向に複数本設置することが望ましい。
【0036】
図6に示すのは図5Bにおける断面図で、スプレーノズルを、水噴霧流の対称性が得られるように配置させた実施例である。図6(a)は同一断面に等間隔に4本設置した場合、図6(b)は等間隔に3本設置した場合、図6(c)は等間隔ではないが、対面方向にノズルを2組、合計4本設置した場合をそれぞれ示す図である。何れの場合も、水噴霧流の対称性が得られることは明らかである。
【0037】
このように水噴霧のためのスプレーノズルを設置することにより、スプレーノズルの水滴噴霧流が対面の内壁に衝突することなく、すなわち、内壁が水噴霧により濡れ面を形成することなく、胴部断面1こおいて対称的な水噴霧流が得られ、水噴霧流の均一性および、塔内の完全蒸発が効果的に得られる。
【0038】
図6では、スプレーノズルを同一断面に複数本設置したが、もちろん、設置断面を二段以上にしてもよい。
スプレーノズル10は、運転条件によっても異なるが、例えば、200℃以下に冷却するような低温用の減温塔の場合は、より微細な噴霧水滴が得られる水と空気を用いる二流体ノズルを採用するのが好ましいが特に限定しない。また、噴霧水として、消石灰スラリ等のアルカリ性吸収液を用いて、排ガス中の酸性成分を除去してもよく、水の潜熱を用いて排ガスを冷却できるものであればいかなる様式でもよい。
【0039】
スプレーノズル10を減温塔に設置する場合の取り付け方法として、例えば、内壁から数1Ocm突き出してもよいし、そうでなくともよい。ノズルの耐久性を確保するために、ノズルの外周に保護管を取り付けてもよいし、ノズルと保護管の間にパージエアー等を用いてもよい。また、ノズルを断面に対して仰角を持たせて設置するか、ノズル先端部をガス流れ方向に屈曲させてもよい。何れの場合においても、本発明の効果が同様に得られることは明らかである。
【0040】
本発明は、説明の便宜上、排ガスが減温塔下部から導入され、上部から排出される場合について述べたが、もちろん、減温塔上部より排ガスを導入し、下部から排出する場合(図5の黒太矢印)にも適用できることは明らかで同等の効果がある。
【0041】
「実施例」
本発明をごみ焼却場に付設する減温塔に実施して得られた試験結果を従来の比較例とともに図9、図10に示す。
【0042】
図9は、本発明を実施した場合の試験結果を示す図である。
図10は、本発明を実施しない場合の試験結果の従来の比較例を示す図である。但し、20は堆積ダストである。
【0043】
実施例は、図1に示す排ガス導入部の形状を排ガス排出部にも採用した図5に示す減温塔である。開口部の全面積は開口部の平均排ガス流速が4m/sとなるように設定した。
【0044】
比較例は、図7に示す形状の減温塔とした。
共通の条件として、減温塔の外形は同一寸法とし、排ガス処理量40000Nm /h、減温塔排ガス滞留時間4秒(容積と排ガス量で算定される)、減温塔入口排ガス温度約200℃、出口排ガス温度(水噴霧量を調整して一定とする)150℃とした。スプレーノズルは4本同一断面に等間隔に設置し、二流体ノズルを用いた。
【0045】
試験内容は、まず、水噴霧を行う前に塔内の断面におけるガス流速分布を測定し、次に水霧運転を連続一ケ月行い、一ヶ月後の塔内のダストの堆積状況を確認した。
【0046】
この結果、水噴霧前のガス速度分布は、従来の比較例では、排ガス導入ダクトから排出ダクトにかけてガス流れが短絡して分散しないので、流速分布が極端に偏った結果が得られたが、本発明の実施例ではほぼ均一な流速分布が得られた。
【0047】
次に、一ヶ月後の塔内ダスト堆積を観察すると、比較例では、塔内壁の広範囲に亘って噴霧水滴の不完全蒸発による湿りダストが10cm以上の厚みで堆積し、一部は排ガス検熱により固着していたのに対し、本発明の実施例は、塔内のダストの堆積は見られず、内壁にうっすらとダストが付着している程度であった。
【0048】
ダストの堆積は、未蒸発水滴が塔壁に付着したり、ダストの凝集効果を促進させるために発生するので、水滴が完全蒸発し、以て安定した運転がなされたかどうかの判断指標となる。
【0049】
すなわち、本発明の減温塔は、塔内で均一な排ガス流れが得られ、150℃と低温であっても効果的に噴霧水滴を蒸発させ、もって不完全蒸発によるダスト堆積等の問題の生じない優れた減温塔であることが確認できた。
【0050】
【発明の効果】
本発明の減温塔を用いれば、排ガス導入部で排ガスが効果的に整流され、胴部において、均一なガス流れが得られので、ダイオキシン類の発生のごく少ない150℃程度の低温であっても、スブレーノズルによる噴霧水滴を効果的に蒸発させ、以て不完全蒸発による塔内のダスト堆積等の問題の生じない優れた排ガス冷却が可能となる。
【図面の簡単な説明】
【図1】本発明に係わる減温塔の排ガス導入部形状の実施形態の一例を示す図。
【図2】本発明に係わる減温塔の排ガス導入部形状の実施形態のたの例を示す図。
【図3】本発明に係わる減温塔の排ガス導入部形状の実施形態の他の例を示す図。
【図4】本発明に係わる減温塔の排ガス排出部形状の実施形態の一例を示す図。
【図5】本発明に係わる減温塔の実施形態の一例を示す図。
【図6】本発明に係わる減温塔のスプレーノズル設置の実施形態の一例を示す図。
【図7】従来の減温塔の一例を示す図。
【図8】従来の減温塔の他の例を示す図。
【図9】本発明に係わる減温塔の運転結果を示す図。
【図10】従来の減温塔の運転結果を示す図。
【符号の説明】
1…減温塔外塔または本体胴部、2…排ガス導入ダク卜、5…ダスト捕集ホッパ部、6…ダスト排出部、7…排ガス導入部における開口部、8…排ガス排出部における開口部、9…ドーナツ型の排ガス排出ダクト、10…スプレーノズル、11…減温塔本体胴部、12…排ガス導入ダクト、15…ダスト捕集ホッパ部、16…ダスト排出部、19…排ガス排出ダクト、20…堆積ダスト。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a cooling tower for cooling exhaust gas discharged from an incinerator of a municipal waste incineration facility, a combustible waste treatment facility, or the like without generating wastewater.
[0002]
[Prior art]
The high-temperature exhaust gas of 800 ° C. or higher discharged from an incinerator or the like is cooled to about 250 to 350 ° C. by a thermal energy recovery means such as a boiler or an economizer or a water injection type cooling tower utilizing latent heat of vaporization of water. , And was introduced to and processed by a dust collector such as an electric dust collector at a later stage. However, in recent years, it has been known that dioxins, which are highly toxic, are generated at temperatures around 300 ° C. in incineration of garbage, and dust collection at around 300 ° C. is avoided, and a bag filter is used at 200 ° C. or less. Low-temperature dust collection is becoming mainstream.
[0003]
In order to reduce the exhaust gas to 200 ° C. or lower, a method of further reducing the temperature of the exhaust gas of about 250 to 350 ° C. recovered by heat with a boiler or the like, for example, by water spraying using a spray nozzle is used. That is, there are increasing cases where a cooling tower is installed between a boiler and a dust collector, and the temperature is reduced to 200 ° C. or less where generation of dioxins is small.
[0004]
Conventionally, as shown in FIG. 9 or FIG. 10, a cooling tower is provided with an exhaust gas introduction duct at a lower part of a cylindrical body and an exhaust gas discharge duct at an upper part, and a water spray spray nozzle is provided to cool the exhaust gas. It was installed above the introduction duct.
[0005]
[Problems to be solved by the invention]
However, in the conventional temperature-reducing tower, the flow of the exhaust gas to be introduced is not uniformly diffused over the entire body section in the main body, which is a temperature-reducing region for cooling the exhaust gas by the latent heat of evaporation of the spray water. In addition, the active and efficient evaporation of the spray water droplets is not performed, the wet surface of the tower inner wall is formed by the non-evaporated water droplets, the non-evaporated water droplets flow out to the subsequent pug filter, the sticking of dust due to the generation of wet dust, and the discharge of dust Problems such as difficulties have arisen.
[0006]
Explaining with reference to FIGS. 7 and 8, the exhaust gas introduced from the exhaust gas introduction duct 12 does not sufficiently diffuse in the process of reaching the cooling tower body 11, and reaches the exhaust gas discharge duct 19 by being short-circuited. That is, since the predetermined exhaust gas residence time cannot be obtained, a sufficient evaporation time of the spray water droplet cannot be obtained, and since the exhaust gas flow is not uniform in the body section, the evaporation of the spray water droplet is uniformly and effectively performed. However, since the temperature distribution is biased, it is impossible to completely evaporate the sprayed water droplets, thereby causing the above problem.
[0007]
These problems are, as described above, problems that have become more prominent in recent years at low dust collection temperatures.
An object of the present invention is to provide a high-performance cooling tower which can cope with low dust collection temperatures and does not cause the above problems.
[0008]
[Means for Solving the Problems]
In order to achieve the effective complete evaporation of the spray water droplets and to solve the above problems, the following means were devised aiming at rectification and uniformization of the gas flow in the cooling tower section.
First, it is a cooling tower that cools the exhaust gas by water spray without generating wastewater, regarding the shape of the exhaust gas introduction part,
B) A plurality of openings are installed along the circumference of the cooling tower at the height where the exhaust gas introduction duct is installed,
B) installing an exhaust gas introduction duct so as to cover the opening in a donut shape ;
Introducing the exhaust gas into the exhaust gas introduction duct in the radial direction of the cooling tower, guiding the exhaust gas along the circumferential direction of the cooling tower body, and guiding the exhaust gas into the cooling tower while colliding with each other from adjacent openings;
It is a cooling tower characterized by the following.
[0009]
By configuring the exhaust gas introduction section of the cooling tower as described above, the exhaust gas flows at a relatively low flow rate into the tower from a plurality of openings installed in the circumferential direction of the cooling tower body by a gas suction action of an induction fan or the like. It is introduced and passes through the body while being cooled by evaporation of the water droplets sprayed from the spray nozzle, and is discharged from the exhaust gas discharge unit. Since the exhaust gas is guided from a plurality of openings into the tower, the exhaust gas flows from the adjacent openings collide with each other and are mixed.At the same time, since the plurality of openings, the exhaust gas introduction speed is low and the body cross section is uniform. It becomes upward flow.
[0010]
That is, since the flow of the exhaust gas is uniform in the body of the cooling tower related to the evaporation of the spray water droplets, the effect that the spray water droplets are effectively evaporated when water spray is performed by the spray nozzle is obtained.
[0011]
Second, a cooling tower that cools the exhaust gas by water spray without generating wastewater, regarding the shape of the exhaust gas introduction part,
C) A plurality of openings are installed along the circumferential direction of the cooling tower at the position where the exhaust gas introduction duct is installed,
D) A cooling tower characterized by connecting a plurality of branched exhaust gas introduction ducts to the opening.
[0012]
Also in this case, since the exhaust gas is introduced from the plurality of openings, the same effect as in the first invention can be obtained. .
Thirdly, in the cooling tower according to claim 1 or 2, the plurality of openings are installed so that the opening ratio is smaller on the side near the exhaust gas introduction duct.
[0013]
When the opening ratio is set in this manner, the amount of exhaust gas discharged from the opening closer to the exhaust gas introduction portion is relatively reduced, and at the same time, the amount of exhaust gas discharged from the opening farther from the exhaust gas introduction portion is relatively increased. I do. This is because the opening closer to the exhaust gas introduction duct has a smaller pressure loss, so that a more uniform amount of exhaust gas is introduced in consideration of the fact that more exhaust gas is likely to flow out. Therefore, the function of the first or second invention can be more effectively obtained in the exhaust gas introduction section.
[0014]
Fourth, a cooling tower according to any one of claims 1 to 3, wherein the entire area of the opening is set so that the average gas flow velocity of the opening is 5 m / s or less.
[0015]
When the entire area of the opening is set in this manner and the average gas flow velocity in the opening is reduced, the introduced exhaust gas does not extremely increase in the center in the body section, and the flow rate of the exhaust gas in the body section becomes more uniform. Exhaust gas upward flow is obtained. When the speed is 5 m / s or more, the exhaust gas introduced into the body from the opening concentrates at the center of the tower section, and the upward flow of the exhaust gas is biased near the axial center, making it difficult to achieve a uniform exhaust gas flow. It is not preferred.
[0016]
Fifth, with regard to the shape of the exhaust gas discharge section, the exhaust gas introduction duct according to any one of claims 1 to 4 is an exhaust gas discharge duct.
Even if the shape of the exhaust gas introduction section described in the first to fourth inventions is used as it is as the shape of the exhaust gas discharge section, an effect of making the exhaust gas uniform can be obtained.
[0017]
The uniformity of gas in the body of the cooling tower is greatly affected by the shape of the exhaust gas introduction section. However, if the shape of the exhaust gas exhaust section greatly biases the gas flow, the gas flow also in the cooling tower body May be impaired. Therefore, by setting the shape of the exhaust gas discharge section in this way, the exhaust gas is exhausted from multiple outlets instead of the uneven exhaust gas discharge by the conventional two ducts installed on the side, so that the exhaust gas is uniformly discharged. Can be discharged.
[0018]
In addition, since the exhaust gas discharge duct is installed on the side of the exhaust gas discharge unit, when installing the cooling tower, the length in the vertical direction is unnecessarily increased as the conventional exhaust gas discharge duct is installed at the top of the tower No need for a compact vertical length cooling tower.
[0019]
Sixth, a cooling tower for cooling exhaust gas by water spray without generating wastewater, wherein the exhaust gas introduction section has the shape of the exhaust gas introduction section according to claims 1 to 4, and the exhaust gas discharge section has the shape according to claim 5. It is a cooling tower characterized by the following.
[0020]
By having the shapes of the exhaust gas introduction part shown in the first to fourth and the shape of the exhaust gas discharge part shown in the sixth at the same time, the first to sixth actions are synergistically obtained.
[0021]
Seventh, the installation position of the spray nozzle for cooling the exhaust gas by water spray is installed on the downstream side of the gas flow in the tower with respect to the opening in claim 1, and the symmetry of the water spray flow in the tower cross section is obtained. The cooling tower according to any one of claims 1 to 6, wherein a plurality of spray nozzles are provided in the circumferential direction of the tower body.
[0022]
By installing the spray nozzle for water spray in this way, the water droplet spray flow of the spray nozzle does not collide with the facing inner wall, i.e., the inner wall does not form a wet surface due to water spray, the trunk section , A symmetrical water spray stream is obtained, and uniformity of the water spray stream and complete evaporation in the column are effectively obtained.
[0023]
BEST MODE FOR CARRYING OUT THE INVENTION
1 to 6 are diagrams showing one embodiment of a cooling tower according to the present invention.
7 and 8 are diagrams showing a conventional cooling tower for comparison with the present invention.
Here, 1 is a cooling tower outer tower or main body, 2 is an exhaust gas introduction duct, 5 is a dust collection hopper, 6 is a dust discharge section, 7 is an opening in the exhaust gas introduction section, and 8 is an exhaust gas discharge section. An opening, 9 is an exhaust gas discharge duct, 10 is a spray nozzle, 11 is a body of a cooling tower main body, 12 is an exhaust gas introduction duct, 15 is a dust collection hopper, 16 is a dust discharge section, and 19 is an exhaust gas discharge duct. .
[0024]
Hereinafter, an embodiment of the present invention will be described with reference to FIGS.
Exhaust gas of 200 ° C. or higher after being discharged from an incinerator or the like and recovered by a boiler or the like is introduced into the cooling tower 1 through an exhaust gas introduction duct 2 installed at a lower part of the cooling tower, and spray nozzles 10 ( However, for the sake of simplicity, the spray nozzle is not shown in FIGS. 1 to 4. As shown in FIG. 5, the exhaust gas is cooled by the latent heat of vaporization of the water droplets and installed at the upper part of the cooling tower. From the exhaust gas discharge duct 9. The discharged exhaust gas is introduced into a dust collector installed at a later stage. However, the incinerator, boiler, and dust collector described here are not shown.
[0025]
The temperature of the exhaust gas cooled by the cooling tower varies depending on the conditions of the subsequent dust collector and other conditions related to operation. For example, in the case of a cooling tower installed in a refuse incineration facility, dioxin of 150 to 200 ° C is used. In recent years, it has been greatly desired to cool to a low temperature at which generation of a class is minimal. The temperature drop in the cooling tower, that is, the difference between the inlet temperature and the outlet temperature, depends on the size of the cooling tower and the spray performance of the spray nozzle, but is usually about 30 to 200 ° C.
[0026]
FIG. 1 shows that a plurality of openings 7 are provided along the circumferential direction of the temperature-reducing tower body 1 at the position where the exhaust gas introduction duct 2 is installed, and the exhaust gas introduction duct is covered so as to cover the openings in a donut shape. 2 is the shape of the exhaust gas introduction section when the apparatus is installed.
[0027]
Exhaust gas introduced from the exhaust gas introduction duct 2 is introduced into the tower at a relatively low flow rate from a plurality of openings 7 provided in the circumferential direction of the body 1 by a gas suction effect of an inducing fan or the like, and is sprayed by a spray nozzle. While being cooled by evaporation of water droplets, the water droplets pass through the body 1 and are discharged from an exhaust gas discharge unit (not shown).
[0028]
Since the exhaust gas is guided from a plurality of openings into the tower, the exhaust gas flows from the adjacent openings collide with each other and are mixed.At the same time, since the plurality of openings, the exhaust gas introduction speed is low and the body cross section is uniform. It becomes upward flow. That is, since the flow of exhaust gas is uniform in the body of the cooling tower related to the evaporation of the spray water droplets, the spray water droplets are effectively evaporated when water spray is performed by the spray nozzle.
[0029]
FIG. 2 shows that a plurality of openings 7 are provided along the circumferential direction of the temperature-reducing tower body 1 at a position where the exhaust gas introduction duct 2 is installed, and the exhaust gas introduction duct 2 branched into a plurality of openings is connected to the opening 7. This is the shape of the exhaust gas introduction section connected to.
[0030]
Also in this case, the exhaust gas is introduced from a plurality of openings as in FIG. 1, so that the same operation as the first invention can be obtained.
Further, it is desirable to set the entire area of the opening so that the average gas flow velocity in the opening 7 is 5 m / s or less. When the average gas flow velocity in the opening is reduced in this way, the exhaust gas introduced can have a more uniform upward flow of exhaust gas in the body section without the flow velocity in the center part becoming extremely high in the body section. When the speed is 5 m / s or more, the exhaust gas introduced into the body from the opening concentrates at the center of the tower section, and the upward flow of the exhaust gas is biased near the axial center, making it difficult to achieve a uniform exhaust gas flow. It is not preferred.
[0031]
Further, as shown in FIG. 3, the opening 7 of the exhaust gas introduction section may be installed such that the opening ratio on the side close to the exhaust gas introduction port becomes small. With this arrangement, the amount of exhaust gas introduced from the opening closer to the exhaust gas introduction portion relatively decreases, and at the same time, the amount of exhaust gas introduced from the opening farther from the exhaust gas introduction portion relatively increases.
[0032]
This is because a more uniform amount of exhaust gas is discharged in consideration of the fact that the opening near the exhaust gas introduction duct has a smaller pressure loss, so that more exhaust gas is likely to flow out. Therefore, the effect shown in FIG. 1 or 2 can be more reliably obtained in the exhaust gas introduction section.
[0033]
FIG. 4 is a diagram showing a case where the shape of the exhaust gas introduction section of the present invention is used for an exhaust gas discharge section. Even when the shape of the exhaust gas introduction section is used for the exhaust gas discharge section, the effect of uniformly equalizing the gas flow can be obtained. Further, the opening ratio may be reduced on the side close to the exhaust gas discharge port.
[0034]
Further, as shown in FIG. 5, the shape of the exhaust gas introduction portion and the shape of the exhaust gas discharge portion may be used in combination at the same time, and it goes without saying that the effects described above are more remarkably obtained.
[0035]
Next, the spray nozzles 10 for water spraying are installed above the double tower portion of the exhaust gas introduction section, and a plurality of spray nozzles are arranged in the circumferential direction of the tower body so as to obtain the symmetry of the water spray flow in the tower cross section. It is desirable to install.
[0036]
FIG. 6 is a cross-sectional view of FIG. 5B, showing an embodiment in which the spray nozzles are arranged so as to obtain the symmetry of the water spray flow. FIG. 6A shows a case where four nozzles are installed at equal intervals in the same cross section, FIG. 6B shows a case where three nozzles are installed at equal intervals, and FIG. It is a figure each showing the case where two sets and a total of four are installed. It is clear that in each case the symmetry of the water spray flow is obtained.
[0037]
By installing the spray nozzle for water spray in this way, the water droplet spray flow of the spray nozzle does not collide with the facing inner wall, i.e., the inner wall does not form a wet surface due to water spray, the trunk section In this case, a symmetrical water spray stream is obtained, and uniformity of the water spray stream and complete evaporation in the column are effectively obtained.
[0038]
In FIG. 6, a plurality of spray nozzles are installed on the same cross section, but, of course, the installation cross section may be two or more.
The spray nozzle 10 varies depending on the operating conditions. For example, in the case of a cooling tower for low temperature such as cooling to 200 ° C. or less, a two-fluid nozzle using water and air that can obtain finer spray water droplets is employed. However, it is not particularly limited. Further, an acidic component in the exhaust gas may be removed by using an alkaline absorbing liquid such as slaked lime slurry as the spray water, and any method may be used as long as the exhaust gas can be cooled using the latent heat of water.
[0039]
As an installation method when the spray nozzle 10 is installed in the cooling tower, for example, it may or may not protrude several 10 cm from the inner wall. In order to ensure the durability of the nozzle, a protection tube may be attached to the outer periphery of the nozzle, or purge air or the like may be used between the nozzle and the protection tube. Further, the nozzle may be installed with an elevation angle with respect to the cross section, or the nozzle tip may be bent in the gas flow direction. It is clear that the effect of the present invention can be similarly obtained in any case.
[0040]
In the present invention, for convenience of explanation, the case where the exhaust gas is introduced from the lower part of the cooling tower and discharged from the upper part has been described. Of course, the case where the exhaust gas is introduced from the upper part of the cooling tower and discharged from the lower part (see FIG. 5). It is clear that the present invention can be applied to a thick black arrow), and has the same effect.
[0041]
"Example"
Test results obtained by implementing the present invention in a cooling tower attached to a refuse incineration plant are shown in FIGS. 9 and 10 together with a conventional comparative example.
[0042]
FIG. 9 is a diagram showing test results when the present invention is implemented.
FIG. 10 is a diagram showing a conventional comparative example of test results when the present invention is not performed. Here, reference numeral 20 denotes accumulated dust.
[0043]
The embodiment is a temperature-reducing tower shown in FIG. 5 in which the shape of the exhaust gas introduction section shown in FIG. 1 is adopted also for the exhaust gas discharge section. The total area of the opening was set such that the average exhaust gas flow rate at the opening was 4 m / s.
[0044]
The comparative example was a cooling tower having the shape shown in FIG.
As common conditions, the external shape of the cooling tower is the same size, the exhaust gas throughput is 40000 Nm 3 / h, the residence time of the cooling tower exhaust gas is 4 seconds (calculated by the volume and the exhaust gas amount), and the exhaust gas temperature at the inlet of the cooling tower is about 200 ° C, and the temperature of the exhaust gas at the outlet (the water spray amount was adjusted to be constant) to 150 ° C. Four spray nozzles were installed at equal intervals on the same section, and a two-fluid nozzle was used.
[0045]
First, the gas flow rate distribution in the cross section of the tower was measured before water spraying, and then the water fog operation was performed for one month continuously, and the dust accumulation state in the tower one month later was confirmed.
[0046]
As a result, in the gas velocity distribution before water spraying, in the conventional comparative example, the gas flow from the exhaust gas introduction duct to the discharge duct was short-circuited and did not disperse. In the embodiment of the invention, a substantially uniform flow velocity distribution was obtained.
[0047]
Next, observing the dust accumulation in the tower one month later, in the comparative example, wet dust due to incomplete evaporation of the spray water droplets was deposited with a thickness of 10 cm or more over a wide range of the inner wall of the tower, and a part of the exhaust gas was detected by thermal analysis. On the other hand, in the example of the present invention, no accumulation of dust in the tower was observed, and the dust was slightly attached to the inner wall.
[0048]
Dust accumulation occurs because unevaporated water droplets adhere to the tower wall or promote the dust aggregation effect, so that the water droplets completely evaporate, and thus serve as a determination index of whether stable operation has been achieved.
[0049]
In other words, the cooling tower according to the present invention provides a uniform exhaust gas flow in the tower, effectively evaporates the sprayed water droplets even at a low temperature of 150 ° C., thereby causing problems such as dust accumulation due to incomplete evaporation. It was confirmed that it was not an excellent cooling tower.
[0050]
【The invention's effect】
By using the cooling tower of the present invention, the exhaust gas is effectively rectified in the exhaust gas introduction section, and a uniform gas flow is obtained in the body, so that the generation of dioxins is as low as about 150 ° C. In addition, it is possible to effectively evaporate the water droplets sprayed by the spray nozzle and thereby to achieve excellent exhaust gas cooling without causing problems such as dust accumulation in the tower due to incomplete evaporation.
[Brief description of the drawings]
FIG. 1 is a diagram showing an example of an embodiment of an exhaust gas introduction section shape of a cooling tower according to the present invention.
FIG. 2 is a view showing another example of the embodiment of the exhaust gas introduction section shape of the cooling tower according to the present invention.
FIG. 3 is a view showing another example of the embodiment of the shape of the exhaust gas introduction portion of the cooling tower according to the present invention.
FIG. 4 is a view showing an example of an embodiment of an exhaust gas discharge section shape of a cooling tower according to the present invention.
FIG. 5 is a diagram showing an example of an embodiment of a cooling tower according to the present invention.
FIG. 6 is a view showing an example of an embodiment of installation of a spray nozzle of a cooling tower according to the present invention.
FIG. 7 is a diagram showing an example of a conventional cooling tower.
FIG. 8 is a diagram showing another example of a conventional cooling tower.
FIG. 9 is a view showing an operation result of the cooling tower according to the present invention.
FIG. 10 is a view showing an operation result of a conventional cooling tower.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Outer tower or main body of cooling tower, 2 ... Exhaust gas introduction duct, 5 ... Dust collection hopper section, 6 ... Dust discharge section, 7 ... Opening in exhaust gas introduction section, 8 ... Opening in exhaust gas discharge section , 9: Donut exhaust gas discharge duct, 10: Spray nozzle, 11: Cooling tower body, 12: Exhaust gas introduction duct, 15: Dust collection hopper, 16: Dust discharge unit, 19: Exhaust gas discharge duct, 20 ... dust dust.

Claims (7)

排ガスを廃水を生じることなく水噴霧により冷却する減温塔であって、排ガス導入部の形状に関して、
イ)排ガス導入ダクトを設置する高さ位置の減温塔胴部周方向に沿って、複数の開口を設置し、
ロ)該開口部をドーナツ状に覆うように排ガス導入ダクトを設置し、
排ガスを減温塔の半径方向に向けて排ガス導入ダクトへ導入し、減温塔胴部周方向に沿って導き、近接した開口部から互いに衝突させながら減温塔内部に誘導すること、
を特徴とする減温塔。
It is a cooling tower that cools exhaust gas by water spray without generating wastewater, and regarding the shape of the exhaust gas introduction part,
B) A plurality of openings are installed along the circumference of the cooling tower at the height where the exhaust gas introduction duct is installed,
B) installing an exhaust gas introduction duct so as to cover the opening in a donut shape ;
Introducing the exhaust gas into the exhaust gas introduction duct in the radial direction of the cooling tower, guiding the exhaust gas along the circumferential direction of the cooling tower body, and guiding the exhaust gas into the cooling tower while colliding with each other from adjacent openings;
A cooling tower.
排ガスを廃水を生じることなく水噴霧により冷却する減温塔であって、排ガス導入部の形状に関して、
ハ)排ガス導入ダクトを設置する高さ位置の減温塔胴部周方向に沿って、複数の開口を設置し、
ニ)複数に分岐した排ガス導入ダクトを前記開口部に接続すること、
を特徴とする減温塔。
It is a cooling tower that cools exhaust gas by water spray without generating wastewater, and regarding the shape of the exhaust gas introduction part,
C) A plurality of openings are installed along the circumference of the cooling tower body at the height where the exhaust gas introduction duct is installed,
D) connecting a plurality of branched exhaust gas introduction ducts to the opening;
A cooling tower.
請求項1または2において、複数の開口は、排ガスの流れの上流側の方が開口割合が小さくなるように設置することを特徴とする減温塔。3. The cooling tower according to claim 1, wherein the plurality of openings are installed such that an opening ratio is smaller on an upstream side of a flow of the exhaust gas . 請求項1〜3のいずれか1つにおいて、開口部の平均ガス流速が5m/s以下となるように開口部の全面積を設置することを特徴とする減温塔。The cooling tower according to any one of claims 1 to 3, wherein the entire area of the opening is set such that the average gas flow velocity in the opening is 5 m / s or less. 排ガスを廃水を生じることなく水噴霧により冷却する減温塔であって、排ガス排出部の形状に関して、A cooling tower that cools exhaust gas by water spray without generating wastewater, and regarding the shape of the exhaust gas discharge part,
ホ)排ガス排出ダクトを設置する高さ位置の減温塔胴部周方向に沿って、複数の開口を設置し、E) A plurality of openings are installed along the circumference of the cooling tower at the height where the exhaust gas discharge duct is installed,
へ)該開口部をドーナツ状に覆うように排ガス排出ダクトを設置し、F) Install an exhaust gas exhaust duct so as to cover the opening like a donut,
排ガスを減温塔内部から該開口部を介して排ガス排出ダクトへ排出し、減温塔の半径方向に向けて排出すること、Discharging the exhaust gas from the inside of the cooling tower to the exhaust gas discharge duct through the opening, and discharging the exhaust gas in the radial direction of the cooling tower;
を特徴とする減温塔。A cooling tower.
排ガスを廃水を生じることなく水噴霧により冷却する減温塔であって、排ガス導入部が請求項1〜4による排ガス導入部の形状であり、かつ排ガス排出部が請求項5による形状であることを特徴とする減温塔。A cooling tower for cooling exhaust gas by water spray without generating wastewater, wherein the exhaust gas introduction part has the shape of the exhaust gas introduction part according to claims 1 to 4, and the exhaust gas discharge part has the shape according to claim 5. A cooling tower. 排ガスを水噴霧により冷却するスプレーノズルの設置位置を、前記開口部に対して塔内ガス流れの下流側に設置し、塔断面において水噴霧流の対称性が得られるように、塔胴部周方向にスプレーノズルを複数本設置することを特徴とする請求項1〜6のいずれか1つに記載の減温塔。The installation position of the spray nozzle that cools the exhaust gas by water spray is installed on the downstream side of the gas flow in the tower with respect to the opening, and the periphery of the tower body is obtained so as to obtain the symmetry of the water spray flow in the tower cross section. The cooling tower according to any one of claims 1 to 6, wherein a plurality of spray nozzles are provided in the direction.
JP22238297A 1997-08-19 1997-08-19 Cooling tower Expired - Fee Related JP3572880B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22238297A JP3572880B2 (en) 1997-08-19 1997-08-19 Cooling tower

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22238297A JP3572880B2 (en) 1997-08-19 1997-08-19 Cooling tower

Publications (2)

Publication Number Publication Date
JPH1163469A JPH1163469A (en) 1999-03-05
JP3572880B2 true JP3572880B2 (en) 2004-10-06

Family

ID=16781489

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22238297A Expired - Fee Related JP3572880B2 (en) 1997-08-19 1997-08-19 Cooling tower

Country Status (1)

Country Link
JP (1) JP3572880B2 (en)

Also Published As

Publication number Publication date
JPH1163469A (en) 1999-03-05

Similar Documents

Publication Publication Date Title
KR100644994B1 (en) Exhaust gas treating device
EP0314072B1 (en) Supercooling type mist eliminator apparatus
JP2005500501A (en) Method and apparatus for cooling high-temperature exhaust gas and combustion treatment apparatus
CN108744900A (en) A kind of continuous casting system diffusing chimney elimination steam unit
PL176814B1 (en) Dripping tower for cooling, moistening and/or purifying a gas and method of cooling, moistening and/or purifying a gas in such tower
JP3572880B2 (en) Cooling tower
JP3572881B2 (en) Cooling tower
CN208893924U (en) A kind of continuous casting system diffusing chimney elimination steam unit
US4915712A (en) Evaporative gas cooling system and method
JPH0735325A (en) Gas cooling chamber and waste treatment apparatus having the same
CN211998904U (en) Waste water treatment flue evaporator capable of preventing wall surface dust deposition
CN211004655U (en) Desulfurization waste water drying device
CN112451981A (en) Atomization evaporation system
JPH11141856A (en) Temperature-reducing tower, and its operating method
JP3447152B2 (en) Low temperature gas cooling tower
JP3212489B2 (en) Low temperature gas cooling tower
CN213942130U (en) Atomization evaporation system
JPH10216451A (en) Water spraying method of cooling column
JP2902627B1 (en) Combustion flue gas cooling system
JP2000271422A (en) Downward stream type temperature reduction column
CN220677256U (en) PM2.5/CPM/SO deep removal for wet dedusting flue gas 3 Is a device of (2)
RU2099662C1 (en) Water-cooling tower
JP3814712B2 (en) Gas cooling method and gas cooling apparatus
JP3355980B2 (en) Water spray method for cooling tower
CN214095621U (en) Flue gas rapid cooling device

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040608

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040621

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313121

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313121

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080709

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080709

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080709

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090709

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090709

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100709

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100709

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100709

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100709

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110709

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120709

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120709

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130709

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees