JP3447152B2 - Low temperature gas cooling tower - Google Patents

Low temperature gas cooling tower

Info

Publication number
JP3447152B2
JP3447152B2 JP18456095A JP18456095A JP3447152B2 JP 3447152 B2 JP3447152 B2 JP 3447152B2 JP 18456095 A JP18456095 A JP 18456095A JP 18456095 A JP18456095 A JP 18456095A JP 3447152 B2 JP3447152 B2 JP 3447152B2
Authority
JP
Japan
Prior art keywords
tower
gas
cooling water
flow
outer tower
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP18456095A
Other languages
Japanese (ja)
Other versions
JPH0933031A (en
Inventor
佐藤  淳
雅人 東
志郎 中井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP18456095A priority Critical patent/JP3447152B2/en
Publication of JPH0933031A publication Critical patent/JPH0933031A/en
Application granted granted Critical
Publication of JP3447152B2 publication Critical patent/JP3447152B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Chimneys And Flues (AREA)
  • Treating Waste Gases (AREA)

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、都市ごみ焼却炉等
から排出する排ガスを低温域にまで減温する低温域ガス
減温塔に関する。 【0002】 【従来の技術】従来、例えば図3に示すように、都市ご
み焼却施設においては、焼却炉1の排ガス(800〜9
00℃)2を排熱ボイラ3に導いて余熱を蒸気の形で取
り出し、プラントや給湯等の熱源として利用している。
また、排ガス2はガス減温塔4に導いて減温した後に、
バグフィルタ5ないしは電気集塵器に導いて、微細な煤
塵を捕集・除去し、その後に煙突6に導いている。 【0003】ガス減温塔4の運転は中温域ないしは高温
域に限られており、中温域での運転においては400〜
500℃の排ガスを250〜300℃に減温し、高温域
での運転においては800〜900℃の排ガスを300
〜500℃に減温している。これは、ガス減温塔4にお
いては、200〜300℃の排ガスを140〜170℃
に減温する低温域の運転が困難なためであった。 【0004】ガス減温塔においては、塔内に流入する排
ガス中に冷却水を噴霧し、冷却水が排ガスから潜熱とし
て熱量を奪って蒸発することにより排ガスの冷却を行っ
ている。このため、ガス減温塔を低温域において運転す
る場合には、塔内に流入する排ガスの温度が200〜3
00℃と低温域にあるので、冷却水の蒸発速度が遅く、
排ガスを所定の温度にまで冷却するに必要な冷却水を、
排ガスが塔内を通過する限られた時間において完全に蒸
発させることは困難であった。 【0005】 【発明が解決しようとする課題】近年、排ガス中に含ま
れる発癌性物質等の有害物質の有効な除去方法として、
排ガスを低温状態でバグフィルタに導いて濾過すること
が提唱されている。しかし、ガス減温塔において冷却水
が完全に蒸発しない場合には、ガス減温塔の後段に位置
するバグフィルタに未蒸発の冷却水が流入し、バグフィ
ルタの濾布が濡れ、濡れた濾布に煤塵が固着して目詰ま
る問題があった。 【0006】また、従来のガス減温塔では、冷却水を塔
の中心位置において単一の噴霧ノズルから噴霧している
ので、排ガスを設定温度にまで減温するに要する水量を
単位時間内に噴霧するためには、水滴の粒径が大きくな
らざるを得なかった。この噴霧した冷却水は負荷として
ガス流に作用し、ガス流の中心付近における上昇力が弱
まり、ガス流の外層における旋回力が強く作用する。こ
のため、塔の中心側において下降流が生じて噴霧した水
滴の一部が塔底部側に降下する問題や、水滴の粒径が大
きくて旋回流による遠心力を受け易いために、水滴が塔
の内周面に達し、濡れた壁面に煤塵が付着してダストト
ラブルを引き起こす問題があった。 【0007】本発明は上記した課題を解決するもので、
低温域における運転においても、冷却水が塔内壁に触れ
ることなく完全に蒸発する低温域ガス減温塔を提供する
ことを目的とする。 【0008】 【課題を解決するための手段】上記した課題を解決する
ために、本発明の低温域ガス減温塔は、内部の通気路が
冷却対象のガスの冷却空間をなし、前記ガスが通気路を
旋回しながら上昇流となって流通する外塔を設け、外塔
の下側内部に内塔を同心状に配置するとともに、内塔と
外塔の間に形成する環状の間隙の上端側を閉塞し、外塔
と内塔の間に塔壁の接線方向に向けて開口するガス供給
口を形成し、内塔の上側内部に冷却水噴霧ノズルを設
け、内塔の内径φdを外塔の内径φDの0.55〜0.
65倍に形成した構成としたものである。 【0009】上記した構成により、ガス供給口から外塔
と内塔の間の間隙に接線方向に噴出する冷却対象のガス
は、外塔の内周面に沿って旋回しながら前記間隙を下端
の開放口に向けて下降流となって流れる。開放口に達し
たガス流は内塔の下端開口から内塔の内部に流入して上
方に転じ、一旦旋回径を小さくして内塔の内周面に沿っ
て旋回しながら上昇流となって流れ、内塔の上端開口か
ら外塔の通気路に旋回しながら流入する。 【0010】内塔の上端開口付近において、旋回するガ
ス流に対して冷却水を冷却水噴霧ノズルから噴霧する。
冷却水の粒子は、ガスの旋回流による拡散作用を受けて
微細粒子となってガス流中に広範囲に拡散し、微細粒子
はガス流と共に外塔の通気路を塔頂部に向けて上昇す
る。この間に冷却水はガスから潜熱として熱量を奪って
蒸発し、ガスを設定温度域にまで冷却する。 【0011】上述の作用において、外塔におけるガス流
の流動状態は内塔の内径の大きさによって変化する。外
塔の内径φDに対して内塔の内径φdが小さすぎると、
ガス流は旋回軸が塔の中心から外れた状態の旋回流とな
り、冷却水の粒子を伴ったガス流が局部的に外塔の内面
に接触し、ダストトラブルが発生する。逆に、外塔の内
径φDに対して内塔の内径φdが大きすぎると、内塔の
中心側において下降流が発生し、噴霧した冷却水が下降
流に伴われて内塔を降下する。 【0012】このため、内塔の内径φdを外塔の内径φ
Dの0.55〜0.65倍に形成することにより、外塔
におけるガス流の流動状態を、旋回軸が外塔の中心線に
一致した均一な旋回流とすることができる。これによっ
て、ガス流が外塔の通気路を上昇する間に、冷却水の微
細粒子は旋回径を広げながらも外塔の中心側を上昇し、
外塔内面に達することなく塔頂部に到達する。したがっ
て、外塔の内面が冷却水の付着によって濡れることがな
く、冷却水とともに煤塵が付着して生じるダストトラブ
ルを防止できる。 【0013】 【発明の実施の形態】以下、本発明の一実施の形態を図
面に基づいて説明する。図1〜図2において、外塔11
は内部の通気路12が排ガス等の冷却対象をなすガス1
3の冷却空間をなしており、ガス13が通気路12を旋
回しながら上昇流となって流通する。外塔11は塔頂部
が後段のバグフィルタ(図示せず)に連通しており、塔
底部にローダーバルブ14が設けてある。 【0014】外塔11の下側内部には内塔15が同心状
に配置してあり、内塔15と外塔11の間に環状の間隙
16が設けてある。外塔11および内塔15は、内塔1
5の内径φdが外塔11の内径φDの0.55〜0.6
5倍となるように形成している。内塔15の上端側は上
方に向けて広く拡径するガイド部17が設けてあり、ガ
イド部17の上端縁が外塔11の内周面に接合して間隙
16の上端側を閉塞しており、間隙16の下端は開放口
を形成している。外塔11にはガス13を導入するため
のガス供給管18が接続しており、ガス供給管18は外
塔11と内塔15の間の間隙16に連通し、塔壁の接線
方向に向けてガス供給口が18aが開口している。 【0015】内塔15の最上位の内部には複数の冷却水
噴霧ノズル19が外塔11および内塔15を貫通して突
出しており、各冷却水噴霧ノズル19は内塔15の周方
向に沿って等間隔で設けてある。各冷却水噴霧ノズル1
9のノズル口部20は内塔15の内面から300mmほど
離れた壁面付近に位置し、冷却水21の噴霧方向が水平
に対して約60°の仰角を持つように斜め上方を向いて
おり、ノズル口部20には複数の細かなノズル穴が設け
てある。 【0016】以下、上記した構成における作用を説明す
る。冷却対象として200〜300℃の低温のガス13
を供給管18を通して供給する。ガス13は、ガス供給
口18aから外塔11と内塔15の間の間隙16に接線
方向に向けて噴出し、外塔11の内周面に沿って旋回し
ながら間隙16を下端の開放口に向けて下降流となって
流れる。開放口に達したガス流は内塔15の下端開口か
ら内塔15の内部に流入して上方に転じ、内塔15の内
周面に沿って旋回しながら上昇流となって流れ、内塔1
5の上端開口から外塔11の通気路12に旋回しながら
流入する。 【0017】このとき、内塔15の上端開口付近におい
て外塔11の内径に比べて小さく旋回しているガス流の
外層に対し、複数の冷却水噴霧ノズル19のノズル口部
20から上方に向けて冷却水21を噴霧する。冷却水2
1の粒子は、ガス13の旋回流による拡散作用を受けて
微細粒子となってガス流中に広範囲に拡散し、微細粒子
はガス流と共に外塔11の通気路12を塔頂部に向けて
上昇する。この間に冷却水21の微細粒子は、ガス13
から潜熱として熱量を奪って蒸発し、ガス13を設定温
度域(140〜170℃)にまで冷却する。 【0018】上述の作用において、外塔11におけるガ
ス流の流動状態は内塔15の内径φdの大きさによって
変化する。内塔15の内径φdが外塔の内径φDの0.
55倍以下に小さすぎると、ガス流は旋回軸が外塔11
の中心から外れた状態の旋回流となり、冷却水の粒子を
伴ったガス流が局部的に外塔の内面に接触し、ダストト
ラブルが発生する。逆に、内塔の内径φdが外塔の内径
φDの0.65倍以上に大きすぎると、内塔15の中心
側において下降流が発生し、噴霧した冷却水21が下降
流に伴われて内塔15を降下する。 【0019】このため、内塔15の内径φdを外塔11
の内径φDの0.55〜0.65倍に形成することによ
り、外塔11におけるガス流の流動状態を、旋回軸が外
塔11の中心線に一致する均一な旋回流とすることがで
き、ガス流が外塔11の通気路12を上昇する間に、冷
却水21の微細粒子は旋回径を広げながらも外塔11の
中心側を上昇し、外塔11の内面に達することなく塔頂
部に到達する。したがって、外塔11の内面が冷却水2
1の付着によって濡れることがなく、冷却水21ととも
に煤塵が付着して生じるダストトラブルを防止できる。 【0020】また、内塔15の上端開口付近においてガ
ス流の外層に対して噴霧した冷却水13の粒子は、外層
のガス流に負荷となって作用し、ガス流の外層における
旋回力を減じるので、外塔11の通気路12におけるガ
ス流の流れは、外層における旋回力が弱く、塔中心側の
内層における上昇力が強いものとなる。ラグランジェの
方程式に従えば、冷却水21を噴霧する地点が旋回流の
外側であるほど、冷却水21の粒子はガス流から旋回力
を奪う。 【0021】このために、ガス流が外塔11の通気路1
2を上昇する間に、冷却水21の微細粒子は、前半にお
いて幾分旋回し、旋回径を広げながらも外塔11の中心
側を上昇し、後半においては旋回力を失って直上し、外
塔11の内面に達することなく塔頂部に到達する。 【0022】したがって、内塔15の内径φdを外塔1
1の内径φDの0.55〜0.65倍に形成し、さらに
は、ガス流の外層に対して冷却水21を噴霧することに
より、ガス流が外塔11の中心側を確実に上昇し、外塔
11の内面が冷却水21の付着によって濡れることがな
く、冷却水21とともに煤塵が付着して生じるダストト
ラブルを防止できる。 【0023】また、冷却水21は、ガス13を設定温度
域まで冷却するに要する水量を、複数の冷却水噴霧ノズ
ル19の各ノズル口部20から分散して均等に噴霧する
ので、一つの冷却水噴霧ノズル19における単位時間内
の噴霧水量が少なくなる。このため、冷却水噴霧ノズル
19のノズル口部20におけるノズル穴の数を多くする
とともに径を細かなものに形成し、冷却水21を小さな
粒子として噴霧することができ、冷却水21の総表面が
大きくなることにより、熱吸収効率を高めて低温度域に
おいても冷却水21の完全蒸発を果たすことができる。 【0024】 【発明の効果】以上述べたように本発明によれば、内塔
の内径φdを外塔の内径φDの0.55〜0.65倍に
形成することにより、外塔におけるガス流の流動状態
を、旋回軸が外塔の中心線に一致した均一な旋回流とす
ることができ、ガス流に伴われた冷却水の微細粒子は旋
回径を広げながらも外塔の中心側を上昇し、外塔内面に
達することなく塔頂部に到達し、外塔の内面が冷却水の
付着によって濡れることがなく、冷却水とともに煤塵が
付着して生じるダストトラブルを防止できる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a low temperature range gas degassing tower for reducing the temperature of exhaust gas discharged from a municipal waste incinerator or the like to a low temperature range. 2. Description of the Related Art Conventionally, as shown in, for example, FIG.
(00 ° C.) 2 is led to a waste heat boiler 3 to extract residual heat in the form of steam, and is used as a heat source for a plant, hot water supply, or the like.
Further, after the exhaust gas 2 is led to the gas temperature-reducing tower 4 to reduce the temperature,
The dust is guided to a bag filter 5 or an electric dust collector to collect and remove fine dust, and then to a chimney 6. [0003] The operation of the gas cooling tower 4 is limited to a medium temperature range or a high temperature range.
The temperature of the exhaust gas at 500 ° C is reduced to 250 to 300 ° C, and the exhaust gas at 800 to 900 ° C is
The temperature has dropped to ~ 500 ° C. This is because in the gas cooling tower 4, the exhaust gas at 200 to 300 ° C. is discharged at 140 to 170 ° C.
This is because it is difficult to operate in a low-temperature region where the temperature decreases. [0004] In a gas cooling tower, cooling water is sprayed into exhaust gas flowing into the tower, and the cooling water takes off heat as latent heat from the exhaust gas to evaporate, thereby cooling the exhaust gas. For this reason, when the gas cooling tower is operated in a low temperature range, the temperature of the exhaust gas flowing into the tower is 200 to 3
Since it is in a low temperature range of 00 ° C, the evaporation rate of cooling water is slow,
Cooling water required to cool the exhaust gas to a predetermined temperature,
It was difficult to completely evaporate the exhaust gas in a limited time during which it passed through the tower. [0005] In recent years, as an effective method for removing harmful substances such as carcinogenic substances contained in exhaust gas,
It has been proposed to guide the exhaust gas at a low temperature to a bag filter for filtration. However, if the cooling water does not completely evaporate in the gas cooling tower, the unevaporated cooling water flows into the bag filter located downstream of the gas cooling tower, and the filter cloth of the bag filter gets wet and the wet filter becomes wet. There was a problem that dust was fixed on the cloth and clogged. Further, in the conventional gas cooling tower, since the cooling water is sprayed from a single spray nozzle at the center of the tower, the amount of water required to reduce the temperature of the exhaust gas to the set temperature can be reduced within a unit time. In order to spray, the particle size of the water droplet had to be large. The sprayed cooling water acts on the gas flow as a load, the rising force near the center of the gas flow is weakened, and the swirling force on the outer layer of the gas flow acts strongly. For this reason, a downward flow is generated at the center of the tower, and some of the sprayed water droplets fall to the bottom of the tower.The water droplets have a large particle size and are easily subjected to centrifugal force due to the swirling flow. , And there is a problem that dust may adhere to the wet wall surface and cause dust trouble. The present invention solves the above-mentioned problems, and
It is an object of the present invention to provide a low-temperature-area gas cooling tower in which cooling water completely evaporates without contacting the inner wall of the tower even during operation in a low-temperature area. [0008] In order to solve the above-mentioned problems, a low-temperature region gas cooling tower according to the present invention has an internal ventilation passage that forms a cooling space for a gas to be cooled, and the gas is cooled. An outer tower that circulates as a rising flow while circulating through the ventilation path is provided, the inner tower is arranged concentrically inside the lower part of the outer tower, and the upper end of an annular gap formed between the inner tower and the outer tower A gas supply port is formed between the outer tower and the inner tower, which is open toward the tangential direction of the tower wall, and a cooling water spray nozzle is provided inside the upper part of the inner tower. 0.55-0.
This is a configuration formed by 65 times. With the above structure, the gas to be cooled, which is tangentially jetted from the gas supply port into the gap between the outer tower and the inner tower, swirls along the inner peripheral surface of the outer tower and closes the gap at the lower end. It flows as a downward flow toward the opening. The gas flow that reaches the open port flows into the inside of the inner tower from the lower end opening of the inner tower, turns upward, and turns upward once while reducing the turning diameter and turning along the inner peripheral surface of the inner tower. The water flows from the upper end opening of the inner tower while swirling into the ventilation path of the outer tower. In the vicinity of the upper end opening of the inner tower, cooling water is sprayed from a cooling water spray nozzle against the swirling gas flow.
The particles of the cooling water are diffused by the swirling flow of the gas into fine particles and diffused widely in the gas flow, and the fine particles rise along with the gas flow toward the top of the ventilation path of the outer tower. During this time, the cooling water evaporates by removing heat as latent heat from the gas and cools the gas to a set temperature range. In the above operation, the flow state of the gas flow in the outer tower changes depending on the inner diameter of the inner tower. If the inner diameter φd of the inner tower is too small relative to the inner diameter φD of the outer tower,
The gas flow becomes a swirl flow with the swirl axis deviating from the center of the tower, and the gas flow accompanying the particles of cooling water locally contacts the inner surface of the outer tower, causing dust trouble. Conversely, if the inner diameter φd of the inner tower is too large relative to the inner diameter φD of the outer tower, a downward flow is generated on the center side of the inner tower, and the sprayed cooling water descends the inner tower with the downward flow. For this reason, the inner diameter φd of the inner tower is changed to the inner diameter φ of the outer tower.
By forming the gas flow rate to be 0.55 to 0.65 times D, the flow state of the gas flow in the outer tower can be a uniform swirl flow whose swirl axis coincides with the center line of the outer tower. As a result, while the gas flow rises up the ventilation path of the outer tower, fine particles of the cooling water ascend the center side of the outer tower while expanding the swirling diameter,
It reaches the top of the tower without reaching the inner surface of the outer tower. Therefore, the inner surface of the outer tower is not wetted by the adhesion of the cooling water, and dust trouble caused by the adhesion of dust and the cooling water can be prevented. An embodiment of the present invention will be described below with reference to the drawings. In FIG. 1 and FIG.
Is the gas 1 whose internal ventilation path 12 is to be cooled, such as exhaust gas.
The gas 13 forms an ascending flow while circulating in the ventilation path 12 and circulates. The outer tower 11 has a top part in communication with a bag filter (not shown) at a later stage, and a loader valve 14 is provided at the bottom part. An inner tower 15 is arranged concentrically below the outer tower 11, and an annular gap 16 is provided between the inner tower 15 and the outer tower 11. The outer tower 11 and the inner tower 15 are the inner tower 1
5 is 0.55 to 0.6 of the inner diameter φD of the outer tower 11.
It is formed so as to be five times. The upper end side of the inner tower 15 is provided with a guide portion 17 whose diameter is widened upward and the upper end edge of the guide portion 17 is joined to the inner peripheral surface of the outer tower 11 to close the upper end side of the gap 16. The lower end of the gap 16 forms an opening. A gas supply pipe 18 for introducing the gas 13 is connected to the outer tower 11, and the gas supply pipe 18 communicates with a gap 16 between the outer tower 11 and the inner tower 15, and extends in a tangential direction of the tower wall. The gas supply port 18a is open. A plurality of cooling water spray nozzles 19 project through the outer tower 11 and the inner tower 15 in the uppermost part of the inner tower 15, and each cooling water spray nozzle 19 extends in the circumferential direction of the inner tower 15. They are provided at regular intervals along. Each cooling water spray nozzle 1
The nozzle opening 20 of 9 is located near the wall surface about 300 mm away from the inner surface of the inner tower 15 and faces obliquely upward so that the spray direction of the cooling water 21 has an elevation angle of about 60 ° with respect to the horizontal. The nozzle opening 20 is provided with a plurality of fine nozzle holes. The operation of the above configuration will be described below. Low-temperature gas 13 of 200 to 300 ° C. as a cooling target 13
Is supplied through a supply pipe 18. The gas 13 is jetted from the gas supply port 18a to the gap 16 between the outer tower 11 and the inner tower 15 in a tangential direction, and swirls along the inner peripheral surface of the outer tower 11 to open the gap 16 at the lower opening. It flows as a downward flow toward. The gas flow that has reached the open port flows into the inside of the inner tower 15 from the lower end opening of the inner tower 15, turns upward, and swirls along the inner peripheral surface of the inner tower 15 to flow as an ascending flow. 1
5 flows into the ventilation path 12 of the outer tower 11 while turning. At this time, the outer layer of the gas flow swirling smaller than the inner diameter of the outer tower 11 near the upper end opening of the inner tower 15 is directed upward from the nozzle openings 20 of the plurality of cooling water spray nozzles 19. To spray the cooling water 21. Cooling water 2
The particles 1 are dispersed by the swirling flow of the gas 13 into fine particles and diffuse widely in the gas flow, and the fine particles rise together with the gas flow in the ventilation passage 12 of the outer tower 11 toward the top of the tower. I do. During this time, the fine particles of the cooling water 21
The gas 13 evaporates by depriving it of heat as latent heat and cools the gas 13 to a set temperature range (140 to 170 ° C.). In the above operation, the flow state of the gas flow in the outer tower 11 changes depending on the size of the inner diameter φd of the inner tower 15. The inner diameter φd of the inner tower 15 is 0.
If it is too small, 55 times or less, the gas flow is
And the gas flow with the particles of cooling water locally contacts the inner surface of the outer tower, causing dust trouble. Conversely, if the inner diameter φd of the inner tower is too large at least 0.65 times the inner diameter φD of the outer tower, a downward flow is generated on the center side of the inner tower 15, and the sprayed cooling water 21 is accompanied by the downward flow. The inner tower 15 descends. For this reason, the inner diameter φd of the inner tower 15 is
By 0.55 to 0.65 times the inner diameter φD of the outer tower 11, it is possible to make the flow state of the gas flow in the outer tower 11 a uniform swirling flow whose swirling axis coincides with the center line of the outer tower 11. While the gas flow rises up the ventilation path 12 of the outer tower 11, the fine particles of the cooling water 21 rise on the center side of the outer tower 11 while expanding the swirling diameter, and do not reach the inner surface of the outer tower 11. Reach the top. Therefore, the inner surface of the outer tower 11 is
1 does not get wet, and dust trouble caused by dust adhering together with the cooling water 21 can be prevented. The particles of the cooling water 13 sprayed on the outer layer of the gas flow near the upper end opening of the inner tower 15 act as a load on the gas flow of the outer layer, and reduce the swirling force of the outer layer of the gas flow. Therefore, the gas flow in the ventilation path 12 of the outer tower 11 has a weak swirling force in the outer layer and a strong upward force in the inner layer near the center of the tower. According to Lagrange's equation, the particles of the cooling water 21 deprive the gas flow of the swirling force as the point where the cooling water 21 is sprayed is located outside the swirling flow. For this purpose, the gas flow is controlled by the ventilation passage 1 of the outer tower 11.
During the ascent, the fine particles of the cooling water 21 slightly swirl in the first half, ascend the center of the outer tower 11 while widening the swirling diameter, and in the second half, lose their swirling force and rise straight up. It reaches the top of the tower without reaching the inner surface of the tower 11. Therefore, the inner diameter φd of the inner tower 15 is
1 is formed to be 0.55 to 0.65 times the inner diameter φD, and further, by spraying the cooling water 21 on the outer layer of the gas flow, the gas flow surely rises on the center side of the outer tower 11. In addition, the inner surface of the outer tower 11 does not get wet due to the adhesion of the cooling water 21, and it is possible to prevent dust trouble caused by dust adhering together with the cooling water 21. Further, since the cooling water 21 is sprayed uniformly from the nozzle openings 20 of the plurality of cooling water spray nozzles 19, the amount of water required to cool the gas 13 to the set temperature range is sprayed uniformly. The amount of water sprayed in the water spray nozzle 19 per unit time is reduced. For this reason, the number of nozzle holes in the nozzle opening 20 of the cooling water spray nozzle 19 is increased and the diameter thereof is formed small, so that the cooling water 21 can be sprayed as small particles, and the total surface of the cooling water 21 can be sprayed. Is increased, the heat absorption efficiency is enhanced, and the cooling water 21 can be completely evaporated even in a low temperature range. As described above, according to the present invention, by forming the inner diameter φd of the inner tower to be 0.55 to 0.65 times the inner diameter φD of the outer tower, the gas flow in the outer tower can be improved. Can be a uniform swirl flow with the swirl axis coinciding with the center line of the outer tower, and the fine particles of cooling water accompanying the gas flow keep the center side of the outer tower while expanding the swirl diameter. It rises and reaches the top of the tower without reaching the inner surface of the outer tower, and the inner surface of the outer tower does not get wet due to the adhesion of the cooling water, thereby preventing dust trouble caused by dust adhering together with the cooling water.

【図面の簡単な説明】 【図1】本発明の一実施の形態における低温域ガス減温
塔を示す模式図である。 【図2】同実施の形態における低温域ガス減温塔の断面
を示す模式図である。 【図3】従来の焼却施設の構成を示すブロック図であ
る。 【符号の説明】 11 外塔 12 通気路 13 ガス 15 内塔 18 ガス供給管 18a ガス供給口 19 冷却水噴霧ノズル 20 ノズル口部 φd 内塔の内径 φD 外塔の内径
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic diagram showing a low-temperature region gas cooling tower according to an embodiment of the present invention. FIG. 2 is a schematic diagram showing a cross section of a low-temperature region gas cooling tower according to the embodiment. FIG. 3 is a block diagram showing a configuration of a conventional incineration facility. [Description of Signs] 11 Outer tower 12 Ventilation passage 13 Gas 15 Inner tower 18 Gas supply pipe 18a Gas supply port 19 Cooling water spray nozzle 20 Nozzle port φd Inner tower inner diameter φD Outer tower inner diameter

フロントページの続き (72)発明者 中井 志郎 大阪府大阪市浪速区敷津東一丁目2番47 号 株式会社クボタ内 (56)参考文献 特開 平6−63351(JP,A) 特公 昭44−20718(JP,B1) (58)調査した分野(Int.Cl.7,DB名) F23J 15/00 - 15/08 B01D 53/34 F28C 3/08 Continuation of the front page (72) Inventor Shiro Nakai 2-47, Shikitsuhigashi, Namiwa-ku, Osaka-shi, Osaka Kubota Co., Ltd. (56) References JP-A-6-63351 (JP, A) Japanese Patent Publication Sho44 −20718 (JP, B1) (58) Fields investigated (Int. Cl. 7 , DB name) F23J 15/00-15/08 B01D 53/34 F28C 3/08

Claims (1)

(57)【特許請求の範囲】 【請求項1】 内部の通気路が冷却対象のガスの冷却空
間をなし、前記ガスが通気路を旋回しながら上昇流とな
って流通する外塔を設け、外塔の下側内部に内塔を同心
状に配置するとともに、内塔と外塔の間に形成する環状
の間隙の上端側を閉塞し、外塔と内塔の間に塔壁の接線
方向に向けて開口するガス供給口を形成し、内塔の上側
内部に冷却水噴霧ノズルを設け、内塔の内径φdを外塔
の内径φDの0.55〜0.65倍に形成したことを特
徴とする低温域ガス減温塔。
(57) [Claims 1] An outer tower in which an internal ventilation path forms a cooling space for a gas to be cooled, and the gas flows upwards while circulating in the ventilation path, The inner tower is arranged concentrically inside the lower part of the outer tower, the upper end side of the annular gap formed between the inner tower and the outer tower is closed, and the tangential direction of the tower wall between the outer tower and the inner tower Forming a gas supply port opening toward the inner tower, providing a cooling water spray nozzle inside the upper part of the inner tower, and forming the inner diameter φd of the inner tower to be 0.55 to 0.65 times the inner diameter φD of the outer tower. Low-temperature gas cooling tower.
JP18456095A 1995-07-21 1995-07-21 Low temperature gas cooling tower Expired - Fee Related JP3447152B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18456095A JP3447152B2 (en) 1995-07-21 1995-07-21 Low temperature gas cooling tower

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18456095A JP3447152B2 (en) 1995-07-21 1995-07-21 Low temperature gas cooling tower

Publications (2)

Publication Number Publication Date
JPH0933031A JPH0933031A (en) 1997-02-07
JP3447152B2 true JP3447152B2 (en) 2003-09-16

Family

ID=16155350

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18456095A Expired - Fee Related JP3447152B2 (en) 1995-07-21 1995-07-21 Low temperature gas cooling tower

Country Status (1)

Country Link
JP (1) JP3447152B2 (en)

Also Published As

Publication number Publication date
JPH0933031A (en) 1997-02-07

Similar Documents

Publication Publication Date Title
US4919696A (en) Supercooling type mist eliminator apparatus
CN106582248B (en) flue gas wet desulphurization and dust removal integrated device and process
KR20010093132A (en) Exhaust gas treating device
EP0640373B1 (en) Spray tower and method for cooling, moistening and/or purifying gas
US2653674A (en) Suppressor for solid particles and fumes
CN208990512U (en) A kind of flue gas of wet desulphurization disappears white system
CN209997449U (en) desulfurizing towers and liquid collecting device thereof
JP3447152B2 (en) Low temperature gas cooling tower
JP3262710B2 (en) Chimney
JP3212489B2 (en) Low temperature gas cooling tower
US4206159A (en) Rod scrubber
JPH0933179A (en) Gas temperature lowering tower in low temperature region
JPH0933033A (en) Temperature reducing tower for low temperature region gas
JP3572880B2 (en) Cooling tower
CN205886494U (en) Flue gas degree of depth dust removal defogging water conservation unit reaches by its device of constituteing
JPH0933032A (en) Temperature reducing tower for low temperature region gas
CN205760403U (en) A kind of for desulfurization technology dedusting demister
CN211936195U (en) Centrifugal dust fall defroster
JP3572881B2 (en) Cooling tower
JPH11141856A (en) Temperature-reducing tower, and its operating method
CN208260208U (en) A kind of dense salt waste water atomization concentration tower
JP2004061024A (en) Gas treatment tower
JPH09178367A (en) Method and apparatus for cooling gas
JPS6186922A (en) Wet exhaust gas treatment apparatus
JPH07229325A (en) Desulfurization stack

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080704

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090704

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100704

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100704

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110704

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110704

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120704

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120704

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130704

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140704

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees