JPH0933031A - Temperature reducing tower for low temperature region gas - Google Patents

Temperature reducing tower for low temperature region gas

Info

Publication number
JPH0933031A
JPH0933031A JP7184560A JP18456095A JPH0933031A JP H0933031 A JPH0933031 A JP H0933031A JP 7184560 A JP7184560 A JP 7184560A JP 18456095 A JP18456095 A JP 18456095A JP H0933031 A JPH0933031 A JP H0933031A
Authority
JP
Japan
Prior art keywords
tower
gas
cooling water
outer tower
low temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7184560A
Other languages
Japanese (ja)
Other versions
JP3447152B2 (en
Inventor
Atsushi Sato
佐藤  淳
Masahito Azuma
雅人 東
Shiro Nakai
志郎 中井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP18456095A priority Critical patent/JP3447152B2/en
Publication of JPH0933031A publication Critical patent/JPH0933031A/en
Application granted granted Critical
Publication of JP3447152B2 publication Critical patent/JP3447152B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Chimneys And Flues (AREA)
  • Treating Waste Gases (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a temperature reducing tower low temperature region gas in which cooling water can be completely evaporated without being contacted with an inner wall of the tower even under an operation performed at a low temperature region. SOLUTION: An inner tower 15 is coaxially arranged in a lower inner side of an outer tower 11, and an upper end side of an annular clearance 16 formed between the inner tower 15 and the outer tower 11 is closed. A gas supplying port opened toward a direction of a tangential line of the tower wall is formed between the outer tower 11 and the inner tower 15. Cooling water atomizing nozzles 19 are arranged at the upper inner side of the inner tower 15, and an inner diameter ϕd of the inner tower 15 is formed to be 0.55 to 0.65 times the inner diameter ϕD of the outer tower.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、都市ごみ焼却炉等
から排出する排ガスを低温域にまで減温する低温域ガス
減温塔に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a low temperature gas cooling tower for lowering the temperature of exhaust gas discharged from an incinerator of municipal solid waste to a low temperature range.

【0002】[0002]

【従来の技術】従来、例えば図3に示すように、都市ご
み焼却施設においては、焼却炉1の排ガス(800〜9
00℃)2を排熱ボイラ3に導いて余熱を蒸気の形で取
り出し、プラントや給湯等の熱源として利用している。
また、排ガス2はガス減温塔4に導いて減温した後に、
バグフィルタ5ないしは電気集塵器に導いて、微細な煤
塵を捕集・除去し、その後に煙突6に導いている。
2. Description of the Related Art Conventionally, for example, as shown in FIG. 3, in an municipal waste incinerator, exhaust gas (800 to 9
(00 ° C.) 2 is guided to the exhaust heat boiler 3 to extract the residual heat in the form of steam, which is used as a heat source for a plant or hot water supply.
In addition, after the exhaust gas 2 is introduced into the gas temperature reduction tower 4 to reduce the temperature,
It guides to the bag filter 5 or an electric dust collector, collects and removes fine soot dust, and then guides it to the chimney 6.

【0003】ガス減温塔4の運転は中温域ないしは高温
域に限られており、中温域での運転においては400〜
500℃の排ガスを250〜300℃に減温し、高温域
での運転においては800〜900℃の排ガスを300
〜500℃に減温している。これは、ガス減温塔4にお
いては、200〜300℃の排ガスを140〜170℃
に減温する低温域の運転が困難なためであった。
The operation of the gas temperature reducing tower 4 is limited to a medium temperature range or a high temperature range.
The temperature of exhaust gas at 500 ° C is reduced to 250 to 300 ° C, and the exhaust gas at 800 to 900 ° C is reduced to 300 during operation in a high temperature range.
Temperature is reduced to ~ 500 ° C. This is because in the gas temperature reducing tower 4, the exhaust gas of 200 to 300 ° C. is heated to 140 to 170 ° C.
This was because it was difficult to operate in the low temperature range where the temperature decreased to zero.

【0004】ガス減温塔においては、塔内に流入する排
ガス中に冷却水を噴霧し、冷却水が排ガスから潜熱とし
て熱量を奪って蒸発することにより排ガスの冷却を行っ
ている。このため、ガス減温塔を低温域において運転す
る場合には、塔内に流入する排ガスの温度が200〜3
00℃と低温域にあるので、冷却水の蒸発速度が遅く、
排ガスを所定の温度にまで冷却するに必要な冷却水を、
排ガスが塔内を通過する限られた時間において完全に蒸
発させることは困難であった。
In the gas cooling tower, cooling water is sprayed into the exhaust gas flowing into the tower, and the cooling water removes heat as latent heat from the exhaust gas and evaporates to cool the exhaust gas. Therefore, when the gas temperature reducing tower is operated in a low temperature range, the temperature of the exhaust gas flowing into the tower is 200 to 3
Since it is in the low temperature range of 00 ° C, the evaporation rate of cooling water is slow,
Cooling water required to cool the exhaust gas to a predetermined temperature,
It was difficult to completely evaporate the exhaust gas in the limited time when the exhaust gas passed through the tower.

【0005】[0005]

【発明が解決しようとする課題】近年、排ガス中に含ま
れる発癌性物質等の有害物質の有効な除去方法として、
排ガスを低温状態でバグフィルタに導いて濾過すること
が提唱されている。しかし、ガス減温塔において冷却水
が完全に蒸発しない場合には、ガス減温塔の後段に位置
するバグフィルタに未蒸発の冷却水が流入し、バグフィ
ルタの濾布が濡れ、濡れた濾布に煤塵が固着して目詰ま
る問題があった。
Recently, as an effective method for removing harmful substances such as carcinogenic substances contained in exhaust gas,
It has been proposed to guide the exhaust gas to a bag filter in a low temperature state for filtration. However, when the cooling water does not completely evaporate in the gas temperature reducing tower, the non-evaporated cooling water flows into the bag filter located in the subsequent stage of the gas temperature reducing tower, the filter cloth of the bag filter gets wet, and the wet filter becomes wet. There was a problem that soot and dust stuck to the cloth and clogged.

【0006】また、従来のガス減温塔では、冷却水を塔
の中心位置において単一の噴霧ノズルから噴霧している
ので、排ガスを設定温度にまで減温するに要する水量を
単位時間内に噴霧するためには、水滴の粒径が大きくな
らざるを得なかった。この噴霧した冷却水は負荷として
ガス流に作用し、ガス流の中心付近における上昇力が弱
まり、ガス流の外層における旋回力が強く作用する。こ
のため、塔の中心側において下降流が生じて噴霧した水
滴の一部が塔底部側に降下する問題や、水滴の粒径が大
きくて旋回流による遠心力を受け易いために、水滴が塔
の内周面に達し、濡れた壁面に煤塵が付着してダストト
ラブルを引き起こす問題があった。
Further, in the conventional gas cooling tower, since the cooling water is sprayed from the single spray nozzle at the central position of the tower, the amount of water required to cool the exhaust gas to the set temperature is set within the unit time. In order to spray, the particle size of the water drop had to be large. The sprayed cooling water acts as a load on the gas flow, the rising force near the center of the gas flow weakens, and the swirling force in the outer layer of the gas flow strongly acts. Therefore, a downward flow occurs in the center side of the tower and some of the sprayed water droplets drop to the bottom side of the tower, and because the water droplets have a large particle size and are easily subjected to centrifugal force due to the swirling flow, the water droplets There was a problem that it reached the inner peripheral surface of the and the soot dust adhered to the wet wall surface to cause dust trouble.

【0007】本発明は上記した課題を解決するもので、
低温域における運転においても、冷却水が塔内壁に触れ
ることなく完全に蒸発する低温域ガス減温塔を提供する
ことを目的とする。
The present invention solves the above-mentioned problems, and
It is an object of the present invention to provide a low temperature gas cooling tower in which cooling water is completely evaporated without touching the inner wall of the tower even in operation in the low temperature area.

【0008】[0008]

【課題を解決するための手段】上記した課題を解決する
ために、本発明の低温域ガス減温塔は、内部の通気路が
冷却対象のガスの冷却空間をなし、前記ガスが通気路を
旋回しながら上昇流となって流通する外塔を設け、外塔
の下側内部に内塔を同心状に配置するとともに、内塔と
外塔の間に形成する環状の間隙の上端側を閉塞し、外塔
と内塔の間に塔壁の接線方向に向けて開口するガス供給
口を形成し、内塔の上側内部に冷却水噴霧ノズルを設
け、内塔の内径φdを外塔の内径φDの0.55〜0.
65倍に形成した構成としたものである。
In order to solve the above-mentioned problems, in the low temperature gas reducing tower of the present invention, an internal ventilation passage constitutes a cooling space for the gas to be cooled, and the gas constitutes the ventilation passage. An outer tower that circulates in an upward flow while swirling is provided, the inner tower is concentrically arranged inside the outer tower, and the upper end side of the annular gap formed between the inner tower and the outer tower is closed. Then, a gas supply port that opens in the tangential direction of the tower wall is formed between the outer tower and the inner tower, a cooling water spray nozzle is provided inside the upper side of the inner tower, and the inner diameter φd of the inner tower is set to the inner diameter of the outer tower. φD 0.55 to 0.
It is configured to be formed 65 times.

【0009】上記した構成により、ガス供給口から外塔
と内塔の間の間隙に接線方向に噴出する冷却対象のガス
は、外塔の内周面に沿って旋回しながら前記間隙を下端
の開放口に向けて下降流となって流れる。開放口に達し
たガス流は内塔の下端開口から内塔の内部に流入して上
方に転じ、一旦旋回径を小さくして内塔の内周面に沿っ
て旋回しながら上昇流となって流れ、内塔の上端開口か
ら外塔の通気路に旋回しながら流入する。
With the above structure, the gas to be cooled, which is jetted tangentially from the gas supply port into the gap between the outer tower and the inner tower, swirls along the inner peripheral surface of the outer tower, and the gas at the lower end It flows downwards toward the opening. The gas flow reaching the opening enters the inside of the inner tower from the lower end opening of the inner tower and turns upward, and once the diameter of swirl is reduced, it swirls along the inner peripheral surface of the inner tower and becomes an upward flow. Flows from the upper opening of the inner tower into the ventilation passage of the outer tower while swirling.

【0010】内塔の上端開口付近において、旋回するガ
ス流に対して冷却水を冷却水噴霧ノズルから噴霧する。
冷却水の粒子は、ガスの旋回流による拡散作用を受けて
微細粒子となってガス流中に広範囲に拡散し、微細粒子
はガス流と共に外塔の通気路を塔頂部に向けて上昇す
る。この間に冷却水はガスから潜熱として熱量を奪って
蒸発し、ガスを設定温度域にまで冷却する。
In the vicinity of the upper end opening of the inner tower, cooling water is sprayed from the cooling water spray nozzle to the swirling gas flow.
The particles of the cooling water are diffused by the swirling flow of the gas to become fine particles and diffuse in a wide range in the gas flow, and the fine particles ascend together with the gas flow toward the tower top through the ventilation passage of the outer tower. During this time, the cooling water takes away the amount of heat from the gas as latent heat and evaporates, cooling the gas to the set temperature range.

【0011】上述の作用において、外塔におけるガス流
の流動状態は内塔の内径の大きさによって変化する。外
塔の内径φDに対して内塔の内径φdが小さすぎると、
ガス流は旋回軸が塔の中心から外れた状態の旋回流とな
り、冷却水の粒子を伴ったガス流が局部的に外塔の内面
に接触し、ダストトラブルが発生する。逆に、外塔の内
径φDに対して内塔の内径φdが大きすぎると、内塔の
中心側において下降流が発生し、噴霧した冷却水が下降
流に伴われて内塔を降下する。
In the above operation, the flow state of the gas flow in the outer column changes depending on the size of the inner diameter of the inner column. When the inner diameter φd of the inner tower is too small with respect to the inner diameter φD of the outer tower,
The gas flow becomes a swirl flow in which the swirl axis is off the center of the tower, and the gas flow accompanied by particles of cooling water locally contacts the inner surface of the outer tower, causing dust trouble. On the contrary, when the inner diameter φd of the inner tower is too large with respect to the inner diameter φD of the outer tower, a downflow occurs at the center side of the inner tower, and the sprayed cooling water descends in the inner tower with the downflow.

【0012】このため、内塔の内径φdを外塔の内径φ
Dの0.55〜0.65倍に形成することにより、外塔
におけるガス流の流動状態を、旋回軸が外塔の中心線に
一致した均一な旋回流とすることができる。これによっ
て、ガス流が外塔の通気路を上昇する間に、冷却水の微
細粒子は旋回径を広げながらも外塔の中心側を上昇し、
外塔内面に達することなく塔頂部に到達する。したがっ
て、外塔の内面が冷却水の付着によって濡れることがな
く、冷却水とともに煤塵が付着して生じるダストトラブ
ルを防止できる。
Therefore, the inner diameter φd of the inner tower is equal to the inner diameter φ of the outer tower.
By forming the gas flow to be 0.55 to 0.65 times D, the flow state of the gas flow in the outer tower can be made a uniform swirl flow with the swirling axis aligned with the center line of the outer tower. Thereby, while the gas flow rises in the ventilation passage of the outer tower, the fine particles of the cooling water rise in the center side of the outer tower while expanding the swirling diameter,
It reaches the top of the tower without reaching the inner surface of the outer tower. Therefore, the inner surface of the outer tower does not get wet due to the attachment of the cooling water, and it is possible to prevent dust trouble caused by the attachment of soot dust together with the cooling water.

【0013】[0013]

【発明の実施の形態】以下、本発明の一実施の形態を図
面に基づいて説明する。図1〜図2において、外塔11
は内部の通気路12が排ガス等の冷却対象をなすガス1
3の冷却空間をなしており、ガス13が通気路12を旋
回しながら上昇流となって流通する。外塔11は塔頂部
が後段のバグフィルタ(図示せず)に連通しており、塔
底部にローダーバルブ14が設けてある。
BEST MODE FOR CARRYING OUT THE INVENTION An embodiment of the present invention will be described below with reference to the drawings. 1 to 2, the outer tower 11
Is a gas 1 whose internal ventilation passage 12 is a cooling target such as exhaust gas
3 forms a cooling space, and the gas 13 circulates in the ventilation path 12 as an upward flow while flowing. The top of the outer tower 11 communicates with a bag filter (not shown) at the latter stage, and a loader valve 14 is provided at the bottom of the tower.

【0014】外塔11の下側内部には内塔15が同心状
に配置してあり、内塔15と外塔11の間に環状の間隙
16が設けてある。外塔11および内塔15は、内塔1
5の内径φdが外塔11の内径φDの0.55〜0.6
5倍となるように形成している。内塔15の上端側は上
方に向けて広く拡径するガイド部17が設けてあり、ガ
イド部17の上端縁が外塔11の内周面に接合して間隙
16の上端側を閉塞しており、間隙16の下端は開放口
を形成している。外塔11にはガス13を導入するため
のガス供給管18が接続しており、ガス供給管18は外
塔11と内塔15の間の間隙16に連通し、塔壁の接線
方向に向けてガス供給口が18aが開口している。
An inner tower 15 is concentrically arranged inside the outer tower 11, and an annular gap 16 is provided between the inner tower 15 and the outer tower 11. The outer tower 11 and the inner tower 15 are the inner tower 1
The inner diameter φd of 5 is 0.55 to 0.6 of the inner diameter φD of the outer tower 11.
It is formed so as to be 5 times. The upper end side of the inner tower 15 is provided with a guide portion 17 that widens upward, and the upper end edge of the guide portion 17 is joined to the inner peripheral surface of the outer tower 11 to close the upper end side of the gap 16. The lower end of the gap 16 forms an opening. A gas supply pipe 18 for introducing a gas 13 is connected to the outer tower 11, the gas supply pipe 18 communicates with a gap 16 between the outer tower 11 and the inner tower 15, and is directed in a tangential direction of a tower wall. The gas supply port is open at 18a.

【0015】内塔15の最上位の内部には複数の冷却水
噴霧ノズル19が外塔11および内塔15を貫通して突
出しており、各冷却水噴霧ノズル19は内塔15の周方
向に沿って等間隔で設けてある。各冷却水噴霧ノズル1
9のノズル口部20は内塔15の内面から300mmほど
離れた壁面付近に位置し、冷却水21の噴霧方向が水平
に対して約60°の仰角を持つように斜め上方を向いて
おり、ノズル口部20には複数の細かなノズル穴が設け
てある。
A plurality of cooling water spray nozzles 19 project through the outer tower 11 and the inner tower 15 inside the uppermost part of the inner tower 15, and each cooling water spray nozzle 19 extends in the circumferential direction of the inner tower 15. They are provided at equal intervals along the line. Each cooling water spray nozzle 1
The nozzle mouth 20 of 9 is located near the wall surface about 300 mm away from the inner surface of the inner tower 15, and is directed obliquely upward so that the spray direction of the cooling water 21 has an elevation angle of about 60 ° with respect to the horizontal. The nozzle opening 20 is provided with a plurality of fine nozzle holes.

【0016】以下、上記した構成における作用を説明す
る。冷却対象として200〜300℃の低温のガス13
を供給管18を通して供給する。ガス13は、ガス供給
口18aから外塔11と内塔15の間の間隙16に接線
方向に向けて噴出し、外塔11の内周面に沿って旋回し
ながら間隙16を下端の開放口に向けて下降流となって
流れる。開放口に達したガス流は内塔15の下端開口か
ら内塔15の内部に流入して上方に転じ、内塔15の内
周面に沿って旋回しながら上昇流となって流れ、内塔1
5の上端開口から外塔11の通気路12に旋回しながら
流入する。
The operation of the above configuration will be described below. As a cooling target, a low temperature gas of 200 to 300 ° C. 13
Is supplied through the supply pipe 18. The gas 13 is jetted from the gas supply port 18a into the gap 16 between the outer tower 11 and the inner tower 15 in a tangential direction, and swirls along the inner peripheral surface of the outer tower 11 to open the gap 16 at the lower end. It flows downward toward. The gas flow reaching the opening enters the inside of the inner tower 15 through the lower end opening of the inner tower 15, turns upward, and swirls along the inner peripheral surface of the inner tower 15 to become an upward flow. 1
It swirls and flows into the ventilation path 12 of the outer tower 11 from the upper opening of 5.

【0017】このとき、内塔15の上端開口付近におい
て外塔11の内径に比べて小さく旋回しているガス流の
外層に対し、複数の冷却水噴霧ノズル19のノズル口部
20から上方に向けて冷却水21を噴霧する。冷却水2
1の粒子は、ガス13の旋回流による拡散作用を受けて
微細粒子となってガス流中に広範囲に拡散し、微細粒子
はガス流と共に外塔11の通気路12を塔頂部に向けて
上昇する。この間に冷却水21の微細粒子は、ガス13
から潜熱として熱量を奪って蒸発し、ガス13を設定温
度域(140〜170℃)にまで冷却する。
At this time, in the vicinity of the upper end opening of the inner tower 15, the outer layer of the gas flow swirling smaller than the inner diameter of the outer tower 11 is directed upward from the nozzle openings 20 of the plurality of cooling water spray nozzles 19. Then, the cooling water 21 is sprayed. Cooling water 2
The particles of No. 1 are subjected to the diffusion action by the swirling flow of the gas 13 to become fine particles and diffused in a wide range in the gas flow. To do. During this time, the fine particles of the cooling water 21 are
The heat amount is taken from the above as latent heat and evaporated, and the gas 13 is cooled to the set temperature range (140 to 170 ° C.).

【0018】上述の作用において、外塔11におけるガ
ス流の流動状態は内塔15の内径φdの大きさによって
変化する。内塔15の内径φdが外塔の内径φDの0.
55倍以下に小さすぎると、ガス流は旋回軸が外塔11
の中心から外れた状態の旋回流となり、冷却水の粒子を
伴ったガス流が局部的に外塔の内面に接触し、ダストト
ラブルが発生する。逆に、内塔の内径φdが外塔の内径
φDの0.65倍以上に大きすぎると、内塔15の中心
側において下降流が発生し、噴霧した冷却水21が下降
流に伴われて内塔15を降下する。
In the above operation, the flow state of the gas flow in the outer column 11 changes depending on the inner diameter φd of the inner column 15. The inner diameter φd of the inner tower 15 is 0.
If it is less than 55 times too small, the swirl axis of the gas flow will be 11
It becomes a swirl flow that is off the center, and the gas flow accompanied by particles of cooling water locally contacts the inner surface of the outer tower, causing dust trouble. On the other hand, if the inner diameter φd of the inner tower is 0.65 times or more larger than the inner diameter φD of the outer tower, a downflow occurs at the center side of the inner tower 15, and the sprayed cooling water 21 is accompanied by the downflow. Lower the inner tower 15.

【0019】このため、内塔15の内径φdを外塔11
の内径φDの0.55〜0.65倍に形成することによ
り、外塔11におけるガス流の流動状態を、旋回軸が外
塔11の中心線に一致する均一な旋回流とすることがで
き、ガス流が外塔11の通気路12を上昇する間に、冷
却水21の微細粒子は旋回径を広げながらも外塔11の
中心側を上昇し、外塔11の内面に達することなく塔頂
部に到達する。したがって、外塔11の内面が冷却水2
1の付着によって濡れることがなく、冷却水21ととも
に煤塵が付着して生じるダストトラブルを防止できる。
Therefore, the inner diameter φd of the inner tower 15 is set to the outer tower 11
By forming the inner diameter φD of the outer column 11 to be 0.55 to 0.65 times, the gas flow in the outer column 11 can have a uniform swirl flow with the swirling axis aligned with the center line of the outer column 11. While the gas flow rises in the air passage 12 of the outer tower 11, the fine particles of the cooling water 21 rise in the center side of the outer tower 11 while expanding the swirling diameter, and do not reach the inner surface of the outer tower 11. Reach the top. Therefore, the inner surface of the outer tower 11 is the cooling water 2
It is possible to prevent dust trouble caused by soot dust adhering to the cooling water 21 without being wetted by the adherence of 1.

【0020】また、内塔15の上端開口付近においてガ
ス流の外層に対して噴霧した冷却水13の粒子は、外層
のガス流に負荷となって作用し、ガス流の外層における
旋回力を減じるので、外塔11の通気路12におけるガ
ス流の流れは、外層における旋回力が弱く、塔中心側の
内層における上昇力が強いものとなる。ラグランジェの
方程式に従えば、冷却水21を噴霧する地点が旋回流の
外側であるほど、冷却水21の粒子はガス流から旋回力
を奪う。
Further, the particles of the cooling water 13 sprayed to the outer layer of the gas flow near the upper end opening of the inner tower 15 act as a load on the gas flow of the outer layer, and reduce the swirling force in the outer layer of the gas flow. Therefore, the gas flow in the air passage 12 of the outer tower 11 has a weak swirling force in the outer layer and a strong ascending force in the inner layer on the tower center side. According to the Lagrange's equation, the particles of the cooling water 21 deprive the swirling force from the gas flow as the spraying point of the cooling water 21 is outside the swirling flow.

【0021】このために、ガス流が外塔11の通気路1
2を上昇する間に、冷却水21の微細粒子は、前半にお
いて幾分旋回し、旋回径を広げながらも外塔11の中心
側を上昇し、後半においては旋回力を失って直上し、外
塔11の内面に達することなく塔頂部に到達する。
For this reason, the gas flow is in the vent passage 1 of the outer tower 11.
While rising 2, the fine particles of the cooling water 21 swirl somewhat in the first half and rise in the center side of the outer tower 11 while expanding the swirling diameter, and in the latter half, lose the swirling force and go straight up. The tower top is reached without reaching the inner surface of the tower 11.

【0022】したがって、内塔15の内径φdを外塔1
1の内径φDの0.55〜0.65倍に形成し、さらに
は、ガス流の外層に対して冷却水21を噴霧することに
より、ガス流が外塔11の中心側を確実に上昇し、外塔
11の内面が冷却水21の付着によって濡れることがな
く、冷却水21とともに煤塵が付着して生じるダストト
ラブルを防止できる。
Therefore, the inner diameter φd of the inner tower 15 is set to the outer tower 1
It is formed to be 0.55 to 0.65 times the inner diameter φD of 1 and further, by spraying the cooling water 21 to the outer layer of the gas flow, the gas flow reliably rises on the center side of the outer tower 11. In addition, the inner surface of the outer tower 11 is not wetted by the adhesion of the cooling water 21, and it is possible to prevent dust trouble caused by soot dust adhering to the cooling water 21.

【0023】また、冷却水21は、ガス13を設定温度
域まで冷却するに要する水量を、複数の冷却水噴霧ノズ
ル19の各ノズル口部20から分散して均等に噴霧する
ので、一つの冷却水噴霧ノズル19における単位時間内
の噴霧水量が少なくなる。このため、冷却水噴霧ノズル
19のノズル口部20におけるノズル穴の数を多くする
とともに径を細かなものに形成し、冷却水21を小さな
粒子として噴霧することができ、冷却水21の総表面が
大きくなることにより、熱吸収効率を高めて低温度域に
おいても冷却水21の完全蒸発を果たすことができる。
Further, since the cooling water 21 disperses the amount of water required to cool the gas 13 to the set temperature range from the nozzle openings 20 of the plurality of cooling water spray nozzles 19 and sprays it evenly, one cooling The amount of spray water per unit time in the water spray nozzle 19 decreases. Therefore, the number of nozzle holes in the nozzle mouth portion 20 of the cooling water spray nozzle 19 can be increased and the diameter can be formed to be small so that the cooling water 21 can be sprayed as small particles, and the total surface of the cooling water 21 can be sprayed. Becomes larger, the heat absorption efficiency can be improved and the cooling water 21 can be completely evaporated even in the low temperature range.

【0024】[0024]

【発明の効果】以上述べたように本発明によれば、内塔
の内径φdを外塔の内径φDの0.55〜0.65倍に
形成することにより、外塔におけるガス流の流動状態
を、旋回軸が外塔の中心線に一致した均一な旋回流とす
ることができ、ガス流に伴われた冷却水の微細粒子は旋
回径を広げながらも外塔の中心側を上昇し、外塔内面に
達することなく塔頂部に到達し、外塔の内面が冷却水の
付着によって濡れることがなく、冷却水とともに煤塵が
付着して生じるダストトラブルを防止できる。
As described above, according to the present invention, by forming the inner diameter φd of the inner tower to be 0.55 to 0.65 times the inner diameter φD of the outer tower, the flow state of the gas flow in the outer tower can be improved. Can be a uniform swirl flow whose swirl axis coincides with the center line of the outer tower, and fine particles of cooling water accompanying the gas flow rise on the center side of the outer tower while expanding the swirl diameter, The inner surface of the outer tower does not reach the inner surface of the outer tower without reaching the inner surface of the outer tower, and the inner surface of the outer tower does not get wet due to the adhesion of the cooling water.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施の形態における低温域ガス減温
塔を示す模式図である。
FIG. 1 is a schematic diagram showing a low temperature gas cooling tower according to an embodiment of the present invention.

【図2】同実施の形態における低温域ガス減温塔の断面
を示す模式図である。
FIG. 2 is a schematic view showing a cross section of a low temperature region gas temperature reducing tower in the same embodiment.

【図3】従来の焼却施設の構成を示すブロック図であ
る。
FIG. 3 is a block diagram showing a configuration of a conventional incineration facility.

【符号の説明】[Explanation of symbols]

11 外塔 12 通気路 13 ガス 15 内塔 18 ガス供給管 18a ガス供給口 19 冷却水噴霧ノズル 20 ノズル口部 φd 内塔の内径 φD 外塔の内径 11 Outer Tower 12 Ventilation Channel 13 Gas 15 Inner Tower 18 Gas Supply Pipe 18a Gas Supply Port 19 Cooling Water Spray Nozzle 20 Nozzle Portion φd Inner Diameter of Inner Tower φD Inner Diameter of Outer Tower

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 内部の通気路が冷却対象のガスの冷却空
間をなし、前記ガスが通気路を旋回しながら上昇流とな
って流通する外塔を設け、外塔の下側内部に内塔を同心
状に配置するとともに、内塔と外塔の間に形成する環状
の間隙の上端側を閉塞し、外塔と内塔の間に塔壁の接線
方向に向けて開口するガス供給口を形成し、内塔の上側
内部に冷却水噴霧ノズルを設け、内塔の内径φdを外塔
の内径φDの0.55〜0.65倍に形成したことを特
徴とする低温域ガス減温塔。
1. An inner tower forms a cooling space for a gas to be cooled, and an outer tower is provided through which the gas flows as an upward flow while swirling through the air passage, and the inner tower is provided below the outer tower. Are concentrically arranged, and the upper end of the annular gap formed between the inner tower and the outer tower is closed, and a gas supply port that opens in the tangential direction of the tower wall is provided between the outer tower and the inner tower. And a cooling water spray nozzle provided inside the upper side of the inner tower, and the inner diameter φd of the inner tower is 0.55 to 0.65 times the inner diameter φD of the outer tower. .
JP18456095A 1995-07-21 1995-07-21 Low temperature gas cooling tower Expired - Fee Related JP3447152B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18456095A JP3447152B2 (en) 1995-07-21 1995-07-21 Low temperature gas cooling tower

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18456095A JP3447152B2 (en) 1995-07-21 1995-07-21 Low temperature gas cooling tower

Publications (2)

Publication Number Publication Date
JPH0933031A true JPH0933031A (en) 1997-02-07
JP3447152B2 JP3447152B2 (en) 2003-09-16

Family

ID=16155350

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18456095A Expired - Fee Related JP3447152B2 (en) 1995-07-21 1995-07-21 Low temperature gas cooling tower

Country Status (1)

Country Link
JP (1) JP3447152B2 (en)

Also Published As

Publication number Publication date
JP3447152B2 (en) 2003-09-16

Similar Documents

Publication Publication Date Title
EP1498172B1 (en) Dust collector
CN106582248A (en) Flue gas wet desulphurization, dedusting integrated device and process
JP2005500501A (en) Method and apparatus for cooling high-temperature exhaust gas and combustion treatment apparatus
US2590905A (en) Apparatus for concentrating residual pulp liquor by direct contact with flue gases
CN208990512U (en) A kind of flue gas of wet desulphurization disappears white system
US2653674A (en) Suppressor for solid particles and fumes
EP0640373B1 (en) Spray tower and method for cooling, moistening and/or purifying gas
JP2000107540A (en) Waste gas treatment system
JPH09229346A (en) Chimney
JP4497336B2 (en) Cyclone oil mist remover
JPH0933031A (en) Temperature reducing tower for low temperature region gas
JPH09292120A (en) Chimney
CA1127835A (en) Material injection nozzle for pulse jet drying systems
JPH0933030A (en) Temperature reducing tower for low temperature region
JP2001201038A (en) Method of cooling exhaust gas and exhaust gas cooling tower
JPH0933033A (en) Temperature reducing tower for low temperature region gas
CN111991962A (en) Cyclone dust removal equipment and cracking system
JPH0933032A (en) Temperature reducing tower for low temperature region gas
JPH0933179A (en) Gas temperature lowering tower in low temperature region
CN111957131A (en) Matte granulation steam collection device
CN212039639U (en) Cyclone dust removal equipment and cracking system
JPH11141856A (en) Temperature-reducing tower, and its operating method
JP3045950B2 (en) Exhaust gas temperature control tower in incineration plant
CN216137000U (en) Burn burning furnace gas cleaning device
JPH07229325A (en) Desulfurization stack

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080704

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090704

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100704

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100704

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110704

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110704

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120704

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120704

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130704

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140704

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees