JPH0933030A - Temperature reducing tower for low temperature region - Google Patents
Temperature reducing tower for low temperature regionInfo
- Publication number
- JPH0933030A JPH0933030A JP7184559A JP18455995A JPH0933030A JP H0933030 A JPH0933030 A JP H0933030A JP 7184559 A JP7184559 A JP 7184559A JP 18455995 A JP18455995 A JP 18455995A JP H0933030 A JPH0933030 A JP H0933030A
- Authority
- JP
- Japan
- Prior art keywords
- tower
- cooling water
- gas
- low temperature
- inner tower
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Chimneys And Flues (AREA)
- Treating Waste Gases (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、都市ごみ焼却炉等
から排出する排ガスを低温域にまで減温する低温域ガス
減温塔に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a low temperature gas cooling tower for lowering the temperature of exhaust gas discharged from an incinerator of municipal solid waste to a low temperature range.
【0002】[0002]
【従来の技術】従来、例えば図3に示すように、都市ご
み焼却施設においては、焼却炉1の排ガス(800〜9
00℃)2を排熱ボイラ3に導いて余熱を蒸気の形で取
り出し、プラントや給湯等の熱源として利用している。
また、排ガス2はガス減温塔4に導いて減温した後に、
バグフィルタ5ないしは電気集塵器に導いて、微細な煤
塵を捕集・除去し、その後に煙突6に導いている。2. Description of the Related Art Conventionally, for example, as shown in FIG. 3, in an municipal waste incinerator, exhaust gas (800 to 9
(00 ° C.) 2 is guided to the exhaust heat boiler 3 to extract the residual heat in the form of steam, which is used as a heat source for a plant or hot water supply.
In addition, after the exhaust gas 2 is introduced into the gas temperature reduction tower 4 to reduce the temperature,
It guides to the bag filter 5 or an electric dust collector, collects and removes fine soot dust, and then guides it to the chimney 6.
【0003】ガス減温塔4の運転は中温域ないしは高温
域に限られており、中温域での運転においては400〜
500℃の排ガスを250〜300℃に減温し、高温域
での運転においては800〜900℃の排ガスを300
〜500℃に減温している。これは、ガス減温塔4にお
いては、200〜300℃の排ガスを140〜170℃
に減温する低温域の運転が困難なためであった。The operation of the gas temperature reducing tower 4 is limited to a medium temperature range or a high temperature range.
The temperature of exhaust gas at 500 ° C is reduced to 250 to 300 ° C, and the exhaust gas at 800 to 900 ° C is reduced to 300 during operation in a high temperature range.
Temperature is reduced to ~ 500 ° C. This is because in the gas temperature reducing tower 4, the exhaust gas of 200 to 300 ° C. is heated to 140 to 170 ° C.
This was because it was difficult to operate in the low temperature range where the temperature decreased to zero.
【0004】ガス減温塔においては、塔内に流入する排
ガス中に冷却水を噴霧し、冷却水が排ガスから潜熱とし
て熱量を奪って蒸発することにより排ガスの冷却を行っ
ている。このため、ガス減温塔を低温域において運転す
る場合には、塔内に流入する排ガスの温度が200〜3
00℃と低温域にあるので、冷却水の蒸発速度が遅く、
排ガスを所定の温度にまで冷却するに必要な冷却水を、
排ガスが塔内を通過する限られた時間において完全に蒸
発させることは困難であった。In the gas cooling tower, cooling water is sprayed into the exhaust gas flowing into the tower, and the cooling water removes heat as latent heat from the exhaust gas and evaporates to cool the exhaust gas. Therefore, when the gas temperature reducing tower is operated in a low temperature range, the temperature of the exhaust gas flowing into the tower is 200 to 3
Since it is in the low temperature range of 00 ° C, the evaporation rate of cooling water is slow,
Cooling water required to cool the exhaust gas to a predetermined temperature,
It was difficult to completely evaporate the exhaust gas in the limited time when the exhaust gas passed through the tower.
【0005】[0005]
【発明が解決しようとする課題】近年、排ガス中に含ま
れる発癌性物質等の有害物質の有効な除去方法として、
排ガスを低温状態でバグフィルタに導いて濾過すること
が提唱されている。しかし、ガス減温塔において冷却水
が完全に蒸発しない場合には、ガス減温塔の後段に位置
するバグフィルタに未蒸発の冷却水が流入し、バグフィ
ルタの濾布が濡れ、濡れた濾布に煤塵が固着して目詰ま
る問題があった。Recently, as an effective method for removing harmful substances such as carcinogenic substances contained in exhaust gas,
It has been proposed to guide the exhaust gas to a bag filter in a low temperature state for filtration. However, when the cooling water does not completely evaporate in the gas temperature reducing tower, the non-evaporated cooling water flows into the bag filter located in the subsequent stage of the gas temperature reducing tower, the filter cloth of the bag filter gets wet, and the wet filter becomes wet. There was a problem that soot and dust stuck to the cloth and clogged.
【0006】また、従来のガス減温塔では、冷却水を塔
の中心位置において単一の噴霧ノズルから噴霧している
ので、排ガスを設定温度にまで減温するに要する水量を
単位時間内に噴霧するためには、水滴の粒径が大きくな
らざるを得なかった。この噴霧した冷却水は負荷として
ガス流に作用し、ガス流の中心付近における上昇力が弱
まり、ガス流の外層における旋回力が強く作用する。こ
のため、塔の中心側において下降流が生じて噴霧した水
滴の一部が塔底部側に降下する問題や、水滴の粒径が大
きくて旋回流による遠心力を受け易いために、水滴が塔
の内周面に達し、濡れた壁面に煤塵が付着してダストト
ラブルを引き起こす問題があった。Further, in the conventional gas cooling tower, since the cooling water is sprayed from the single spray nozzle at the central position of the tower, the amount of water required to cool the exhaust gas to the set temperature is set within the unit time. In order to spray, the particle size of the water drop had to be large. The sprayed cooling water acts as a load on the gas flow, the rising force near the center of the gas flow weakens, and the swirling force in the outer layer of the gas flow strongly acts. Therefore, a downward flow occurs in the center side of the tower and some of the sprayed water droplets drop to the bottom side of the tower, and because the water droplets have a large particle size and are easily subjected to centrifugal force due to the swirling flow, the water droplets There was a problem that it reached the inner peripheral surface of the and the soot dust adhered to the wet wall surface to cause dust trouble.
【0007】本発明は上記した課題を解決するもので、
低温域における運転においても、冷却水が塔内壁に触れ
ることなく完全に蒸発する低温域ガス減温塔を提供する
ことを目的とする。The present invention solves the above-mentioned problems, and
It is an object of the present invention to provide a low temperature gas cooling tower in which cooling water is completely evaporated without touching the inner wall of the tower even in operation in the low temperature area.
【0008】[0008]
【課題を解決するための手段】上記した課題を解決する
ために、本発明の低温域ガス減温塔は、内部の通気路が
冷却対象のガスの冷却空間をなし、前記ガスが通気路を
旋回しながら上昇流となって流通する外塔を設け、外塔
の下側内部に内塔を同心状に配置するとともに、内塔と
外塔の間に形成する環状の間隙の上端側を閉塞し、外塔
と内塔の間に塔壁の接線方向に向けて開口するガス供給
口を形成し、内塔の上側内部に突出して配置する複数の
冷却水噴霧ノズルを内塔の周方向に沿って等間隔で設
け、冷却水噴霧ノズルのノズル口を内塔の壁面付近に設
けた構成としたものである。In order to solve the above-mentioned problems, in the low temperature gas reducing tower of the present invention, an internal ventilation passage constitutes a cooling space for the gas to be cooled, and the gas constitutes the ventilation passage. An outer tower that circulates in an upward flow while swirling is provided, the inner tower is concentrically arranged inside the outer tower, and the upper end side of the annular gap formed between the inner tower and the outer tower is closed. Then, a gas supply port that opens in the tangential direction of the tower wall is formed between the outer tower and the inner tower, and a plurality of cooling water spray nozzles that are arranged to project inside the upper side of the inner tower are arranged in the circumferential direction of the inner tower. The nozzle openings of the cooling water spray nozzles are provided along the inner wall surface of the inner tower.
【0009】上記した構成により、ガス供給口から外塔
と内塔の間の間隙に接線方向に噴出する冷却対象のガス
は、外塔の内周面に沿って旋回しながら前記間隙を下端
の開放口に向けて下降流となって流れる。開放口に達し
たガス流は内塔の下端開口から内塔の内部に流入して上
方に転じ、一旦旋回径を小さくして内塔の内周面に沿っ
て旋回しながら上昇流となって流れ、内塔の上端開口か
ら外塔の通気路に旋回しながら流入する。With the above structure, the gas to be cooled, which is jetted tangentially from the gas supply port into the gap between the outer tower and the inner tower, swirls along the inner peripheral surface of the outer tower, and the gas at the lower end It flows downwards toward the opening. The gas flow reaching the opening enters the inside of the inner tower from the lower end opening of the inner tower and turns upward, and once the diameter of swirl is reduced, it swirls along the inner peripheral surface of the inner tower and becomes an upward flow. Flows from the upper opening of the inner tower into the ventilation passage of the outer tower while swirling.
【0010】このとき、内塔の上端開口付近において、
外塔の内径に比べて小さく旋回するガス流の外層に対し
て冷却水を複数の冷却水噴霧ノズルから噴霧する。冷却
水の粒子は、ガスの旋回流による拡散作用を受けて微細
粒子となってガス流中に広範囲に拡散し、微細粒子はガ
ス流と共に外塔の通気路を塔頂部に向けて上昇する。こ
の間に冷却水はガスから潜熱として熱量を奪って蒸発
し、ガスを設定温度域にまで冷却する。At this time, near the upper opening of the inner tower,
Cooling water is sprayed from a plurality of cooling water spray nozzles onto the outer layer of the gas flow swirling smaller than the inner diameter of the outer tower. The particles of the cooling water are diffused by the swirling flow of the gas to become fine particles and diffuse in a wide range in the gas flow, and the fine particles ascend together with the gas flow toward the tower top through the ventilation passage of the outer tower. During this time, the cooling water takes away the amount of heat from the gas as latent heat and evaporates, cooling the gas to the set temperature range.
【0011】ガス流の外層に対して噴霧した冷却水の粒
子は、外層のガス流に負荷となって作用し、ガス流の外
層における旋回力を減じるので、外塔の通気路における
ガス流の流れは、外層における旋回力が弱く、塔中心側
の内層における上昇力が強いものとなる。このため、ガ
ス流が外塔の通気路を上昇する間に、冷却水の微細粒子
は旋回径を広げながらも外塔の中心側を上昇し、外塔内
面に達することなく塔頂部に到達する。したがって、外
塔の内面が冷却水の付着によって濡れることがなく、冷
却水とともに煤塵が付着して生じるダストトラブルを防
止できる。The particles of the cooling water sprayed to the outer layer of the gas stream act as a load on the outer layer gas stream and reduce the swirling force in the outer layer of the gas stream. The flow has a weak swirling force in the outer layer and a strong ascending force in the inner layer on the center side of the tower. Therefore, while the gas flow rises in the air passage of the outer tower, the cooling water fine particles rise in the center side of the outer tower while expanding the swirling diameter and reach the top of the outer tower without reaching the inner surface of the outer tower. . Therefore, the inner surface of the outer tower does not get wet due to the attachment of the cooling water, and it is possible to prevent dust trouble caused by the attachment of soot dust together with the cooling water.
【0012】さらに、冷却水は、ガスを設定温度域まで
冷却するに要する水量を、複数の冷却水噴霧ノズルから
分散して噴霧するので、一つの冷却水噴霧ノズルにおけ
る単位時間内の噴霧水量が少なくなる。このため、冷却
水噴霧ノズルにおけるノズル穴を細かなものにして冷却
水を小さな粒子として噴霧することができるので、冷却
水の熱吸収効率を高めて低温度域においても冷却水の完
全蒸発を果たすことができる。Further, since the cooling water is sprayed by dispersing the amount of water required to cool the gas to the set temperature range from a plurality of cooling water spray nozzles, the amount of spray water per unit time at one cooling water spray nozzle is Less. For this reason, the nozzle hole in the cooling water spray nozzle can be made fine so that the cooling water can be sprayed as small particles, so that the heat absorption efficiency of the cooling water is increased and the cooling water is completely evaporated even in the low temperature range. be able to.
【0013】[0013]
【発明の実施の形態】以下、本発明の一実施の形態を図
面に基づいて説明する。図1〜図2において、外塔11
は内部の通気路12が排ガス等の冷却対象をなすガス1
3の冷却空間をなしており、ガス13が通気路12を旋
回しながら上昇流となって流通する。外塔11は塔頂部
が後段のバグフィルタ(図示せず)に連通しており、塔
底部にローダーバルブ14が設けてある。BEST MODE FOR CARRYING OUT THE INVENTION An embodiment of the present invention will be described below with reference to the drawings. 1 to 2, the outer tower 11
Is a gas 1 whose internal ventilation passage 12 is a cooling target such as exhaust gas
3 forms a cooling space, and the gas 13 circulates in the ventilation path 12 as an upward flow while flowing. The top of the outer tower 11 communicates with a bag filter (not shown) at the latter stage, and a loader valve 14 is provided at the bottom of the tower.
【0014】外塔11の下側内部には内塔15が同心状
に配置してあり、内塔15と外塔11の間に環状の間隙
16が設けてある。内塔15の上端側は上方に向けて広
く拡径するガイド部17が設けてあり、ガイド部17の
上端縁が外塔11の内周面に接合して間隙16の上端側
を閉塞しており、間隙16の下端は開放口を形成してい
る。外塔11にはガス13を導入するためのガス供給管
18が接続しており、ガス供給管18は外塔11と内塔
15の間の間隙16に連通し、塔壁の接線方向に向けて
ガス供給口が18aが開口している。An inner tower 15 is concentrically arranged inside the outer tower 11, and an annular gap 16 is provided between the inner tower 15 and the outer tower 11. The upper end side of the inner tower 15 is provided with a guide portion 17 that widens upward, and the upper end edge of the guide portion 17 is joined to the inner peripheral surface of the outer tower 11 to close the upper end side of the gap 16. The lower end of the gap 16 forms an opening. A gas supply pipe 18 for introducing a gas 13 is connected to the outer tower 11, the gas supply pipe 18 communicates with a gap 16 between the outer tower 11 and the inner tower 15, and is directed in a tangential direction of a tower wall. The gas supply port is open at 18a.
【0015】内塔15の最上位の内部には複数の冷却水
噴霧ノズル19が外塔11および内塔15を貫通して突
出しており、各冷却水噴霧ノズル19は内塔15の周方
向に沿って等間隔で設けてある。各冷却水噴霧ノズル1
9のノズル口部20は内塔15の内面から300mmほど
離れた壁面付近に位置し、冷却水21の噴霧方向が水平
に対して約60°の仰角を持つように斜め上方を向いて
おり、ノズル口部20には複数の細かなノズル穴が設け
てある。A plurality of cooling water spray nozzles 19 project through the outer tower 11 and the inner tower 15 inside the uppermost part of the inner tower 15, and each cooling water spray nozzle 19 extends in the circumferential direction of the inner tower 15. They are provided at equal intervals along the line. Each cooling water spray nozzle 1
The nozzle mouth 20 of 9 is located near the wall surface about 300 mm away from the inner surface of the inner tower 15, and is directed obliquely upward so that the spray direction of the cooling water 21 has an elevation angle of about 60 ° with respect to the horizontal. The nozzle opening 20 is provided with a plurality of fine nozzle holes.
【0016】以下、上記した構成における作用を説明す
る。冷却対象として200〜300℃の低温のガス13
を供給管18を通して供給する。ガス13は、ガス供給
口18aから外塔11と内塔15の間の間隙16に接線
方向に向けて噴出し、外塔11の内周面に沿って旋回し
ながら間隙16を下端の開放口に向けて下降流となって
流れる。開放口に達したガス流は内塔15の下端開口か
ら内塔15の内部に流入して上方に転じ、内塔15の内
周面に沿って旋回しながら上昇流となって流れ、内塔1
5の上端開口から外塔11の通気路12に旋回しながら
流入する。The operation of the above configuration will be described below. As a cooling target, a low temperature gas of 200 to 300 ° C. 13
Is supplied through the supply pipe 18. The gas 13 is jetted from the gas supply port 18a into the gap 16 between the outer tower 11 and the inner tower 15 in a tangential direction, and swirls along the inner peripheral surface of the outer tower 11 to open the gap 16 at the lower end. It flows downward toward. The gas flow reaching the opening enters the inside of the inner tower 15 through the lower end opening of the inner tower 15, turns upward, and swirls along the inner peripheral surface of the inner tower 15 to become an upward flow. 1
It swirls and flows into the ventilation path 12 of the outer tower 11 from the upper opening of 5.
【0017】このとき、内塔15の上端開口付近におい
て外塔11の内径に比べて小さく旋回しているガス流の
外層に対し、複数の冷却水噴霧ノズル19のノズル口部
20から上方に向けて冷却水21を噴霧する。冷却水2
1の粒子は、ガス13の旋回流による拡散作用を受けて
微細粒子となってガス流中に広範囲に拡散し、微細粒子
はガス流と共に外塔11の通気路12を塔頂部に向けて
上昇する。この間に冷却水21の微細粒子は、ガス13
から潜熱として熱量を奪って蒸発し、ガス13を設定温
度域(140〜170℃)にまで冷却する。At this time, in the vicinity of the upper end opening of the inner tower 15, the outer layer of the gas flow swirling smaller than the inner diameter of the outer tower 11 is directed upward from the nozzle openings 20 of the plurality of cooling water spray nozzles 19. Then, the cooling water 21 is sprayed. Cooling water 2
The particles of No. 1 are subjected to the diffusion action by the swirling flow of the gas 13 to become fine particles and diffused in a wide range in the gas flow. To do. During this time, the fine particles of the cooling water 21 are
The heat amount is taken from the above as latent heat and evaporated, and the gas 13 is cooled to the set temperature range (140 to 170 ° C.).
【0018】一方で、ガス流の外層に対して噴霧した冷
却水13の粒子は、外層のガス流に負荷となって作用
し、ガス流の外層における旋回力を減じるので、外塔1
1の通気路12におけるガス流の流れは、外層における
旋回力が弱く、塔中心側の内層における上昇力が強いも
のとなる。ラグランジェの方程式に従えば、冷却水21
を噴霧する地点が旋回流の外側であるほど、冷却水21
の粒子はガス流から旋回力を奪う。On the other hand, the particles of the cooling water 13 sprayed onto the outer layer of the gas stream act as a load on the gas stream of the outer layer, and reduce the swirling force of the outer layer of the gas stream.
The gas flow in No. 1 has a weak swirling force in the outer layer and a strong ascending force in the inner layer on the center side of the tower. According to Lagrange's equation, cooling water 21
As the spraying point is outside the swirl flow, the cooling water 21
Particles deprive the gas stream of swirling force.
【0019】このために、ガス流が外塔11の通気路1
2を上昇する間に、冷却水21の微細粒子は、前半にお
いて幾分旋回し、旋回径を広げながらも外塔11の中心
側を上昇し、後半においては旋回力を失って直上し、外
塔11の内面に達することなく塔頂部に到達する。した
がって、外塔11の内面が冷却水21の付着によって濡
れることがなく、冷却水21とともに煤塵が付着して生
じるダストトラブルを防止できる。For this reason, the gas flow is in the vent passage 1 of the outer tower 11.
While rising 2, the fine particles of the cooling water 21 swirl somewhat in the first half and rise in the center side of the outer tower 11 while expanding the swirling diameter, and in the latter half, lose the swirling force and go straight up. The tower top is reached without reaching the inner surface of the tower 11. Therefore, the inner surface of the outer tower 11 does not get wet due to the adhesion of the cooling water 21, and it is possible to prevent a dust trouble caused by the attachment of soot dust together with the cooling water 21.
【0020】さらに、冷却水21は、ガス13を設定温
度域まで冷却するに要する水量を、複数の冷却水噴霧ノ
ズル19の各ノズル口部20から分散して均等に噴霧す
るので、一つの冷却水噴霧ノズル19における単位時間
内の噴霧水量が少なくなる。このため、冷却水噴霧ノズ
ル19のノズル口部20におけるノズル穴の数を多くす
るとともに径を小さく形成し、冷却水21を小さな粒子
として噴霧することができ、冷却水21の総表面積が大
きくなることにより、熱吸収効率を高めて低温度域にお
いても冷却水21の完全蒸発を果たすことができる。Further, since the cooling water 21 disperses the amount of water required to cool the gas 13 to the set temperature range from the nozzle openings 20 of the plurality of cooling water spray nozzles 19 and sprays it evenly, one cooling The amount of spray water per unit time in the water spray nozzle 19 decreases. Therefore, the number of nozzle holes in the nozzle mouth portion 20 of the cooling water spray nozzle 19 can be increased and the diameter can be reduced, and the cooling water 21 can be sprayed as small particles, so that the total surface area of the cooling water 21 is increased. As a result, the heat absorption efficiency can be improved and the cooling water 21 can be completely evaporated even in the low temperature range.
【0021】[0021]
【発明の効果】以上述べたように本発明によれば、内塔
の上端開口付近において、旋回するガス流の外層に対し
て冷却水を複数の冷却水噴霧ノズルから噴霧することに
より、ガス流の外層における旋回力を減じ、外層におけ
る旋回力を弱め、塔中心側の内層における上昇力の強い
ガス流を形成することができ、このガス流により冷却水
の微細粒子が外塔の内面に付着することを防止でき、冷
却水とともに煤塵が塔壁に付着して生じるダストトラブ
ルを防止できる。As described above, according to the present invention, in the vicinity of the upper end opening of the inner tower, the cooling water is sprayed from the plurality of cooling water spray nozzles to the outer layer of the swirling gas flow, so that the gas flow It is possible to reduce the swirling force in the outer layer, weaken the swirling force in the outer layer, and form a gas flow with a strong rising force in the inner layer on the center side of the tower.This gas flow allows fine particles of cooling water to adhere to the inner surface of the outer tower. It is possible to prevent the occurrence of dust, and to prevent dust trouble caused by soot dust adhering to the tower wall together with the cooling water.
【0022】必要水量の冷却水を複数の冷却水噴霧ノズ
ルから分散して噴霧することにより、一つの冷却水噴霧
ノズルにおける噴霧水量を減じ、冷却水を小さな粒子と
して噴霧することができるので、冷却水の熱吸収効率を
高めて低温度域においても冷却水の完全蒸発を果たすこ
とができる。By dispersing and spraying the required amount of cooling water from a plurality of cooling water spray nozzles, the amount of spray water in one cooling water spray nozzle can be reduced and the cooling water can be sprayed as small particles, so It is possible to improve the heat absorption efficiency of water and achieve complete evaporation of cooling water even in a low temperature range.
【図1】本発明の一実施の形態における低温域ガス減温
塔を示す模式図である。FIG. 1 is a schematic diagram showing a low temperature gas cooling tower according to an embodiment of the present invention.
【図2】同実施の形態における低温域ガス減温塔の断面
を示す模式図である。FIG. 2 is a schematic view showing a cross section of a low temperature region gas temperature reducing tower in the same embodiment.
【図3】従来の焼却施設の構成を示すブロック図であ
る。FIG. 3 is a block diagram showing a configuration of a conventional incineration facility.
11 外塔 12 通気路 13 ガス 15 内塔 18 ガス供給管 18a ガス供給口 19 冷却水噴霧ノズル 20 ノズル口部 11 Outer Tower 12 Ventilation Path 13 Gas 15 Inner Tower 18 Gas Supply Pipe 18a Gas Supply Port 19 Cooling Water Spray Nozzle 20 Nozzle Portion
Claims (1)
間をなし、前記ガスが通気路を旋回しながら上昇流とな
って流通する外塔を設け、外塔の下側内部に内塔を同心
状に配置するとともに、内塔と外塔の間に形成する環状
の間隙の上端側を閉塞し、外塔と内塔の間に塔壁の接線
方向に向けて開口するガス供給口を形成し、内塔の上側
内部に突出して配置する複数の冷却水噴霧ノズルを内塔
の周方向に沿って等間隔で設け、冷却水噴霧ノズルのノ
ズル口を内塔の壁面付近に設けたことを特徴とする低温
域ガス減温塔。1. An inner tower forms a cooling space for a gas to be cooled, and an outer tower is provided through which the gas flows as an upward flow while swirling through the air passage, and the inner tower is provided below the outer tower. Are concentrically arranged, and the upper end of the annular gap formed between the inner tower and the outer tower is closed, and a gas supply port that opens in the tangential direction of the tower wall is provided between the outer tower and the inner tower. A plurality of cooling water spray nozzles that are formed so as to project inside the upper side of the inner tower are provided at equal intervals along the circumferential direction of the inner tower, and the nozzle openings of the cooling water spray nozzle are provided near the wall surface of the inner tower. A low temperature gas temperature reducing tower.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18455995A JP3212489B2 (en) | 1995-07-21 | 1995-07-21 | Low temperature gas cooling tower |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18455995A JP3212489B2 (en) | 1995-07-21 | 1995-07-21 | Low temperature gas cooling tower |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0933030A true JPH0933030A (en) | 1997-02-07 |
JP3212489B2 JP3212489B2 (en) | 2001-09-25 |
Family
ID=16155332
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP18455995A Expired - Fee Related JP3212489B2 (en) | 1995-07-21 | 1995-07-21 | Low temperature gas cooling tower |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3212489B2 (en) |
-
1995
- 1995-07-21 JP JP18455995A patent/JP3212489B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP3212489B2 (en) | 2001-09-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1498172B1 (en) | Dust collector | |
CN106582248A (en) | Flue gas wet desulphurization, dedusting integrated device and process | |
JP2005500501A (en) | Method and apparatus for cooling high-temperature exhaust gas and combustion treatment apparatus | |
CN208990512U (en) | A kind of flue gas of wet desulphurization disappears white system | |
JP2000107540A (en) | Waste gas treatment system | |
EP0640373B1 (en) | Spray tower and method for cooling, moistening and/or purifying gas | |
JPH09229346A (en) | Chimney | |
JPH0933030A (en) | Temperature reducing tower for low temperature region | |
JPH09292120A (en) | Chimney | |
JPH0933031A (en) | Temperature reducing tower for low temperature region gas | |
CA1127835A (en) | Material injection nozzle for pulse jet drying systems | |
JP2001198490A (en) | Cyclone type oil mist removing apparatus | |
CN111991962A (en) | Cyclone dust removal equipment and cracking system | |
JP2001201038A (en) | Method of cooling exhaust gas and exhaust gas cooling tower | |
JPH0933033A (en) | Temperature reducing tower for low temperature region gas | |
JPH0933032A (en) | Temperature reducing tower for low temperature region gas | |
JPH0933179A (en) | Gas temperature lowering tower in low temperature region | |
CN212039639U (en) | Cyclone dust removal equipment and cracking system | |
CN205886494U (en) | Flue gas degree of depth dust removal defogging water conservation unit reaches by its device of constituteing | |
JPH11141856A (en) | Temperature-reducing tower, and its operating method | |
US4221574A (en) | Apparatus for removing particulates from the exhaust gases generated in drum mixers and aggregate dryers | |
JP3608424B2 (en) | Downflow type cooling tower | |
JP3572880B2 (en) | Cooling tower | |
WO2003013697A1 (en) | Air cleaning apparatus | |
JP3045950B2 (en) | Exhaust gas temperature control tower in incineration plant |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080719 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090719 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100719 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100719 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110719 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110719 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120719 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120719 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130719 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140719 Year of fee payment: 13 |
|
LAPS | Cancellation because of no payment of annual fees |