JPH1163469A - Desuperheating tower - Google Patents

Desuperheating tower

Info

Publication number
JPH1163469A
JPH1163469A JP9222382A JP22238297A JPH1163469A JP H1163469 A JPH1163469 A JP H1163469A JP 9222382 A JP9222382 A JP 9222382A JP 22238297 A JP22238297 A JP 22238297A JP H1163469 A JPH1163469 A JP H1163469A
Authority
JP
Japan
Prior art keywords
exhaust gas
gas introduction
tower
cooling tower
spray
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9222382A
Other languages
Japanese (ja)
Other versions
JP3572880B2 (en
Inventor
Keizo Hamaguchi
敬三 浜口
Hiroshi Osada
容 長田
Kazuhisa Kowata
和寿 小綿
Takehiko Inada
武彦 稲田
Katsuki Sonoda
克樹 園田
Shuichi Hirata
修一 平田
Masato Kato
正人 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP22238297A priority Critical patent/JP3572880B2/en
Publication of JPH1163469A publication Critical patent/JPH1163469A/en
Application granted granted Critical
Publication of JP3572880B2 publication Critical patent/JP3572880B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/30Technologies for a more efficient combustion or heat usage

Landscapes

  • Chimneys And Flues (AREA)

Abstract

PROBLEM TO BE SOLVED: To effectively evaporate the spray waterdrop by a spray nozzle so that the problem of dust accumulation in a tower, etc., does not occur, by installing an exhaust gas introduction duct which covers, in donut shape, the opening, existing in the circumferential direction of the drum of a desuperheating tower, of the exhaust gas introduction duct. SOLUTION: The exhaust gas which is discharged from an incineration facility such as a garbage incineration facility, etc., and whose heat is recovered by a boiler or the like is introduced into a desuperheating tower 1 through an exhaust gas duct 2. The exhaust gas introduced from the exhaust gas introduction duct 2 is introduced into the tower with an induction fan or the like from the openings 7 provided in a plurality in the circumferential direction of the drum, and passes the drum 1 and is discharged while being cooled by the evaporation of the spray waterdrop of a spray nozzle. Since it is introduced from a plurality of openings, the flows of exhaust gas from adjacent openings collide against each other and are mixed, and at the same time, due to the plural openings, the exhaust gas introduction velocity becomes low flow velocity, and the flows turn into an upward flow equal in cross section of the drum. Since the gas current is equal, the spray waterdrop can be evaporated effectively when having sprayed water by the spray nozzle.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は都市ごみ焼却施設、
可燃性廃棄物処理施設等の焼却装置などから排出される
排ガスを廃水を生じることなく冷却するための減温塔に
関するものである。
TECHNICAL FIELD The present invention relates to a municipal solid waste incineration plant,
The present invention relates to a cooling tower for cooling exhaust gas discharged from an incinerator or the like of a combustible waste treatment facility without generating wastewater.

【0002】[0002]

【従来の技術】焼却炉等から排出される800℃以上の
高温排ガスは、ボイラやエコノマイザ等の熱エネルギー
回収手段か、水の蒸発潜熱を利用した水噴射式の冷却塔
によって、250〜350℃程度に減温され、後段の電
気集塵機などの集塵機に導入され処理されていた。とこ
ろが、ごみ焼却において、近年、猛毒であるダイオキシ
ン類が300℃付近の温度において生成することが知ら
れるようになり、300℃付近の集塵処理は敬遠され、
200℃以下でバグフィルターを用いた低温集塵が主流
となりつつある。
2. Description of the Related Art High-temperature exhaust gas of 800 ° C. or higher discharged from an incinerator or the like is heated to 250 to 350 ° C. by a thermal energy recovery means such as a boiler or an economizer or a water injection type cooling tower utilizing latent heat of vaporization of water. The temperature was reduced to a certain extent, and it was introduced into a dust collector such as an electric dust collector at a later stage and was processed. However, it has become known in recent years that dioxins, which are highly toxic, are generated at temperatures around 300 ° C. in waste incineration, and dust collection at around 300 ° C. has been avoided.
Low-temperature dust collection using a bag filter at 200 ° C. or lower is becoming mainstream.

【0003】排ガスを200℃以下にするためには、ボ
イラ等により熱回収された250〜350℃程度の排ガ
スを、例えば、スプレーノズルを用いた水噴霧によりさ
らに減温する方法が用いられている。すなわち、ボイラ
と集塵機の間に減温塔を設置させて、ダイオキシン類の
発生の少ない200℃以下の低温化を実施するケースが
増えている。
In order to reduce the temperature of exhaust gas to 200 ° C. or lower, a method of further reducing the temperature of exhaust gas of about 250 to 350 ° C. recovered by heat from a boiler or the like, for example, by spraying water using a spray nozzle is used. . That is, there is an increasing number of cases in which a cooling tower is installed between a boiler and a dust collector, and the temperature is reduced to 200 ° C. or less where generation of dioxins is small.

【0004】従来、減温塔は図9または図10に示すよ
うに円筒型胴部の下部に排ガス導入ダクトを設置し、上
部に排ガス排出ダクトを設置し、排ガスを冷却するため
に水噴霧スプレーノズルを排ガス導入ダクト上部に設置
していた。
Conventionally, as shown in FIG. 9 or FIG. 10, a cooling tower is provided with an exhaust gas introduction duct at a lower portion of a cylindrical body and an exhaust gas discharge duct at an upper portion thereof. The nozzle was installed above the exhaust gas introduction duct.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、従来の
形状の減温塔では、噴霧水の蒸発潜熱により排ガスを冷
却するための減温領域である本体胴部において、導入す
る排ガス流れが均一に胴部断面全体に亘って拡散しない
ために、噴霧水滴の活発かつ効率的な蒸発が行われず
に、未蒸発水滴による塔内壁の濡れ面形成、後段のパグ
フィルターへの未蒸発水滴の流出、濡れダストの生成に
よりダストの固着、ダスト排出困難等の問題を生じてい
た。
However, in the cooling tower of the conventional shape, the flow of the exhaust gas to be introduced is uniformly distributed in the body of the body, which is a cooling zone for cooling the exhaust gas by the latent heat of evaporation of the spray water. Because it does not spread over the entire section, active and efficient evaporation of the sprayed water droplets is not performed, the wetted surface of the tower inner wall is formed by the non-evaporated water droplets, the non-evaporated water droplets flow out to the subsequent pug filter, wet dust The formation of dust causes problems such as sticking of dust and difficulty in discharging dust.

【0006】図7、図8を用いて説明すると、排ガス導
入ダクト12から導入された排ガスは減温塔胴部11に
至る過程で、十分に拡散できずに、排ガス排出ダクト1
9に短絡して到達する。すなわち、所定の排ガス滞留時
間が得られないために、噴霧水滴の十分な蒸発時間が得
られないこと、また排ガス流れが胴部断面において均一
でないので、噴霧水滴の蒸発が均一に効果的に行われ
ず、温度分布に偏りが生じること、により噴霧水滴の完
全蒸発が得られなくなり、以て上記問題を生じるに至
る。
[0007] Explaining with reference to FIGS. 7 and 8, the exhaust gas introduced from the exhaust gas introduction duct 12 cannot be sufficiently diffused in the process of reaching the cooling tower body 11, and the exhaust gas discharge duct 1
Short circuit 9 is reached. That is, since the predetermined exhaust gas residence time cannot be obtained, sufficient evaporation time of the spray water droplets cannot be obtained, and since the exhaust gas flow is not uniform in the body section, the evaporation of the spray water droplets is uniformly and effectively performed. However, since the temperature distribution is biased, it is impossible to completely evaporate the spray water droplets, thereby causing the above problem.

【0007】これらの問題は、先に述べたように近年の
集塵温度の低温下とともにより顕著に発生した問題であ
る。本発明は集塵温度の低温下にも対応でき、上記問題
の発生しない高性能の減温塔を提供するものである。
[0007] As described above, these problems have become more prominent as the dust collection temperature has recently become lower. An object of the present invention is to provide a high-performance cooling tower which can cope with a low dust collection temperature and does not cause the above problems.

【0008】[0008]

【課題を解決するための手段】噴霧水滴の効果的な完全
蒸発を達成し、以て上記問題点を解決するために、減温
塔胴部におけるガス流れの整流化、均一化を目指し、以
下の手段を考案した。第一に、排ガスを廃水を生じるこ
となく水噴霧により冷却する減温塔であって、排ガス導
入部の形状に関して、 イ)排ガス導入ダクトを設置する位置の減温塔胴部周方
向に沿って、複数の開口を設置し、 ロ)該開口部をドーナツ状に覆うように排ガス導入ダク
トを設置する、ことを特徴とする減温塔である。
Means for Solving the Problems In order to achieve effective complete evaporation of spray water droplets and to solve the above problems, aiming at rectification and uniformization of gas flow in the body of the cooling tower, We devised the means. First, a cooling tower that cools exhaust gas by water spray without generating wastewater. Regarding the shape of the exhaust gas introduction part, a) Along the circumference of the cooling tower body at the position where the exhaust gas introduction duct is installed A plurality of openings, and b) an exhaust gas introduction duct is provided so as to cover the openings in a donut shape.

【0009】このように減温塔の排ガス導入部を構成す
ることにより、排ガスは減温塔胴部周方向に設置された
複数の開口から、誘引ファン等のガス吸引作用により塔
内へ比較的低流速で導入され、スプレーノズルの噴霧水
滴の蒸発により冷却されながら胴部を通過して排ガス排
出部より排出される。複数の開口から塔内へ誘導される
ので、近接した開口からの排ガス流が互いに衝突して混
合されると同時に、複数の開口であるので、排ガス導入
速度が低流速となり胴部断面において均一な上向流とな
る。
By configuring the exhaust gas introduction section of the cooling tower as described above, the exhaust gas is relatively introduced into the tower from a plurality of openings provided in the circumferential direction of the cooling tower body by a gas suction action of an attraction fan or the like. It is introduced at a low flow rate and is discharged from the exhaust gas discharge section through the body while being cooled by the evaporation of the water droplets sprayed from the spray nozzle. Since the exhaust gas is guided from a plurality of openings into the tower, the exhaust gas flows from adjacent openings collide with each other and are mixed.At the same time, since the plurality of openings are used, the exhaust gas introduction speed is low and the body cross section is uniform. It becomes upward flow.

【0010】すなわち、噴霧水滴の蒸発に関わる減温塔
胴部において、排ガス流れが均一であるので、スプレー
ノズルにより水噴霧を行った際に効果的に噴霧水滴の蒸
発がなされる作用が得られる。
That is, since the flow of exhaust gas is uniform in the body of the cooling tower relating to the evaporation of the water droplets, the effect of effectively evaporating the water droplets when water spraying is performed by the spray nozzle is obtained. .

【0011】第二に、排ガスを廃水を生じることなく水
噴霧により冷却する減温塔であって、排ガス導入部の形
状に関して、ハ)排ガス導入ダクトを設置する位置の減
温塔胴部周方向に沿って、複数の開口を設置し、ニ)複
数に分岐した排ガス導入ダクトを前記開口部に接続す
る、ことを特徴とする減温塔である。
Second, a cooling tower for cooling the exhaust gas by water spray without generating wastewater. Regarding the shape of the exhaust gas introducing section, c) the circumferential direction of the temperature reducing tower body at the position where the exhaust gas introducing duct is installed. , A plurality of openings are installed along the line, and d) a plurality of branched exhaust gas introduction ducts are connected to the openings.

【0012】この場合も、複数の開口から排ガスを導入
するので第一の発明と同様の作用が得られる。。第三
に、請求項1または請求項2において、複数の開口は排
ガス導入ダクトに近い側が開口割合が小さくなるように
設置することを特徴とする減温塔である。
Also in this case, since the exhaust gas is introduced from the plurality of openings, the same operation as the first invention can be obtained. . Thirdly, in the cooling tower according to claim 1 or 2, the plurality of openings are installed such that the opening ratio is smaller on the side near the exhaust gas introduction duct.

【0013】このように開口割合を設置すると、排ガス
導入部に近い側の開口部からの排ガス排出量が相対的に
減少すると同時に、排ガス導入部に遠い側の開口部から
の排ガス排出量が相対的に増加する。これは、排ガス導
入ダクトに近い側の開口部の方が圧力損失が小さいの
で、より多くの排ガスが流出しやすいことを考慮し、よ
り均一の量の排ガス導入を行うためである。したがっ
て、排ガス導入部において、第一または第二の発明の作
用がより効果的に得られる。
When the opening ratio is set in this manner, the amount of exhaust gas discharged from the opening closer to the exhaust gas introduction portion is relatively reduced, and at the same time, the amount of exhaust gas discharged from the opening far from the exhaust gas introduction portion is relatively reduced. Increase. This is because the opening closer to the exhaust gas introduction duct has a smaller pressure loss, so that a more uniform amount of exhaust gas is introduced in consideration of the fact that more exhaust gas is likely to flow out. Therefore, the operation of the first or second invention can be more effectively obtained in the exhaust gas introduction section.

【0014】第四に、請求項1〜3のいずれか1つにお
いて、開口部の平均ガス流速が5m/s以下となるよう
に開口部の全面積を設置することを特徴とする減温塔で
ある。
Fourthly, a cooling tower according to any one of claims 1 to 3, wherein the entire area of the opening is set so that the average gas flow velocity in the opening is 5 m / s or less. It is.

【0015】このように開口部の全面積を設定し、開口
部における平均ガス流速を小さくすると、導入された排
ガスが胴部断面において、中心部の流速が極端に速くな
ることなく、より均一に胴部での排ガス上向流が得られ
る。5m/s以上とすると、開口部から胴部に導入され
る排ガスが、塔断面の中心部に集中し、排ガスの上向流
が軸中心付近に偏って、均一な排ガス流れが達成されに
くくなるので、好ましくない。
When the entire area of the opening is set as described above and the average gas flow velocity in the opening is reduced, the introduced exhaust gas is more uniformly distributed in the cross section of the body without the flow velocity in the central portion becoming extremely high. An upward exhaust gas flow at the body is obtained. When the speed is 5 m / s or more, the exhaust gas introduced into the body from the opening concentrates at the center of the tower section, and the upward flow of the exhaust gas is biased near the axial center, making it difficult to achieve a uniform exhaust gas flow. It is not preferable.

【0016】第五に、排ガス排出部の形状に関して、請
求項1〜4の排ガス導入ダクトが排ガス排出ダクトであ
ることを特徴とする減温塔である。第一から第四の発明
で述べた排ガス導入部の形状をそのまま排ガス排出部の
形状として用いても、排ガスが均一になる作用が得られ
る。
Fifthly, with regard to the shape of the exhaust gas discharge portion, the exhaust gas introduction duct according to any one of claims 1 to 4 is an exhaust gas discharge duct. Even if the shape of the exhaust gas introduction section described in the first to fourth inventions is used as it is as the shape of the exhaust gas discharge section, an effect of making the exhaust gas uniform can be obtained.

【0017】減温塔胴部におけるガスの均一さは排ガス
導入部の形状に大きく影響されるが、排ガス排出部の形
状がガスの流れを大きく偏らせるものであると、減温塔
胴部においてもガス流れの均一さが損なわれることがあ
る。そこで、このように排ガス排出部の形状を設定する
ことにより、排ガスが従来の側面に設置されたーつのダ
クトによる偏った排ガス排出ではなく、複数の排出口に
より排ガスを排出するので、均一に排ガスを排出するこ
とが可能となる。
The uniformity of the gas in the cooling tower body is greatly affected by the shape of the exhaust gas introduction section. However, if the shape of the exhaust gas discharging section greatly deviates the gas flow, the uniformity of the gas in the cooling tower body is reduced. Also, the uniformity of the gas flow may be impaired. Therefore, by setting the shape of the exhaust gas discharge section in this way, the exhaust gas is exhausted through a plurality of outlets instead of the uneven exhaust gas discharge by the conventional two ducts installed on the side, so that the exhaust gas is uniformly distributed. Can be discharged.

【0018】また、排ガス排出ダクトを排ガス排出部の
側面に設置するので、減温塔を設置する際に、従来の排
ガス排出ダクトが塔上部に設置されるような不必要に垂
直方向の長さを大きくする必要なく、コンパクトな垂直
長さの減温塔が得られる。
Further, since the exhaust gas discharge duct is provided on the side of the exhaust gas discharge section, when installing the cooling tower, the length of the conventional exhaust gas discharge duct is unnecessarily lengthened in the vertical direction such that it is installed at the top of the tower. Thus, a compact vertical length cooling tower can be obtained without having to increase the size of the cooling tower.

【0019】第六に、排ガスを廃水を生じることなく水
噴霧により冷却する減温塔であつて、排ガス導入部が請
求項1〜4による排ガス導入部の形状で、排ガス排出部
が請求項5による形状であることを特徴とする減温塔で
ある。
Sixth, a cooling tower for cooling the exhaust gas by water spray without generating wastewater, wherein the exhaust gas introduction section has the shape of the exhaust gas introduction section according to claims 1 to 4, and the exhaust gas discharge section has a fifth aspect. The cooling tower is characterized by having a shape according to.

【0020】上記、第一から第四で示した排ガス導入部
の形状を有し、第六に示した排ガス排出部の形状を同時
に有することにより、第一から第六の作用が相乗的に得
られる。
By having the shapes of the exhaust gas introduction portion shown in the first to fourth and the shape of the exhaust gas discharge portion shown in the sixth at the same time, the first to sixth effects are synergistically obtained. Can be

【0021】第七に、排ガスを水噴霧により冷却するス
プレーノズルの設置位置を、請求項1における開口部に
対して塔内ガス流れの下流側に設置し、塔断面において
水噴霧流の対称性が得られるように、塔胴部周方向にス
プレーノズルを複数本設置することを特徴とする請求項
1〜6のいずれか1つに記載の減温塔である。
Seventh, the installation position of the spray nozzle for cooling the exhaust gas by water spray is installed on the downstream side of the gas flow in the tower with respect to the opening in claim 1, and the symmetry of the water spray flow in the cross section of the tower The temperature reduction tower according to any one of claims 1 to 6, wherein a plurality of spray nozzles are provided in a circumferential direction of the tower body so as to obtain the following.

【0022】このように水噴霧のためのスプレーノズル
を設置することにより、スプレーノズルの水滴噴霧流が
対面の内壁に衝突することなく、すなわち、内壁が水噴
霧により濡れ面を形成することなく、胴部断面において
対称的な水噴霧流が得られ、水噴霧流の均一性および、
塔内の完全蒸発が効果的に得られる。
By installing the spray nozzle for water spray in this way, the water spray of the spray nozzle does not collide with the facing inner wall, that is, the inner wall does not form a wet surface due to the water spray. A symmetrical water spray flow is obtained in the body section, and the uniformity of the water spray flow and
Complete evaporation in the column is effectively obtained.

【0023】[0023]

【発明の実施の形態】図1〜図6は、本発明に係わる減
温塔の一実施形態を示す図である。図7、図8は、本発
明と比較のため従来の減温塔を示す図である。ここで、
1は減温塔外塔または本体胴部、2は排ガス導入ダク
ト、5はダスト捕集ホッパ部、6はダスト排出部、7は
排ガス導入部における開口部、8は排ガス排出部におけ
る開口部、9は排ガス排出ダクト、10はスプレーノズ
ル、11は減温塔本体胴部、12は排ガス導入ダクト、
15はダスト捕集ホッパ部、16はダスト排出部、19
は排ガス排出ダクトである。
1 to 6 show one embodiment of a cooling tower according to the present invention. 7 and 8 are views showing a conventional cooling tower for comparison with the present invention. here,
1 is a cooling tower outer tower or main body, 2 is an exhaust gas introduction duct, 5 is a dust collection hopper, 6 is a dust discharge section, 7 is an opening in the exhaust gas introduction section, 8 is an opening in the exhaust gas discharge section, 9 is an exhaust gas discharge duct, 10 is a spray nozzle, 11 is a body of a cooling tower body, 12 is an exhaust gas introduction duct,
15 is a dust collecting hopper section, 16 is a dust discharging section, 19
Is an exhaust gas discharge duct.

【0024】以下、図1〜図6に基づいて本発明の実施
形態を説明する。焼却炉などから排出されボイラなどに
より熱回収されたあとの200℃以上の排ガスは、減温
塔下部に設置される排ガス導入ダクト2を介して、減温
塔1に導入され、スプレーノズル10(但し,簡単化の
ため図1〜図4においてはスプレーノズルを示していな
い。図5に記載)による水噴霧の結果、水滴の有する蒸
発潜熱により排ガスは冷却されて、減温塔上部に設置さ
れる排ガス排出ダクト9から排出される。排出された排
ガスは後段に設置される集塵機に導入される。但し、こ
こで述べた焼却炉、ボイラ、集塵機は図示していない。
An embodiment of the present invention will be described below with reference to FIGS. Exhaust gas of 200 ° C. or higher after being discharged from an incinerator or the like and recovered by a boiler or the like is introduced into the cooling tower 1 through an exhaust gas introducing duct 2 installed at a lower part of the cooling tower, and spray nozzles 10 ( However, for the sake of simplicity, the spray nozzle is not shown in FIGS. 1 to 4. As shown in FIG. 5, the exhaust gas is cooled by the latent heat of vaporization of the water droplet and installed at the upper part of the cooling tower. From the exhaust gas discharge duct 9. The discharged exhaust gas is introduced into a dust collector installed at a later stage. However, the incinerator, boiler, and dust collector described here are not shown.

【0025】減温塔で減温された排ガスの温度は、後段
の集塵機の条件やその他運転に係わる条件によって異な
るが、例えば、ごみ焼却施設に設置される減温塔の場合
は、150〜200℃のダイオキシン類の発生のごく少
ない低温度に冷却することが近年、大いに望まれてい
る。減温塔での温度降下、すなわち、入口温度と出口温
度の差は、減温塔の大きさやスプレーノズルの噴霧性能
にもよるが、通常、30〜200℃程度である。
The temperature of the exhaust gas whose temperature has been reduced by the cooling tower varies depending on the conditions of the subsequent dust collector and other conditions relating to the operation. For example, in the case of a cooling tower installed in a refuse incineration facility, the temperature is 150 to 200. In recent years, there has been a great demand for cooling to a low temperature at which the generation of dioxins at a temperature of ° C. is very small. The temperature drop in the cooling tower, that is, the difference between the inlet temperature and the outlet temperature, depends on the size of the cooling tower and the spray performance of the spray nozzle, but is usually about 30 to 200 ° C.

【0026】図1に示すのは、排ガス導入ダクト2を設
置する位置の減温塔胴部1の周方向に沿って、複数の開
口7を設置し、該開口部をドーナツ状に覆うように排ガ
ス導入ダクト2を設置した場合の排ガス導入部の形状で
ある。
FIG. 1 shows that a plurality of openings 7 are provided along the circumferential direction of the temperature-reducing tower body 1 at the position where the exhaust gas introduction duct 2 is installed, and the openings are covered in a donut shape. This is the shape of the exhaust gas introduction section when the exhaust gas introduction duct 2 is installed.

【0027】排ガス導入ダクト2から導入された排ガス
は胴部1の周方向に複数設置された開口部7から、誘引
フアン等のガス吸引作用により、塔内へ比較的低流速で
導入され、スブレーノズルの噴霧水滴の蒸発により冷却
されながら胴部1を通過して排ガス排出部(図示しな
い)より排出される。
Exhaust gas introduced from the exhaust gas introduction duct 2 is introduced into the tower at a relatively low flow rate through a plurality of openings 7 provided in the circumferential direction of the body 1 by a gas suction action such as an induced fan. The water passes through the body 1 while being cooled by the evaporation of the water droplets sprayed from the nozzle, and is discharged from an exhaust gas discharge unit (not shown).

【0028】複数の開口から塔内へ誘導されるので、近
接した開口からの排ガス流が互いに衝突して混合される
と同時に、複数の開口であるので、排ガス導入速度が低
流速となり胴部断面において均一な上向流となる。すな
わち、噴霧水滴の蒸発に関わる減温塔胴部において、排
ガス流れが均一であるので、スプレーノズルにより水噴
霧を行った際に効果的に噴霧水滴の蒸発がなされる。
Since the exhaust gas flows from adjacent openings collide with each other and are mixed because they are guided into the tower from the plurality of openings, the exhaust gas introduction speed becomes low at the same time due to the plurality of openings, and the body section And a uniform upward flow. That is, since the flow of exhaust gas is uniform in the body of the cooling tower related to the evaporation of the spray water droplets, the spray water droplets are effectively evaporated when water spray is performed by the spray nozzle.

【0029】図2に示すのは、排ガス導入ダクト2を設
置する位置の減温塔胴部1の周方向に沿って、複数の開
口7を設置し、複数に分岐した排ガス導入ダクト2を前
記開口部7に接続する排ガス導入部の形状である。
FIG. 2 shows that a plurality of openings 7 are provided along the circumferential direction of the temperature-reducing tower body 1 at the position where the exhaust gas introduction duct 2 is installed, and the exhaust gas introduction duct 2 branched into a plurality of sections is provided. This is the shape of the exhaust gas introduction section connected to the opening 7.

【0030】この場合も、図1と同様に複数の開口から
排ガスを導入するので第一の発明と同様の作用が得られ
る。また、開口部7における平均ガス流速は5m/s以
下となるように、開口部の全面積を設定するのが望まし
い。このように開口部における平均ガス流速を小さくす
ると、導入された排ガスが胴部断面において、中心部の
流速が極端に速くなることなく、より均一に胴部での排
ガス上向流が得られる。5m/s以上とすると、開口部
から胴部に導入される排ガスが、塔断面の中心部に集中
し、排ガスの上向流が軸中心付近に偏って、均一な排ガ
ス流れが達成されにくくなるので、好ましくない。
Also in this case, the exhaust gas is introduced from a plurality of openings as in FIG. 1, so that the same effect as in the first invention can be obtained. It is desirable to set the entire area of the opening so that the average gas flow velocity in the opening 7 is 5 m / s or less. When the average gas flow velocity in the opening is reduced in this way, the exhaust gas introduced can have a more uniform upward flow of exhaust gas in the body without the flow velocity in the center part being extremely increased in the body section. When the speed is 5 m / s or more, the exhaust gas introduced into the body from the opening concentrates at the center of the tower section, and the upward flow of the exhaust gas is biased near the axial center, making it difficult to achieve a uniform exhaust gas flow. It is not preferable.

【0031】さらに、排ガス導入部の開口部7を図3に
示すように、排ガス導入口に近い側の開口割合が小さく
なるように設置してもよい。このように設置すると、排
ガス導入部に近い側の開口部からの排ガス導入量が相対
的に減少すると同時に、排ガス導入部に遠い側の開口部
からの排ガス導入量が相対的に増加する。
Further, as shown in FIG. 3, the opening 7 of the exhaust gas introduction section may be installed such that the opening ratio on the side close to the exhaust gas introduction port becomes small. With this arrangement, the amount of exhaust gas introduced from the opening closer to the exhaust gas introduction portion relatively decreases, and the amount of exhaust gas introduced from the opening farther from the exhaust gas introduction portion relatively increases.

【0032】これは、排ガス導入ダクトに近い側の開口
部の方が圧力損失が小さいので、より多くの排ガスが流
出しやすいことを考慮し、より均一の量の排ガス排出を
行うためである。したがって、排ガス導入部において、
図1または図2で示した効果がより確実に得られる。
The reason for this is that a more uniform amount of exhaust gas is discharged in consideration of the fact that the opening near the exhaust gas introduction duct has a smaller pressure loss, so that more exhaust gas is likely to flow out. Therefore, in the exhaust gas introduction section,
The effect shown in FIG. 1 or FIG. 2 can be obtained more reliably.

【0033】図4に示すのは、本発明の排ガス導入部の
形状を、排ガス排出部に用いた場合を示す図である。排
ガス導入部の形状を排ガス排出部に用いても、同等にガ
ス流れが均一になる効果が得られる。また、開口割合を
排ガス排出口に近い側を小さくしてもよい。
FIG. 4 is a diagram showing a case where the shape of the exhaust gas introduction section of the present invention is used for an exhaust gas discharge section. Even when the shape of the exhaust gas introduction section is used for the exhaust gas discharge section, the effect of uniformly equalizing the gas flow can be obtained. Further, the opening ratio may be reduced on the side close to the exhaust gas discharge port.

【0034】さらに、図5に示すように排ガス導入部の
形状と排ガス排出部の形状を、同時に組み合わせて用い
てもよく、すでに述べた効果がより顕著に得られること
は言うまでもない。
Further, as shown in FIG. 5, the shape of the exhaust gas introduction portion and the shape of the exhaust gas discharge portion may be used in combination at the same time, and it goes without saying that the above-mentioned effects are more remarkably obtained.

【0035】次に、水噴霧のためのスプレーノズル10
は、排ガス導入部の二重塔部分より上部に設置し、塔断
面において水噴霧流の対称性が得られるように、塔胴部
周方向に複数本設置することが望ましい。
Next, a spray nozzle 10 for spraying water is used.
It is desirable to install a plurality of gas turbines above the double tower portion of the exhaust gas introduction part, and to install a plurality of them in the circumferential direction of the tower body so as to obtain symmetry of the water spray flow in the tower cross section.

【0036】図6に示すのは図5Bにおける断面図で、
スプレーノズルを、水噴霧流の対称性が得られるように
配置させた実施例である。図6(a)は同一断面に等間
隔に4本設置した場合、図6(b)は等間隔に3本設置
した場合、図6(c)は等間隔ではないが、対面方向に
ノズルを2組、合計4本設置した場合をそれぞれ示す図
である。何れの場合も、水噴霧流の対称性が得られるこ
とは明らかである。
FIG. 6 is a sectional view of FIG. 5B.
This is an embodiment in which the spray nozzles are arranged so as to obtain the symmetry of the water spray flow. FIG. 6A shows a case where four nozzles are installed at the same interval in the same cross section, FIG. 6B shows a case where three nozzles are installed at the same interval, and FIG. It is a figure each showing the case where two sets and a total of four are installed. It is clear that in each case the symmetry of the water spray flow is obtained.

【0037】このように水噴霧のためのスプレーノズル
を設置することにより、スプレーノズルの水滴噴霧流が
対面の内壁に衝突することなく、すなわち、内壁が水噴
霧により濡れ面を形成することなく、胴部断面1こおい
て対称的な水噴霧流が得られ、水噴霧流の均一性およ
び、塔内の完全蒸発が効果的に得られる。
By installing the spray nozzle for water spray in this way, the water spray of the spray nozzle does not collide with the facing inner wall, that is, the inner wall does not form a wet surface due to the water spray. A symmetrical water spray flow is obtained in one body section, and uniformity of the water spray flow and complete evaporation in the tower are effectively obtained.

【0038】図6では、スプレーノズルを同一断面に複
数本設置したが、もちろん、設置断面を二段以上にして
もよい。スプレーノズル10は、運転条件によっても異
なるが、例えば、200℃以下に冷却するような低温用
の減温塔の場合は、より微細な噴霧水滴が得られる水と
空気を用いる二流体ノズルを採用するのが好ましいが特
に限定しない。また、噴霧水として、消石灰スラリ等の
アルカリ性吸収液を用いて、排ガス中の酸性成分を除去
してもよく、水の潜熱を用いて排ガスを冷却できるもの
であればいかなる様式でもよい。
In FIG. 6, a plurality of spray nozzles are installed on the same cross section, but it is needless to say that the installation cross section may be two or more. The spray nozzle 10 varies depending on the operating conditions. For example, in the case of a low-temperature cooling tower that cools to 200 ° C. or lower, a two-fluid nozzle using water and air that can obtain finer spray droplets is used. However, there is no particular limitation. Further, an acidic component in the exhaust gas may be removed by using an alkaline absorbing liquid such as slaked lime slurry as the spray water, and any method may be used as long as the exhaust gas can be cooled using the latent heat of water.

【0039】スプレーノズル10を減温塔に設置する場
合の取り付け方法として、例えば、内壁から数1Ocm
突き出してもよいし、そうでなくともよい。ノズルの耐
久性を確保するために、ノズルの外周に保護管を取り付
けてもよいし、ノズルと保護管の間にパージエアー等を
用いてもよい。また、ノズルを断面に対して仰角を持た
せて設置するか、ノズル先端部をガス流れ方向に屈曲さ
せてもよい。何れの場合においても、本発明の効果が同
様に得られることは明らかである。
When the spray nozzle 10 is installed in the cooling tower, for example, several 10 cm from the inner wall is used.
It may or may not protrude. In order to ensure the durability of the nozzle, a protection tube may be attached to the outer periphery of the nozzle, or purge air or the like may be used between the nozzle and the protection tube. Further, the nozzle may be installed with an elevation angle with respect to the cross section, or the nozzle tip may be bent in the gas flow direction. It is clear that the effects of the present invention can be similarly obtained in any case.

【0040】本発明は、説明の便宜上、排ガスが減温塔
下部から導入され、上部から排出される場合について述
べたが、もちろん、減温塔上部より排ガスを導入し、下
部から排出する場合(図5の黒太矢印)にも適用できる
ことは明らかで同等の効果がある。
In the present invention, for convenience of explanation, the case where the exhaust gas is introduced from the lower part of the cooling tower and discharged from the upper part has been described. Of course, the exhaust gas is introduced from the upper part of the cooling tower and discharged from the lower part ( Obviously, the same effect can be obtained by applying the present invention to the black thick arrow in FIG. 5).

【0041】「実施例」本発明をごみ焼却場に付設する
減温塔に実施して得られた試験結果を従来の比較例とと
もに図9、図10に示す。
"Example" FIGS. 9 and 10 show test results obtained by implementing the present invention in a cooling tower attached to a refuse incineration plant, together with a conventional comparative example.

【0042】図9は、本発明を実施した場合の試験結果
を示す図である。図10は、本発明を実施しない場合の
試験結果の従来の比較例を示す図である。但し、20は
堆積ダストである。
FIG. 9 is a diagram showing test results when the present invention is implemented. FIG. 10 is a diagram illustrating a conventional comparative example of test results when the present invention is not performed. Here, reference numeral 20 denotes accumulated dust.

【0043】実施例は、図1に示す排ガス導入部の形状
を排ガス排出部にも採用した図5に示す減温塔である。
開口部の全面積は開口部の平均排ガス流速が4m/sと
なるように設定した。
The embodiment is a cooling tower shown in FIG. 5 in which the shape of the exhaust gas introduction section shown in FIG. 1 is adopted also for the exhaust gas discharge section.
The total area of the opening was set such that the average exhaust gas flow rate at the opening was 4 m / s.

【0044】比較例は、図7に示す形状の減温塔とし
た。共通の条件として、減温塔の外形は同一寸法とし、
排ガス処理量40000Nm3 /h、減温塔排ガス滞留
時間4秒(容積と排ガス量で算定される)、減温塔入口
排ガス温度約200℃、出口排ガス温度(水噴霧量を調
整して一定とする)150℃とした。スプレーノズルは
4本同一断面に等間隔に設置し、二流体ノズルを用い
た。
In the comparative example, a cooling tower having the shape shown in FIG. 7 was used. As a common condition, the external shape of the cooling tower is the same size,
Exhaust gas throughput 40000 Nm 3 / h, degassing tower exhaust gas residence time 4 seconds (calculated by volume and exhaust gas amount), degassing tower inlet exhaust gas temperature about 200 ° C, outlet exhaust gas temperature (constant by adjusting water spray amount To 150 ° C. Four spray nozzles were installed at equal intervals on the same section, and a two-fluid nozzle was used.

【0045】試験内容は、まず、水噴霧を行う前に塔内
の断面におけるガス流速分布を測定し、次に水霧運転を
連続一ケ月行い、一ヶ月後の塔内のダストの堆積状況を
確認した。
The test was performed by first measuring the gas flow velocity distribution in the cross section of the tower before spraying water, then performing water mist operation for one month continuously, and checking the dust accumulation state in the tower one month later. confirmed.

【0046】この結果、水噴霧前のガス速度分布は、従
来の比較例では、排ガス導入ダクトから排出ダクトにか
けてガス流れが短絡して分散しないので、流速分布が極
端に偏った結果が得られたが、本発明の実施例ではほぼ
均一な流速分布が得られた。
As a result, in the gas velocity distribution before water spraying, in the conventional comparative example, the gas flow was short-circuited from the exhaust gas introduction duct to the exhaust duct and did not disperse, so that the result that the flow velocity distribution was extremely biased was obtained. However, in the example of the present invention, a substantially uniform flow velocity distribution was obtained.

【0047】次に、一ヶ月後の塔内ダスト堆積を観察す
ると、比較例では、塔内壁の広範囲に亘って噴霧水滴の
不完全蒸発による湿りダストが10cm以上の厚みで堆
積し、一部は排ガス検熱により固着していたのに対し、
本発明の実施例は、塔内のダストの堆積は見られず、内
壁にうっすらとダストが付着している程度であった。
Next, when the dust accumulation in the tower after one month is observed, in the comparative example, wet dust due to incomplete evaporation of the sprayed water droplets is deposited to a thickness of 10 cm or more over a wide range of the inner wall of the tower, and a part of the dust is deposited. While it was fixed by exhaust gas detection,
In the example of the present invention, no accumulation of dust in the tower was observed, and the dust was slightly attached to the inner wall.

【0048】ダストの堆積は、未蒸発水滴が塔壁に付着
したり、ダストの凝集効果を促進させるために発生する
ので、水滴が完全蒸発し、以て安定した運転がなされた
かどうかの判断指標となる。
Since the accumulation of dust occurs because unevaporated water droplets adhere to the tower wall and promotes the dust coagulation effect, an indicator for determining whether the water droplets have completely evaporated and stable operation has been performed. Becomes

【0049】すなわち、本発明の減温塔は、塔内で均一
な排ガス流れが得られ、150℃と低温であっても効果
的に噴霧水滴を蒸発させ、もって不完全蒸発によるダス
ト堆積等の問題の生じない優れた減温塔であることが確
認できた。
That is, in the cooling tower of the present invention, a uniform exhaust gas flow can be obtained in the tower, and even at a low temperature of 150 ° C., the sprayed water droplets can be effectively evaporated, thereby preventing dust accumulation due to incomplete evaporation. It was confirmed that it was an excellent cooling tower without any problem.

【0050】[0050]

【発明の効果】本発明の減温塔を用いれば、排ガス導入
部で排ガスが効果的に整流され、胴部において、均一な
ガス流れが得られので、ダイオキシン類の発生のごく少
ない150℃程度の低温であっても、スブレーノズルに
よる噴霧水滴を効果的に蒸発させ、以て不完全蒸発によ
る塔内のダスト堆積等の問題の生じない優れた排ガス冷
却が可能となる。
According to the temperature reducing tower of the present invention, the exhaust gas is effectively rectified in the exhaust gas introduction part, and a uniform gas flow is obtained in the body part, so that the generation of dioxins is very small at about 150 ° C. Even at a low temperature, the spray water droplets from the spray nozzle are effectively evaporated, thereby enabling excellent exhaust gas cooling without causing problems such as dust accumulation in the tower due to incomplete evaporation.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係わる減温塔の排ガス導入部形状の実
施形態の一例を示す図。
FIG. 1 is a diagram showing an example of an embodiment of a shape of an exhaust gas introduction portion of a cooling tower according to the present invention.

【図2】本発明に係わる減温塔の排ガス導入部形状の実
施形態のたの例を示す図。
FIG. 2 is a view showing another example of the embodiment of the shape of the exhaust gas introduction portion of the cooling tower according to the present invention.

【図3】本発明に係わる減温塔の排ガス導入部形状の実
施形態の他の例を示す図。
FIG. 3 is a diagram showing another example of the embodiment of the shape of the exhaust gas introduction portion of the cooling tower according to the present invention.

【図4】本発明に係わる減温塔の排ガス排出部形状の実
施形態の一例を示す図。
FIG. 4 is a view showing an example of an embodiment of an exhaust gas discharge part shape of a cooling tower according to the present invention.

【図5】本発明に係わる減温塔の実施形態の一例を示す
図。
FIG. 5 is a diagram showing an example of an embodiment of a cooling tower according to the present invention.

【図6】本発明に係わる減温塔のスプレーノズル設置の
実施形態の一例を示す図。
FIG. 6 is a diagram showing an example of an embodiment of installation of a spray nozzle of a cooling tower according to the present invention.

【図7】従来の減温塔の一例を示す図。FIG. 7 is a diagram showing an example of a conventional cooling tower.

【図8】従来の減温塔の他の例を示す図。FIG. 8 is a diagram showing another example of a conventional cooling tower.

【図9】本発明に係わる減温塔の運転結果を示す図。FIG. 9 is a view showing an operation result of the cooling tower according to the present invention.

【図10】従来の減温塔の運転結果を示す図。FIG. 10 is a view showing an operation result of a conventional cooling tower.

【符号の説明】[Explanation of symbols]

1…減温塔外塔または本体胴部、2…排ガス導入ダク
卜、5…ダスト捕集ホッパ部、6…ダスト排出部、7…
排ガス導入部における開口部、8…排ガス排出部におけ
る開口部、9…ドーナツ型の排ガス排出ダクト、10…
スプレーノズル、11…減温塔本体胴部、12…排ガス
導入ダクト、15…ダスト捕集ホッパ部、16…ダスト
排出部、19…排ガス排出ダクト、20…堆積ダスト。
1 ... cooling tower outer tower or main body, 2 ... exhaust gas introduction duct, 5 ... dust collection hopper section, 6 ... dust discharge section, 7 ...
Opening in the exhaust gas introduction section, 8 ... Opening in the exhaust gas discharge section, 9 ... Doughnut type exhaust gas discharge duct, 10 ...
Spray nozzle, 11: body of cooling tower body, 12: exhaust gas introduction duct, 15: dust collecting hopper, 16: dust discharge part, 19: exhaust gas discharge duct, 20: accumulated dust.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 稲田 武彦 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 園田 克樹 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 平田 修一 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 加藤 正人 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Takehiko Inada, 1-2-1, Marunouchi, Chiyoda-ku, Tokyo Nihon Kokan Co., Ltd. (72) Inventor Katsuki Sonoda 1-2-1, Marunouchi, Chiyoda-ku, Tokyo, Japan (72) Inventor Shuichi Hirata 1-1-2 Marunouchi, Chiyoda-ku, Tokyo, Japan Nihon Kokan Co., Ltd. (72) Inventor Masato Kato 1-2-1, Marunouchi, Chiyoda-ku, Tokyo, Japan Inside the corporation

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 排ガスを廃水を生じることなく水噴霧に
より冷却する減温塔であって、排ガス導入部の形状に関
して、 ィ)排ガス導入ダクトを設置する位置の減温塔胴部周方
向に沿って、複数の開口を設置し、 ロ)該開口部をドーナツ状に覆うように排ガス導入ダク
トを設置する、ことを特徴とする減温塔。
1. A cooling tower for cooling exhaust gas by spraying water without generating wastewater, wherein the shape of the exhaust gas introduction section is as follows: a) Along the circumference of the cooling tower body at a position where an exhaust gas introduction duct is installed. B) a plurality of openings, and b) an exhaust gas introduction duct installed so as to cover the openings in a donut shape.
【請求項2】 排ガスを廃水を生じることなく水噴霧に
より冷却する減温塔であって、排ガス導入部の形状に関
して、 ハ)排ガス導入ダクトを設置する位置の減温塔胴部周方
向に沿って、複数の開口を設置し、 ニ)複数に分岐した排ガス導入ダクトを前記開口部に接
続する、ことを特徴とする減温塔。
2. A cooling tower for cooling exhaust gas by spraying water without generating wastewater, wherein the shape of the exhaust gas introduction portion is c) along the circumferential direction of the temperature reduction tower body at the position where the exhaust gas introduction duct is installed. And a plurality of openings, and d) connecting a plurality of branched exhaust gas introduction ducts to the openings.
【請求項3】 請求項1または請求項2において、複数
の開口は排ガス導入ダクトに近い側が開口割合が小さく
なるように設置することを特徴とする減温塔。
3. The cooling tower according to claim 1, wherein the plurality of openings are installed such that a portion near the exhaust gas introduction duct has a small opening ratio.
【請求項4】 請求項1〜3のいずれか1つにおいて、
開口部の平均ガス流速が5m/s以下となるように開口
部の全面積を設置することを特徴とする減温塔。
4. The method according to claim 1, wherein
A cooling tower, wherein the entire area of the opening is set such that the average gas flow velocity in the opening is 5 m / s or less.
【請求項5】 排ガス排出部の形状に関して、請求項1
〜4の排ガス導入ダク卜が排ガス排出ダクトであること
を特徴とする減温塔。
5. The exhaust gas discharge section according to claim 1, wherein:
A cooling tower according to any one of (1) to (4), wherein the exhaust gas introduction duct is an exhaust gas discharge duct.
【請求項6】 排ガスを廃水を生じることなく水噴霧に
より冷却する減温塔であって、排ガス導入部が請求項1
〜4による排ガス導入部の形状であり、かつ排ガス排出
部が請求項5による形状であることを特徴とする減温
塔。
6. A cooling tower for cooling exhaust gas by spraying water without generating wastewater, wherein the exhaust gas introduction section is provided.
6. A cooling tower according to any one of claims 1 to 4, wherein the exhaust gas introduction part has a shape according to claim 4, and the exhaust gas discharge part has a shape according to claim 5.
【請求項7】 排ガスを水噴霧により冷却するスプレー
ノズルの設置位置を、請求項1における開口部に対して
塔内ガス流れの下流側に設置し、塔断面において水噴霧
流の対称性が得られるように、塔胴部周方向にスプレー
ノズルを複数本設置することを特徴とする請求項1〜6
のいずれか1つに記載の減温塔。
7. The installation position of the spray nozzle for cooling the exhaust gas by water spray is installed on the downstream side of the gas flow in the tower with respect to the opening in claim 1, so that the symmetry of the water spray flow can be obtained in the cross section of the tower. A plurality of spray nozzles are installed in the circumferential direction of the tower body so as to be able to be used.
The cooling tower according to any one of the above.
JP22238297A 1997-08-19 1997-08-19 Cooling tower Expired - Fee Related JP3572880B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22238297A JP3572880B2 (en) 1997-08-19 1997-08-19 Cooling tower

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22238297A JP3572880B2 (en) 1997-08-19 1997-08-19 Cooling tower

Publications (2)

Publication Number Publication Date
JPH1163469A true JPH1163469A (en) 1999-03-05
JP3572880B2 JP3572880B2 (en) 2004-10-06

Family

ID=16781489

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22238297A Expired - Fee Related JP3572880B2 (en) 1997-08-19 1997-08-19 Cooling tower

Country Status (1)

Country Link
JP (1) JP3572880B2 (en)

Also Published As

Publication number Publication date
JP3572880B2 (en) 2004-10-06

Similar Documents

Publication Publication Date Title
CN108744900A (en) A kind of continuous casting system diffusing chimney elimination steam unit
JP2777962B2 (en) Spray tower and method for gas cooling / humidification / purification
CN208893924U (en) A kind of continuous casting system diffusing chimney elimination steam unit
JPH1163469A (en) Desuperheating tower
CN218795001U (en) Pervaporation tempering tower used in front of electric tar precipitator
CN211998904U (en) Waste water treatment flue evaporator capable of preventing wall surface dust deposition
CN212450711U (en) High-salinity wastewater evaporation system and double-fluid spray gun of high-salinity wastewater evaporation system
JP3572881B2 (en) Cooling tower
CN211004655U (en) Desulfurization waste water drying device
CN112451981A (en) Atomization evaporation system
JP3167837B2 (en) Gas cooling chamber and waste treatment equipment with gas cooling chamber
CN113401955A (en) Wastewater zero discharge system and control method thereof
CN105879414A (en) Desulfurization waste water treatment device of coal-fired boiler
JPH11141856A (en) Temperature-reducing tower, and its operating method
CN213942130U (en) Atomization evaporation system
JPH10216451A (en) Water spraying method of cooling column
CN114075460A (en) Cyclone for remelting ash
JP3355980B2 (en) Water spray method for cooling tower
CN110697823A (en) Desulfurization wastewater drying device and method
RU2318162C1 (en) Air heater
CN212567098U (en) Quenching device capable of cleaning accumulated dust on line
RU2099662C1 (en) Water-cooling tower
JP3257466B2 (en) Water spraying method of cooling tower and cooling tower equipped with water spraying device
CN108579376A (en) Anticorrosion flue gas desulfurization heat-exchange system suitable for salt-soda soil
JP3447152B2 (en) Low temperature gas cooling tower

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040608

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040621

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313121

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313121

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080709

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080709

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080709

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090709

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090709

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100709

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100709

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100709

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100709

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110709

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120709

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120709

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130709

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees