JP3572739B2 - Polyester film for metal plate lamination and metal laminate using the same - Google Patents

Polyester film for metal plate lamination and metal laminate using the same Download PDF

Info

Publication number
JP3572739B2
JP3572739B2 JP22805295A JP22805295A JP3572739B2 JP 3572739 B2 JP3572739 B2 JP 3572739B2 JP 22805295 A JP22805295 A JP 22805295A JP 22805295 A JP22805295 A JP 22805295A JP 3572739 B2 JP3572739 B2 JP 3572739B2
Authority
JP
Japan
Prior art keywords
polyester film
particles
film
polyester
metal plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP22805295A
Other languages
Japanese (ja)
Other versions
JPH0971667A (en
Inventor
英人 大橋
重次 小長谷
明人 濱野
善紀 武川
慎司 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=16870451&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP3572739(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP22805295A priority Critical patent/JP3572739B2/en
Publication of JPH0971667A publication Critical patent/JPH0971667A/en
Application granted granted Critical
Publication of JP3572739B2 publication Critical patent/JP3572739B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Laminated Bodies (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、金属板ラミネート用ポリエステルフィルムに関し、より詳しくは、金属ラミネート体が、製缶時の絞り・しごき工程において、優れた加工性および耐蝕性を有するような金属板ラミネート用ポリエステルフィルムに関する。
【0002】
【従来の技術】
従来より、ビール、ジュース等の缶を製造する際には、まず、ブリキ、ティンフリースチール(TFS)、アルミニウム等の金属板に1回あるいは複数回にわたって塗装を行い、次いでこれを製缶していた。しかし、このように複数回の塗装を行うことは、焼き付け工程が煩雑であるばかりでなく、多大な時間を必要としていた。また、塗装時に大量の溶剤を排出するため、環境、衛生上の問題を有していた。
【0003】
これらの問題を解決するために、熱可塑性樹脂フィルムを金属板にラミネートし、これを製缶する方法が試みられており、特に、耐熱性、安全性の面から熱可塑性樹脂フィルムとしてポリエステルフィルムを用いたものが注目されている。その一例としては、ポリエステルフィルムを接着剤層を介して金属板にラミネートしたものを製缶する方法(特公昭62−61427号公報)、あるいはポリエステルフィルムを接着剤を用いることなく金属板にラミネートしたものを製缶する方法(特公昭60−47103)等が開示されている。
【0004】
しかし、これらの方法はいずれも製缶時の絞り・しごき加工等の激しい加工条件でのポリエステルフィルムのピンホール、クラック、剥離等の発生し、さらにそれらに伴う金属板表面の腐蝕等の問題が生じることがわかった。
【0005】
上記の問題を解決する方法として、特開昭61−149340号公報には、二軸配向ポリエステルフィルムの融点以上の温度に加熱した金属板に二軸配向ポリエステルフィルムをラミネートし、次いで急冷することによりポリエステルの熱溶融部分の接着層のみを未配向のポリエステル樹脂層とする方法が開示されている。また、特表平2−501638号公報には、ポリエステルフィルムを金属板にラミネートする際、ポリエステルフィルムの外側表面の温度がポリエステルの融点以下となるように金属板を加熱してラミネートし、次いでこれをポリエステルの融点以上の温度に再加熱しその温度に保持した後、ポリエステルのガラス転移点以下の温度まで急冷することにより、全フィルム層を非晶化する方法が試みられている。また、特開平4−105922号公報には、平均粒径が2.5μm以下、粒径比が1.0〜1.2の球状単分散滑剤粒子を含有し、フィルム面の全方向に均一に配向した共重合ポリエステルフィルムを用いることにより、ポリエステルフィルムの耐ピンホール性、耐クラック性を改良する方法が示されている。さらに、特公平6−102464号公報には、ポリエステルフィルムの表面より内部にアンチブロッキンク剤粒子を埋没させることにより、製缶時のアンチブロッキング剤粒子による内面欠陥を防ぐ方法が示されている。
【0006】
【発明が解決しようとする課題】
しかし、上記公報の方法はそれぞれに以下のような問題点があり、いまだ十分な加工性、耐蝕性を有するラミネート材を得ることができなかった。特開昭61−149340号公報の方法では、二軸配向ポリエステルフィルムの配向結晶層が残っているために、絞り・しごき加工に十分に耐えることができなかった。また、特開平4−105922号公報の方法でも、金属ラミネート体の絞り加工工程における成形性は満足するが、さらに過酷な条件が課されるしごき加工工程における成形性が十分ではなかった。さらに、特表平2−501638号公報の方法では、ポリエステルフィルムの加熱による溶融と急冷により金属板との接着性、変形性は向上するが、表面が平坦であるため金属ラミネート体の絞り・しごき加工工具との滑り性が悪くなり、特殊な加工条件を選択しない限りそれだけでは加工性が十分ではなかった。さらにまた、特公平6−102646号公報の方法では、金属板へのラミネート時に溶融する場合を想定すると、フィルム表面の突起を形成している粒子がフィルムの溶融によって表面より内部へ埋没するため表面が平坦化し、上記と同様に金属ラミネート体の絞り・しごき加工工具との滑り性が悪くなり、特殊な加工条件を選択しない限りそれだけでは加工性が十分ではなかった。
【0007】
本発明は上記の点を解決しようとするものであり、その目的は、金属板へのラミネート体が、製缶時の絞り・しごき工程でピンホール、クラック、剥離の発生が少なく、従って優れた加工性および耐蝕性を有するような金属板ラミネート用ポリエステルフィルムを提供することにある。
【0008】
【課題を解決するための手段】
本発明は、ポリエステルと不活性粒子とを含有するポリエステルフィルムであって、
ポリエステルフィルムの厚さ7〜50μmであり、かつ下記式[1]および[2]を満たす不活性粒子の含有量がポリエステルに対して1〜100ppmであることを特徴とする金属板ラミネート用ポリエステルフィルムである。
0<R−t<10 [1]
1<R/t<1.5 [2]
(式中、Rは不活性粒子の粒径(μm)、tはポリエステルフィルムの全厚み(μm)を示す
【0009】
次に本発明を詳細に説明する。本発明の金属板ラミネート用ポリエステルフィルムは、ポリエステルと不活性粒子とを含有する。このポリエステルは、芳香族ジカルボン酸残基とグリコール残基を主な構成単位とする。その酸成分としては、テレフタル酸、イソフタル酸、2,6−ナフタレンジカルボン酸等が好ましく、またグリコール成分としては、エチレングリコール、1,4−ブタンジオール等が好ましい。とりわけ、ポリエチレンテレフタレートが耐衝撃性、耐熱性、保香性の点で好ましい。このポリエチレンテレフタレートには、本発明の目的を達成するためにテレフタル酸およびグリコール以外の他の共重合成分を含んでいてもよい。他の共重合成分は酸成分でもグリコール成分でもどちらでもよく、酸成分としては、イソフタル酸、オルトフタル酸、2,6−ナフタレンジカルボン酸等の芳香族ジカルボン酸、アジピン酸、アゼライン酸、セバシン酸等の脂肪族ジカルボン酸、シクロヘキサンジカルボン酸等の脂環族ジカルボン酸等が挙げられる。また、グリコール成分としては、1,4−ブタンジオール、ジエチレングリコール、トリエチレングリコール、ネオペンチルグリコール、シクロヘキサンジメタノール等があげられる。これらは単独または2種類以上を併用することができる。
【0010】
上記の他の共重合成分の割合は、ポリエステルを構成するジカルボン酸成分およびグリコール成分の全モル数に対して、好ましくは30モル%以下、より好ましくは15%以下である。この成分の割合が30%を超えると、得られるポリエステルフィルムの耐衝撃性、耐熱性が悪くなるばかりでなく、保香性も悪くなるので好ましくない。
【0011】
ポリエステルフィルムに含有される不活性粒子は、ポリエステルフィルムの成形時およびこのフィルムの金属板へのラミネート時にフィルム中に粒子として残り得る粒子であり、有機系、無機系のいずれでもよく、無機系粒子としては、例えばシリカ、アルミナ、酸化チタン等の金属酸化物およびそれらの複合酸化物;カオリン、タルク、ゼオライト、ムライト等の天然、合成の酸化物;炭酸カルシウム、硫酸バリウム等の難溶性無機金属塩等が挙げられる。有機系粒子としては、例えば架橋ポリスチレン粒子、シリコーン粒子等の有機粒子;カルシウム、マグネシウム、リチウム等のポリエステル生成触媒金属と、テレフタル酸等の酸成分およびポリエステル生成中間体オリゴマ−等のエステル残基との有機塩等が挙げられる。中でも、透明性、耐けずれ性、フィルム製膜時の破断防止の点から、無機の金属酸化物、とりわけシリカが好ましい。これらの粒子は単独でも2種以上併用してもよい。
【0012】
上記不活性粒子中、上記式[1]および[2]を満足する不活性粒子の含有量は1〜100ppmである。この不活性粒子の粒径が上記式[1]および[2]の範囲よりも小さい場合、得られる金属ラミネート体の絞り・しごき工程で、ポリエステルフィルムのピンホール、クラック、剥離が発生して加工性および耐蝕性が悪くなる。逆にこの不活性粒子の粒径が上記式[1]および[2]の範囲よりも大きい場合、得られる金属ラミネート体の絞り・しごき工程でのポリエステルフィルムの破断、クラックが多くなり、さらに含有量が大きくなるにつれてピンホールによる耐蝕性の悪化が顕著になってくる。また、得られるポリエステルフィルム製膜時に破断が発生する。
【0013】
上記の不活性粒子の含有量がlppm未満では、得られる金属ラミネート体の絞り・しごき工程で、ポリエステルフィルムのピンホール、クラック、剥離が発生して加工性および耐蝕性が悪くなる。逆に、100ppmを超えると、金属ラミネート体の製缶時の加工性にもはやそれ以上の効果が発揮されないばかりでなく、耐蝕性、保香性において悪影響が現れる。不活性粒子の含有量は、好ましくは10〜50ppm、より好ましくは10〜30ppmである。
【0014】
上記の不活性粒子は、必要に応じて、それ自体公知の方法により湿式、乾式の粉砕、分級等の処理を行い、粒径を整えることができる。また上記不活性粒子の形状は、特に限定されるものではないが、硬度、ポリエステル樹脂との密着力等の点から、一次粒子の凝集してなる球状粒子、塊状粒子または無定形粒子が好ましい。また、上記不活性粒子の粒度分布は、フィルムの厚みを大きく超過する粗大粒子の存在を未然に防ぐために、均一で単分散なものが好ましい。
【0015】
本発明のポリエステルフィルムは、上記不活性粒子以外に、本発明の目的を阻害しない範囲内で、一般にフィルムの滑り性を付与する滑剤粒子を含有してもよい。この滑剤粒子の種類としては公知のものを用いることができ、上記不活性粒子と同一の粒子でもよいし、異なっていてもよい。滑剤粒子の例としては、シリカ、アルミナ、カオリン、タルク、ゼオライト、酸化チタンが挙げられるが、これらに限定されない。また2種類以上の粒子を併用することもできる。用いる滑剤粒子の平均粒径は0.5〜2.5μmの範囲内であることが滑り性その他の点で好ましい。滑剤粒子の含有量は平均粒径の大小によって決められ、平均粒径の大きいものは少量、小さいものは多量に添加される。例えば、平均粒径が2.0μmのシリカ粒子の添加量は1000ppm程度が好ましい。
【0016】
本発明のポリエステルフィルムの厚みは、所望の缶の種類、用途や、用いる金属板の種類と厚み、さらには絞り・しごき加工工具の種類により様々であるが、7〜50μm、好ましくは10〜25μm、特に好ましくは15〜20μmである。フィルム厚みが7μm未満では、ポリエステルフィルムが上記不活性微粒子を含有しても、十分な加工性および耐蝕性を有する金属ラミネート体を得ることができない。逆にフィルム厚みが50μmを超えると、絞り・しごき加工における激しい加工変形にポリエステルフィルム自体の特性が追随できなくなり、十分な加工性を得ることができないのみでなく、生産性、コスト面での不利益が無視できなくなる。
【0017】
本発明のポリエステルフィルムをラミネートして成形加工する金属板としては、ブリキ、ティンフリースチール(TFS)、アルミニウム等をあげることができる。これらの金属板は必要に応じてリン酸塩処理、クロム酸処理、スズめっき、亜鉛めっき、ニッケルめっき等の表面処理を施していてもよい。
【0018】
次に本発明のポリエステルフィルムの製造方法の一例を説明するが、これに制約されるものではない。
ポリエステルフィルムの原料となるポリエステル樹脂の製法は、従来のエステル交換法、直接重合法等の方法を用いて行われるが、直接重合法で合成する方法が保香性の点で好ましい。また、固相重合等の方法で環状オリゴマー等を減少させることにより、保香性をさらに向上することができる。また必要に応じて酸化防止剤、紫外線吸収剤、熱安定剤、帯電防止剤、着色剤、顔料等を添加してもよい。
【0019】
ポリエステル中に不活性粒子を添加する方法としては、例えば、ポリエステル樹脂の製造過程でポリエステル重縮合反応が実質的に完了する前の任意の段階で不活性粒子のスラリーを添加し、次いで重縮合反応を完結させる方法、また、ポリエステル樹脂と不活性粒子または不活性粒子のスラリーを混練押出しする方法等があるが、これに制約するものではない。
【0020】
次に、得られたポリエステル樹脂を用いてポリエステルフィルムに成形する方法としては、押出機で溶融した樹脂を円形のダイを用いてチューブ状に押出して、内外の気圧差によって膨張させるインフレーション法、押出機で溶融した樹脂をTダイを用いてシート状に押出し、次いで同時あるいは逐次に二軸延伸する方法、あるいは一軸のみ延伸する方法、あるいは延伸をしない方法等があるが、二軸延伸による方法が好ましい。例えば、まず不活性粒子を含有するポリエステル樹脂を乾燥させ、押出機を用いて溶融し、Tダイ口金から吐出し冷却ドラム上で冷却して未延伸フィルムを得る。このとき押出機からTダイ直前までのメルトラインに必要に応じて適当な孔径のポリマーフィルターを設置して粗大粒子の解砕、除去を行うことが好ましい。引き続いてこのフィルムを加熱ロールを用いて60〜120℃に加熱し、回転速度の異なる2つ以上のロール間で2〜6倍に延伸する。さらにこのフィルムをテンター内に導入し、60〜130℃で横方向に2〜6倍に延伸し、引き続いて120〜240℃で緩和および熱処理することにより二軸配向フィルムを得る。
【0021】
上記のようにして得られたポリエステルフィルムを金属板に貼り合わせ金属ラミネート体を製造する。その方法としては、例えば、 (1)金属板を加熱炉、誘導加熱ロール、熱媒加熱ロール等でポリエステルフィルムの融点以上の温度に加熱しラミネートロールに導入しフィルムを熱融着させる方法、 (2)金属板にポリエステルフィルムを熱融着させた後の金属ラミネート体を加熱炉に導入してポリエステルフィルムの融点以上の温度で再度加熱し、ポリエステルフィルムが融点以上の温度に達した後で直ちに急冷する方法、 (3)ポリエステルフィルムの粘着開始温度以上、融点以下の温度に加熱したラミネートロールに金属板とポリエステルフィルムを導入して金属板にポリエステルフィルムを熱接着した後、金属ラミネート体を加熱炉に導入してポリエステルフィルムの融点以上の温度で再度加熱しポリエステルフィルムが融点以上の温度に達した後で直ちに急冷する方法等があるが、ラミネートされたポリエステルフィルムの少なくとも表面が配向していない点で (2)または (3)の方法が特に好ましい。 (1)の方法ではポリエステルフィルムの金属板と接していない面は配向が破壊されずに残っている。またラミネート後フィルムの再結晶を防ぐため直ちに冷却ロール、冷却槽などで冷却する方法が好ましい。
【0022】
本発明のポリエステルフィルムを金属ラミネート体の製缶方法としては特に限定されないが、公知の絞り・しごき(DI)缶、あるいは、特開昭62−21428号公報、特開昭62−94543号公報に開示された絞り缶、あるいは、特開平2−269647号公報、特開平3−47514号公報に開示された絞り・再絞り(DRD)缶が好ましい。
【0023】
【作用】
本発明のポリエステルフィルムには、特定の大きさの不活性粒子を特定量に含有しているので、金属板へのラミネート後の再加熱によっても、この不活性粒子がポリエステルフィルムフィルム表面より内部に埋没することなく表面に突出する。この突起が、金属ラミネート体の製缶時の絞り・しごき加工工程でのポリエステルフィルムのピンホール、クラック、剥離の発生を低減し、その結果、加工性および耐蝕性に優れたものとなる。またこの不活性粒子の含有量が少ないため、保香性にも優れる。さらに、ポリエステルフィルムを金属板にラミネートする際には、熱融着後ポリエステルフィルムの融点以上の温度で再度加熱しポリエステルフィルムが融点以上の温度に達した後で直ちに急冷するため、得られる金属ラミネート体におけるポリエステルフィルムの少なくとも表面が配向していない状態であり、従って、金属ラミネート体の製缶時の絞り・しごき加工工程でのポリエステルフィルムのピンホール、クラック、剥離の発生をさらに低減することができる。
【0024】
【発明の実施の形態】
本発明の実施の形態は、ポリエステルフィルムの厚さ10〜25μmであり、かつ前記式[1]および[2]を満たす不活性粒子の含有量がポリエステルに対して10〜50ppmであるポリエステルフィルムである。そして金属ラミネート体は、金属板上に、このポリエステルフィルムを熱融着させ、次いでポリエステルフィルムの融点以上の温度で再度加熱し、ポリエステルフィルムが融点以上の温度に達した後で直ちに急冷してポリエステルフィルムの少なくとも表面を配向させないように積層した積層体である。
【0025】
【実施例】
以下、実施例によって本発明を詳細に説明する。なお、ポリエステルフィルムおよび金属ラミネート体の特性は以下の方法により測定した。
(1)粒子径
島津製作所(株)製の遠心沈降式粒度分布測定装置(SA−CP3)によって等価球状分布における積算重量比50%の点を平均粒径とした。またポリマーフィルム中の粒子径と濃度は顕微鏡および画像解析装置(ニレコ(株)製、ルーゼックス2D)を用いて測定した粒子の円相当径と粒子数から計算によって求めた。
(2)成形性
240℃に加熱したアルミニウム板に所定のフィルムを貼り合わせた後、アルミニウム板を260℃に再度加熱しフィルムを溶融し急冷する。
このようにして得られたラミネートアルミ体を公知のDI加工法により350m1ビール缶サイズのDI缶を得た。
製缶後の缶内外面を目視にて観察し、傷、剥離等の有無を判定した。また、缶の中に1%NaCl溶液を入れ、缶体を陽極、炭素棒を陰極として+6Vの電圧をかけたときに流れる電流値を測定した(ERVという)。電流値が0.25mV以下であれば良好と判断した。
(3)保香性
オレンジ飲料を缶に封入し、一週間後にその香りを評価した。封入前の香りと同等に感じられるものを良好と判断し、以下、やや劣る、大きく劣ると判定した。
【0026】
実施例1
共重合ポリエステル樹脂として、酸成分がテレフタル酸90モル%、イソフタル酸10モル%、グリコール成分としてエチレングリコールからなるポリエステルを直接重合法により製造した。その際、平均粒径2.5μmで25μm未満に実質的な粒度分布を持ち、15μmを超えかつ25μm未満の粒子の積算重量比が2重量%である無定形シリカ粒子をポリエステルに対して1000ppm添加し重合反応を完結した。
上記ポリエステル樹脂を押出機に供給し、280℃で溶融押出しして口金からシ−ト状に吐出して、冷却ドラム上にキャストした。この未延伸シートをロール延伸機にて延伸温度103℃、倍率3.3倍で縦延伸した。得られたフィルムをテンターに導入し延伸温度120℃、倍率3.4倍で横延伸した。引き続いて延伸されたフィルムを230℃で横方向に5%弛緩処理しつつ熱固定し、厚み15μmの二軸延伸フィルムを得た。このポリエステルフィルムの融点は245℃であった。
【0027】
実施例2
実施例1において、添加する粒子を、粒径20μmの球状単分散シリカ粒子20ppmおよび平均粒径2.0μmの無定形シリカ1000ppm(15μmを超える粒子の積算重量比0%)に変えた以外は実施例1と同様にしてフィルムを得た。
【0028】
比較例1
実施例2において、粒径20μmの球状単分散シリカ粒子の添加量を0.1ppmに変えた以外は実施例2と同様にしてフィルムを得た。
【0029】
比較例2
実施例2において、粒径20μmの球状単分散シリカ粒子の添加量を120ppmに変えた以外は実施例2と同様にしてフィルムを得た。
【0030】
比較例3
実施例1において、添加する粒子を、平均粒径1.0μmで9μm未満の範囲に実質的な粒度分布を持ち、6μmを超えかつ9μm未満の範囲の粒子の積算重量比が2重量%である無定形シリカ粒子1000ppmに変え、フィルムの厚みを6μmに変えた以外は実施例1と同様にしてフィルムを得た。
【0031】
比較例4
実施例1において、添加する粒子を、平均粒径10μmで70μm未満の範囲に実質的な粒度分布を持ち60〜70μmの範囲の粒子の積算重量比が3重量%である無定形シリカ粒子1000ppmに変え、フィルムの厚みを60μmに変えた以外は実施例1と同様にしてフィルムを得た。
【0032】
比較例5
実施例1において、添加する粒子を、平均粒径が2.0μmで17μm未満の範囲に実質的な粒度分布を持ち、8μmを超え12μm未満の粒子の積算重量比が6重量%、かつ12μmを超え17μm未満の粒子の積算重量比が2重量%である無定形シリカ粒子1000ppmに変え、フィルムの厚みを8μmに変えた以外は実施例1と同様にしてフィルムを得た。
【0033】
比較例6
実施例1において、添加する粒子を、平均粒径が3.5μmで40μm未満の範囲に実質的な粒度分布を持ち、30μmを超え40μm未満の粒子の積算重量比が3重量%である無定形シリカ粒子を500ppmに変え、フィルムの厚みを30μmに変えた以外は実施例1と同様にしてフィルムを得た。
実施例1〜2および比較例1〜6で得られたフィルムの特性を表1に示す。
【0034】
【表1】

Figure 0003572739
【0035】
【発明の効果】
以上の説明で明らかなように、本発明によれば、金属ラミネート体の製缶時の絞り・しごき加工工程で優れた加工および耐蝕性を有し、さらには充填物の保香性に優れた製缶用に最適な金属板ラミネート用ポリエステルフィルムを提供することができる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a metal plate for laminate polyester film arm, more particularly, the metal laminate is, in drawing and ironing process at the time of can manufacturing, polyesters metal plate laminate such as having excellent workability and corrosion resistance Phil about the arm.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, when manufacturing cans of beer, juice, and the like, first, a metal plate such as tin, tin-free steel (TFS), or aluminum is applied once or more than once, and then the can is manufactured. Was. However, performing such a plurality of coatings not only complicates the baking process but also requires a great deal of time. In addition, since a large amount of solvent is discharged at the time of coating, there are environmental and sanitary problems.
[0003]
In order to solve these problems, a method of laminating a thermoplastic resin film on a metal plate and making a can has been attempted.Particularly, in terms of heat resistance and safety, a polyester film is used as a thermoplastic resin film. The ones used have attracted attention. As an example, a method in which a polyester film is laminated on a metal plate via an adhesive layer to make a can (Japanese Patent Publication No. 62-61427), or a polyester film is laminated on a metal plate without using an adhesive A method of making cans (Japanese Patent Publication No. 60-47103) and the like are disclosed.
[0004]
However, all of these methods have problems such as pinholes, cracks, peeling, etc. of the polyester film under severe processing conditions such as drawing and ironing during can making, and furthermore, problems such as corrosion of the metal plate surface due to them. Was found to occur.
[0005]
As a method for solving the above problem, JP-A-61-149340 discloses that a biaxially oriented polyester film is laminated on a metal plate heated to a temperature not lower than the melting point of the biaxially oriented polyester film, and then rapidly cooled. A method is disclosed in which only the adhesive layer at the hot-melt portion of polyester is used as an unoriented polyester resin layer. In addition, Japanese Patent Application Laid-Open No. 2-501638 discloses that when a polyester film is laminated on a metal plate, the metal plate is heated and laminated so that the temperature of the outer surface of the polyester film is equal to or lower than the melting point of the polyester. Has been attempted to recrystallize the entire film layer by reheating the polyester to a temperature not lower than the melting point of the polyester, maintaining the temperature, and then rapidly cooling the temperature to a temperature not higher than the glass transition point of the polyester. Japanese Patent Application Laid-Open No. 4-105922 discloses spherical monodispersed lubricant particles having an average particle size of 2.5 μm or less and a particle size ratio of 1.0 to 1.2, and is uniformly formed in all directions on the film surface. A method for improving the pinhole resistance and crack resistance of a polyester film by using an oriented copolymerized polyester film is disclosed. Furthermore, the Kokoku 6-102 464 discloses, by burying the inside anti Brocchi link agent particles from the surface of the polyester film, a method of preventing an inner surface defects due to anti-blocking agent particles during can manufacturing is shown .
[0006]
[Problems to be solved by the invention]
However, each of the methods disclosed in the above publications has the following problems, and it has not been possible to obtain a laminate having sufficient workability and corrosion resistance. In the method of JP-A-61-149340, since the oriented crystal layer of the biaxially oriented polyester film remains, it was not possible to sufficiently withstand drawing and ironing. Also, the method disclosed in Japanese Patent Application Laid-Open No. 4-105922 satisfies the moldability in the drawing process of the metal laminate, but is not sufficient in the ironing process, which is subjected to more severe conditions. Further, in the method disclosed in Japanese Patent Application Laid-Open No. Hei 2-501638, adhesion and deformability of the polyester film to the metal plate are improved by melting and quenching by heating, but since the surface is flat, the metal laminate is drawn and ironed. The slipperiness with the processing tool became worse, and the workability alone was not sufficient unless special processing conditions were selected. Furthermore, in the method disclosed in Japanese Patent Publication No. 6-102646, when assuming that the particles are melted during lamination on a metal plate, particles forming projections on the film surface are buried from the surface into the interior due to the melting of the film. Was flattened, and the slipperiness of the metal laminate with the drawing / ironing tool became poor, as described above, and the workability alone was not sufficient unless special processing conditions were selected.
[0007]
The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a laminate on a metal plate, which has a small number of pinholes, cracks, and peelings in a squeezing and ironing step at the time of can-making, and is therefore excellent. processability and to provide a metal plate laminating polyester film arm so as to have corrosion resistance.
[0008]
[Means for Solving the Problems]
The present invention is a polyester film containing a polyester and inert particles,
A polyester film for metal plate lamination, wherein the polyester film has a thickness of 7 to 50 µm and the content of inert particles satisfying the following formulas [1] and [2] is 1 to 100 ppm based on the polyester. It is.
0 <Rt <10 [1]
1 <R / t <1.5 [2]
(Wherein, R represents the particle size (μm) of the inert particles, and t represents the total thickness (μm) of the polyester film )
[0009]
Next, the present invention will be described in detail. The polyester film for metal plate lamination of the present invention contains polyester and inert particles. This polyester has an aromatic dicarboxylic acid residue and a glycol residue as main constituent units. As the acid component, terephthalic acid, isophthalic acid, 2,6-naphthalenedicarboxylic acid and the like are preferable, and as the glycol component, ethylene glycol, 1,4-butanediol and the like are preferable. In particular, polyethylene terephthalate is preferred in terms of impact resistance, heat resistance, and fragrance retention. The polyethylene terephthalate may contain other copolymer components other than terephthalic acid and glycol in order to achieve the object of the present invention. The other copolymer component may be either an acid component or a glycol component, and examples of the acid component include aromatic dicarboxylic acids such as isophthalic acid, orthophthalic acid and 2,6-naphthalenedicarboxylic acid, adipic acid, azelaic acid, sebacic acid and the like. And alicyclic dicarboxylic acids such as cyclohexanedicarboxylic acid. Examples of the glycol component include 1,4-butanediol, diethylene glycol, triethylene glycol, neopentyl glycol, and cyclohexane dimethanol. These can be used alone or in combination of two or more.
[0010]
The proportion of the other copolymer component is preferably 30 mol% or less, more preferably 15% or less, based on the total number of moles of the dicarboxylic acid component and the glycol component constituting the polyester. If the proportion of this component exceeds 30%, not only the impact resistance and heat resistance of the obtained polyester film will deteriorate, but also the fragrance retention will deteriorate, which is not preferable.
[0011]
The inert particles contained in the polyester film are particles that can remain as particles in the film at the time of forming the polyester film and laminating the film on a metal plate, and may be any of organic and inorganic particles, and inorganic particles. Examples thereof include metal oxides such as silica, alumina and titanium oxide and composite oxides thereof; natural and synthetic oxides such as kaolin, talc, zeolite and mullite; sparingly soluble inorganic metal salts such as calcium carbonate and barium sulfate And the like. Examples of the organic particles include organic particles such as cross-linked polystyrene particles and silicone particles; polyester-forming catalyst metals such as calcium, magnesium, and lithium; acid components such as terephthalic acid; and ester residues such as polyester-forming intermediate oligomers. Organic salts and the like. Of these, inorganic metal oxides, particularly silica, are preferred from the viewpoints of transparency, shear resistance, and prevention of breakage during film formation. These particles may be used alone or in combination of two or more.
[0012]
In the above inert particles, the content of the inert particles satisfying the above formulas [1] and [2] is 1 to 100 ppm. If the particle size of the inert particles is smaller than the range of the above formulas [1] and [2], pinholes, cracks and peeling of the polyester film occur during the drawing and ironing step of the obtained metal laminate, and the processing is performed. And corrosion resistance deteriorate. On the other hand, when the particle size of the inert particles is larger than the range of the above formulas [1] and [2], the polyester film breaks and cracks in the drawing / ironing step of the obtained metal laminate, and the content is further increased. As the amount increases, the deterioration of corrosion resistance due to pinholes becomes significant. In addition, breakage occurs at the time of forming the obtained polyester film.
[0013]
When the content of the inert particles is less than 1 ppm, pinholes, cracks, and peeling of the polyester film occur in the drawing and ironing step of the obtained metal laminate, resulting in poor workability and corrosion resistance. On the other hand, when the content exceeds 100 ppm, not only no more effect is exhibited on the workability of the metal laminate at the time of can making, but also adverse effects are exhibited in corrosion resistance and fragrance retention. The content of inert particles is preferably 10 to 50 ppm, more preferably 10 to 30 ppm.
[0014]
The above-mentioned inert particles can be subjected to wet or dry pulverization, classification and the like according to a method known per se, if necessary, to adjust the particle size. The shape of the inert particles is not particularly limited, but spherical particles, agglomerated particles, or amorphous particles formed by agglomeration of primary particles are preferable in terms of hardness, adhesion to a polyester resin, and the like. The particle size distribution of the inert particles is preferably uniform and monodispersed in order to prevent the presence of coarse particles that greatly exceed the thickness of the film.
[0015]
The polyester film of the present invention may contain, in addition to the above-mentioned inert particles, lubricant particles which generally impart a lubricating property to the film within a range not to impair the object of the present invention. Known types of lubricant particles can be used, and may be the same particles as the inert particles or may be different. Examples of lubricant particles include, but are not limited to, silica, alumina, kaolin, talc, zeolite, titanium oxide. Further, two or more kinds of particles can be used in combination. The average particle size of the lubricant particles used is preferably in the range of 0.5 to 2.5 μm from the viewpoint of slipperiness and other points. The content of the lubricant particles is determined by the size of the average particle size, and those having a large average particle size are added in a small amount and those having a small average particle size are added in a large amount. For example, the addition amount of silica particles having an average particle size of 2.0 μm is preferably about 1000 ppm.
[0016]
The thickness of the polyester film of the present invention varies depending on the type of the desired can, the application and the type and thickness of the metal plate to be used, and also the type of the drawing / ironing tool, but is 7 to 50 μm, preferably 10 to 25 μm. And particularly preferably 15 to 20 μm. If the film thickness is less than 7 μm, a metal laminate having sufficient processability and corrosion resistance cannot be obtained even if the polyester film contains the above inert fine particles. On the other hand, if the film thickness exceeds 50 μm, the characteristics of the polyester film itself cannot follow severe processing deformation during drawing and ironing, and not only can not obtain sufficient workability, but also productivity and cost are not sufficient. Profit cannot be ignored.
[0017]
Examples of the metal plate which is formed by laminating the polyester film of the present invention include tinplate, tin-free steel (TFS), aluminum and the like. These metal plates may be subjected to a surface treatment such as a phosphate treatment, a chromic acid treatment, a tin plating, a zinc plating, and a nickel plating as necessary.
[0018]
Next, an example of the method for producing the polyester film of the present invention will be described, but the present invention is not limited thereto.
The polyester resin used as a raw material of the polyester film is produced by a conventional method such as a transesterification method or a direct polymerization method, but a method of synthesizing by a direct polymerization method is preferable from the viewpoint of fragrance retention. Further, by reducing the amount of cyclic oligomers or the like by a method such as solid phase polymerization, the fragrance retention can be further improved. If necessary, an antioxidant, an ultraviolet absorber, a heat stabilizer, an antistatic agent, a colorant, a pigment and the like may be added.
[0019]
As a method of adding inert particles to the polyester, for example, in the process of producing the polyester resin, at any stage before the polyester polycondensation reaction is substantially completed, a slurry of inert particles is added, and then the polycondensation reaction Or a method in which a polyester resin and inert particles or a slurry of inert particles are kneaded and extruded, but the present invention is not limited thereto.
[0020]
Next, as a method of forming a polyester film by using the obtained polyester resin, a resin melted by an extruder is extruded into a tube shape using a circular die, and an inflation method in which the resin is expanded by a pressure difference between the inside and the outside is used. The resin melted by the machine is extruded into a sheet using a T-die and then biaxially stretched simultaneously or sequentially, or only uniaxially, or not stretched. preferable. For example, first, a polyester resin containing inert particles is dried, melted using an extruder, discharged from a T-die die and cooled on a cooling drum to obtain an unstretched film. At this time, it is preferable to disintegrate and remove coarse particles by installing a polymer filter having an appropriate pore size as necessary in the melt line from the extruder to immediately before the T-die. Subsequently, the film is heated to 60 to 120 ° C. using a heating roll and stretched 2 to 6 times between two or more rolls having different rotation speeds. Further, this film is introduced into a tenter, stretched 2 to 6 times in the transverse direction at 60 to 130 ° C., and subsequently relaxed and heat treated at 120 to 240 ° C. to obtain a biaxially oriented film.
[0021]
The polyester film obtained as described above is bonded to a metal plate to produce a metal laminate. Examples of the method include: (1) a method in which a metal plate is heated to a temperature equal to or higher than the melting point of the polyester film by a heating furnace, an induction heating roll, a heating medium heating roll, or the like, and introduced into a lamination roll to thermally fuse the film; 2) The metal laminate after heat-sealing the polyester film to the metal plate is introduced into a heating furnace and heated again at a temperature higher than the melting point of the polyester film, and immediately after the temperature of the polyester film reaches the melting point or higher. (3) A metal plate and a polyester film are introduced into a laminating roll heated to a temperature equal to or higher than the adhesion start temperature of the polyester film and equal to or lower than the melting point, and the polyester film is thermally bonded to the metal plate, and then the metal laminate is heated. Introduce into a furnace and heat again at a temperature higher than the melting point of the polyester film. Although there is a method in which immediately quenched after reaching the temperature, the method at the point where at least the surface of the polyester film laminated non-oriented (2) or (3) is particularly preferred. In the method (1), the surface of the polyester film which is not in contact with the metal plate remains without being destroyed in orientation. In order to prevent recrystallization of the film after lamination, a method of immediately cooling with a cooling roll, a cooling tank or the like is preferable.
[0022]
The method for making the polyester film of the present invention into a metal laminate is not particularly limited, but is described in a known drawing / ironing (DI) can or JP-A-62-21428 and JP-A-62-94543. The drawn cans, or the drawn / redrawn (DRD) cans disclosed in JP-A-2-269647 and JP-A-3-47514 are preferred.
[0023]
[Action]
Since the polyester film of the present invention contains a specific amount of inactive particles of a specific size, even by reheating after lamination to a metal plate, the inactive particles are inward from the polyester film film surface. Projects to the surface without being buried. These projections reduce the occurrence of pinholes, cracks, and peeling of the polyester film in the drawing / ironing process during can-making of the metal laminate, resulting in excellent workability and corrosion resistance. Also, since the content of the inert particles is small, the fragrance retention is also excellent. Furthermore, when laminating the polyester film to the metal plate, after heating and heating again at a temperature above the melting point of the polyester film, and immediately quenched after the polyester film reaches the temperature above the melting point, the resulting metal laminate At least the surface of the polyester film in the body is not oriented, so that the pinhole, crack, and peeling of the polyester film in the drawing and ironing process at the time of can making of the metal laminate can be further reduced. it can.
[0024]
BEST MODE FOR CARRYING OUT THE INVENTION
An embodiment of the present invention relates to a polyester film having a polyester film thickness of 10 to 25 μm and a content of inert particles satisfying the formulas [1] and [2] of 10 to 50 ppm with respect to the polyester. is there. Then, the metal laminate is heat-fused with the polyester film on a metal plate, and then heated again at a temperature equal to or higher than the melting point of the polyester film. It is a laminated body laminated so that at least the surface of the film is not oriented.
[0025]
【Example】
Hereinafter, the present invention will be described in detail with reference to examples. The properties of the polyester film and the metal laminate were measured by the following methods.
(1) Particle size A point at an integrated weight ratio of 50% in an equivalent spherical distribution was determined as an average particle size by a centrifugal sedimentation type particle size distribution analyzer (SA-CP3) manufactured by Shimadzu Corporation. The particle diameter and concentration in the polymer film were determined by calculation from the equivalent circle diameter of the particles and the number of particles measured using a microscope and an image analyzer (Luzex 2D, manufactured by Nireco Co., Ltd.).
(2) Formability After bonding a predetermined film to an aluminum plate heated to 240 ° C., the aluminum plate is heated again to 260 ° C. to melt and rapidly cool the film.
The thus obtained laminated aluminum body was used to obtain a DI can having a size of 350 ml beer can by a known DI processing method.
The inner and outer surfaces of the can after the can were visually observed, and the presence or absence of scratches, peeling, and the like was determined. A 1% NaCl solution was placed in the can, and the current flowing when a voltage of +6 V was applied using the can as an anode and the carbon rod as a cathode was measured (referred to as ERV). If the current value was 0.25 mV or less, it was determined to be good.
(3) The fragrance-retaining orange beverage was sealed in a can, and one week later, the fragrance was evaluated. Those that felt the same as the fragrance before encapsulation were judged to be good, and were judged to be slightly inferior and significantly inferior below.
[0026]
Example 1
As a copolymerized polyester resin, a polyester composed of 90 mol% of terephthalic acid, 10 mol% of isophthalic acid, and ethylene glycol as a glycol component was produced by a direct polymerization method. At that time, 1000 ppm of amorphous silica particles having an average particle size of 2.5 μm, having a substantial particle size distribution of less than 25 μm, and having an integrated weight ratio of particles exceeding 15 μm and less than 25 μm of 2% by weight were added to the polyester. Then, the polymerization reaction was completed.
The polyester resin was supplied to an extruder, melt-extruded at 280 ° C., discharged from a die in a sheet form, and cast on a cooling drum. This unstretched sheet was longitudinally stretched by a roll stretching machine at a stretching temperature of 103 ° C. and a magnification of 3.3. The obtained film was introduced into a tenter, and was horizontally stretched at a stretching temperature of 120 ° C. and a magnification of 3.4 times. Subsequently, the stretched film was subjected to a 5% relaxation treatment at 230 ° C. in the transverse direction and heat-fixed to obtain a 15 μm-thick biaxially stretched film. The melting point of this polyester film was 245 ° C.
[0027]
Example 2
Example 1 was repeated except that the added particles were changed to 20 ppm of spherical monodisperse silica particles having a particle diameter of 20 μm and 1000 ppm of amorphous silica having an average particle diameter of 2.0 μm (the cumulative weight ratio of particles exceeding 15 μm was 0%). A film was obtained in the same manner as in Example 1.
[0028]
Comparative Example 1
A film was obtained in the same manner as in Example 2 except that the addition amount of the spherical monodispersed silica particles having a particle size of 20 μm was changed to 0.1 ppm.
[0029]
Comparative Example 2
A film was obtained in the same manner as in Example 2 except that the addition amount of the spherical monodispersed silica particles having a particle size of 20 μm was changed to 120 ppm.
[0030]
Comparative Example 3
In Example 1, the particles to be added had an average particle size of 1.0 μm, had a substantial particle size distribution in a range of less than 9 μm, and had an integrated weight ratio of particles in a range of more than 6 μm and less than 9 μm of 2% by weight. A film was obtained in the same manner as in Example 1 except that the amount of the amorphous silica particles was changed to 1000 ppm, and the thickness of the film was changed to 6 μm.
[0031]
Comparative Example 4
In Example 1, the particles to be added were changed to 1000 ppm of amorphous silica particles having an average particle diameter of 10 μm, a substantial particle size distribution in a range of less than 70 μm, and an integrated weight ratio of particles in a range of 60 to 70 μm of 3% by weight. A film was obtained in the same manner as in Example 1 except that the thickness of the film was changed to 60 μm.
[0032]
Comparative Example 5
In Example 1, the particles to be added had an average particle diameter of 2.0 μm, had a substantial particle size distribution in a range of less than 17 μm, and had an integrated weight ratio of particles of more than 8 μm and less than 12 μm of 6% by weight and 12 μm. A film was obtained in the same manner as in Example 1 except that 1000 ppm of amorphous silica particles in which the cumulative weight ratio of particles exceeding 17 μm was less than 2% by weight and the thickness of the film was changed to 8 μm.
[0033]
Comparative Example 6
In Example 1, the particles to be added were amorphous having an average particle size of 3.5 μm and a substantial particle size distribution in a range of less than 40 μm, and an integrated weight ratio of particles of more than 30 μm and less than 40 μm was 3% by weight. A film was obtained in the same manner as in Example 1, except that the silica particles were changed to 500 ppm and the thickness of the film was changed to 30 μm.
Table 1 shows the properties of the films obtained in Examples 1 and 2 and Comparative Examples 1 to 6.
[0034]
[Table 1]
Figure 0003572739
[0035]
【The invention's effect】
As apparent from the above description, according to the present invention has excellent processability and corrosion resistance at drawing and ironing process at the time of can manufacturing metal laminate, more excellent aroma retention of the filler Thus, it is possible to provide a polyester film for laminating a metal plate, which is most suitable for cans.

Claims (4)

ポリエステルと平均粒径が0.5〜2.5μmのシリカ粒子とを含有するポリエステルフィルムであって、
ポリエステルフィルムの厚さが10〜25μmであり、かつ下記式[1]および[2]を満たすシリカ粒子の含有量がポリエステルに対して1〜100ppmであり、下記式[1]および[2]を満たすシリカ粒子よりも大きな粒径のシリカ粒子を含まないことを特徴とする金属板ラミネート用ポリエステルフィルム。
0<R−t<10 [1]
1<R/t<1.5 [2]
(式中、Rはシリカ粒子の粒径(μm)、tはポリエステルフィルムの全厚み(μm)を示す)
A polyester film containing polyester and silica particles having an average particle size of 0.5 to 2.5 μm ,
A is 10 to 25 [mu] m thick polyester film, and the following formula [1] and [2] Ri 1~100ppm der content of the polyester of the silica particles satisfy the following formula [1] and [2 Characterized in that the film does not contain silica particles having a particle diameter larger than that of the silica particles satisfying the above condition .
0 <Rt <10 [1]
1 <R / t <1.5 [2]
(In the formula, R represents the particle size (μm) of the silica particles , and t represents the total thickness (μm) of the polyester film.)
金属板と、この金属板上に積層された請求項1に記載の金属板ラミネート用ポリエステルフィルムとを含有する金属ラミネート体。A metal laminate comprising a metal plate and the polyester film for laminating a metal plate according to claim 1 laminated on the metal plate. ポリエステルフィルムの少なくとも表面が配向していないことを特徴とする請求項2に記載の金属ラミネート体。The metal laminate according to claim 2, wherein at least the surface of the polyester film is not oriented. 金属板にポリエステルフィルムを熱融着させ、次いでポリエステルフィルムの融点以上の温度で再度加熱し、ポリエステルフィルムが融点以上の温度に達した後で直ちに急冷してなることを特徴とする請求項3に記載の金属ラミネート体 4. The method according to claim 3, wherein the polyester film is heat-sealed to the metal plate, and then heated again at a temperature higher than the melting point of the polyester film, and rapidly cooled immediately after the polyester film reaches the temperature higher than the melting point. A metal laminate according to the above .
JP22805295A 1995-09-05 1995-09-05 Polyester film for metal plate lamination and metal laminate using the same Expired - Fee Related JP3572739B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22805295A JP3572739B2 (en) 1995-09-05 1995-09-05 Polyester film for metal plate lamination and metal laminate using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22805295A JP3572739B2 (en) 1995-09-05 1995-09-05 Polyester film for metal plate lamination and metal laminate using the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2000327484A Division JP3863366B2 (en) 2000-10-26 2000-10-26 Metal laminate

Publications (2)

Publication Number Publication Date
JPH0971667A JPH0971667A (en) 1997-03-18
JP3572739B2 true JP3572739B2 (en) 2004-10-06

Family

ID=16870451

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22805295A Expired - Fee Related JP3572739B2 (en) 1995-09-05 1995-09-05 Polyester film for metal plate lamination and metal laminate using the same

Country Status (1)

Country Link
JP (1) JP3572739B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998016573A1 (en) * 1996-10-11 1998-04-23 Teijin Limited Biaxially oriented polyester film for lamination with metal sheets
JP2007307824A (en) * 2006-05-19 2007-11-29 Mitsubishi Plastics Ind Ltd Reflective film laminated metal object
CN111562636B (en) * 2020-04-14 2021-11-02 浙江永盛科技有限公司 Heat-bondable optical reflecting film and preparation method thereof

Also Published As

Publication number Publication date
JPH0971667A (en) 1997-03-18

Similar Documents

Publication Publication Date Title
US5618621A (en) Biaxially oriented laminated polyester film for use as film to be bonded onto metal sheet
JP4655365B2 (en) Biaxially stretched polyester film for molding
JP4159154B2 (en) Polyester film for packaging
JP3189551B2 (en) Polyester film for metal plate lamination
JP4208055B2 (en) Biaxially stretched polyester film for container molding
JP3572739B2 (en) Polyester film for metal plate lamination and metal laminate using the same
JP3951203B2 (en) Polyester film for metal plate lamination molding
JP3324310B2 (en) Biaxially stretched laminated film for metal plate lamination
JP3071573B2 (en) Polyester film for metal plate lamination processing
JP3915294B2 (en) Polyester laminated film and film laminated metal plate and metal container using the same
JP3876459B2 (en) Polyester film, laminated metal plate, method for producing the same, and metal container
JP3863366B2 (en) Metal laminate
JP3293297B2 (en) Polyester film for metal plate lamination
JPH08169084A (en) Production of metal/film laminate
JPH11207909A (en) Laminated polyester film for metal sheet laminating molding processing
JP2006007746A (en) Polyester film for coating metal sheet, polyester film coated metal sheet and polyester film coated metal container
JPH07331196A (en) Composite polyester film for lamination with metal and metallic sheet or container laminated therewith
JP3601165B2 (en) Polyester film, laminated metal plate and metal container
JP3865174B2 (en) Polyester film for metal plate lamination
JPH0790094A (en) Polyester film for laminating metal plate
JP2000143838A (en) Packaging polyester film
JPH11157007A (en) Film-coated metallic sheet for molding
JP3893240B2 (en) Polyester film laminated metal plate, method for producing the same, and metal container
JP3796110B2 (en) Polyester film laminate metal plate and metal container
JP3094749B2 (en) Film for bonding metal

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20031127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040309

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040507

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040608

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040621

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080709

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080709

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090709

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090709

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100709

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100709

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110709

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120709

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130709

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees