JP3570666B2 - Gas sensor, method for correcting measured value of gas sensor, and pressure sensor unit - Google Patents

Gas sensor, method for correcting measured value of gas sensor, and pressure sensor unit Download PDF

Info

Publication number
JP3570666B2
JP3570666B2 JP17328098A JP17328098A JP3570666B2 JP 3570666 B2 JP3570666 B2 JP 3570666B2 JP 17328098 A JP17328098 A JP 17328098A JP 17328098 A JP17328098 A JP 17328098A JP 3570666 B2 JP3570666 B2 JP 3570666B2
Authority
JP
Japan
Prior art keywords
pressure
limiting current
gas
sensor element
sensor unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP17328098A
Other languages
Japanese (ja)
Other versions
JP2000009684A (en
Inventor
辰行 奥野
元昭 飯尾
隆之 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yazaki Corp
Original Assignee
Yazaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Corp filed Critical Yazaki Corp
Priority to JP17328098A priority Critical patent/JP3570666B2/en
Publication of JP2000009684A publication Critical patent/JP2000009684A/en
Application granted granted Critical
Publication of JP3570666B2 publication Critical patent/JP3570666B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、ガス濃度測定技術に関する。
【0002】
【従来の技術】
限界電流式センサ素子は気体中の酸素濃度測定の分野で主に使われている。このものは基準酸素分圧を不要としながら、その出力(電流値)が酸素濃度にほぼ比例し、しかも応答性に優れ、高温に耐える等の特長を有し、各種用途への応用開発が活発に行われている。
このような限界電流式センサ素子において、酸素イオンを透過する固体電解質に印加する電圧を調整することにより、気体中の酸素のみならず水蒸気に対しても感度を持たせるようにできることが知られている。
すなわち、燃焼排ガスのような水蒸気が多量に含まれる雰囲気中で限界電流式センサに監視電圧として比較的高い電圧を印加した場合、水蒸気が次化学式(I)のように分解還元されて精製した酸素ガスにより出力が上昇する。
【0003】
【化1】
2HO→2H+O (I)
【0004】
この上昇した出力分が水蒸気濃度に対応するため、印加電極を上記水蒸気の分解が生じない比較的低い電圧及び水蒸気の分解が生じる比較的高い電圧と切り替えて、あるいは、電極を2対設けてそれぞれ高低の電圧を印加して、水蒸気分圧を測定することができる。
【0005】
本発明に用いる限界電流式センサ素子の一例について図1を用いて説明する。このものは多孔質基板を気体の拡散律速のために用いるものである。
ジルコニア製の固体電解質を挟んで多孔性(通気性)を有する白金製の陰極と陽極とが設けられていて、さらにこの陽極側を覆うように多孔質アルミナ基板が設けられている。多孔質アルミナ基板の他面には白金ヒータがあって、ジルコニア固体電解質の温度を酸素イオン伝導に適した温度(600〜700℃)に保っている。各電極及びヒータにはリード線が付していて、電気的接続が容易にできるようになっている。
【0006】
このような限界電流センサ素子による測定値は検知対象の雰囲気の圧力変化の影響を受ける。図2に圧力を変化させたときの酸素濃度測定値への影響の調査結果を示す。なお、このとき検知対象の酸素濃度は一定である。
図2中実線は酸素濃度測定値、破線は半導体式圧力計の表示値である。
このように限界電流センサ素子による測定値は圧力の変動による影響が大きいことが判る。
そこで、この圧力計によって検出された圧力値により酸素濃度測定値を補正する検討を行った。結果を図3に示す。なお、補正は後述する式(I)によって行った。
【0007】
補正により本来一定値を示すべき酸素濃度測定値が変動していることが図3により理解される。これは、用いた半導体式圧力計と限界電流式ガスセンサ素子との圧力変動に対する応答性や感度の違いによって、補正が適正でないことによると考察された。
なお、上記例においては半導体式圧力計を用いたが、そのほかの圧力計、例えば隔膜式あるいは歪みゲージ式圧力計などを用いても、適正な補正を行うことはできず、半導体式圧力計と同程度の補正しかできなかった。
【0008】
【発明が解決しようとする課題】
本発明は、上記した従来の問題点を改善する、すなわち、測定対象の雰囲気の圧力変動による影響が少ない優れたガスセンサの測定値補正方法を提供することを目的とする。
【0009】
【課題を解決するための手段】
本発明のガスセンサは上記課題を解決するため、請求項1に記載の通り、ガス濃度を検出する限界電流式センサ素子によるガス濃度測定結果を補正するために、限界電流式センサ素子が測定対象雰囲気と同圧に保たれた密閉ケース内に収納されてなる圧力センサユニットを圧力補正手段として有するガスセンサである。
また、本発明のガスセンサの測定値補正方法は請求項2に記載の通り、ガス濃度を検出する限界電流式センサ素子による酸素ガス濃度測定結果を、限界電流式センサ素子が測定対象雰囲気と同圧に保たれた密閉ケース内に収納されてなる圧力センサユニットを用いて補正することを構成として有する。
また、本発明の圧力センサユニットは限界電流式センサ素子を測定対象雰囲気と同圧に保たれた密閉ケース内に有する構成を有する。
【0010】
【発明の実施の形態】
本発明の構成において、ガス濃度を検出する限界電流式センサ素子における気体拡散は、測定対象雰囲気の圧力の変動の影響を受けるが、この影響は限界電流式センサ素子を測定対象雰囲気と同圧に保たれた密閉ケース内に有する圧力センサユニットにおいても同様に発現するため、圧力センサユニットの出力値を用いて、ガス濃度測定結果を補正することにより、正確なガス濃度を知ることが可能となる。
本発明のガスセンサにおいて、圧力補正手段として用いる圧力センサユニットの限界電流式センサ素子を測定対象雰囲気と同圧に保たれた密閉ケース内に保つ必要がある。この構成によって、内部の限界電流式センサ素子周囲雰囲気の圧力は、ガス濃度測定対象雰囲気と同圧に保たれながらも酸素濃度が一定であるため、ガス濃度測定対象雰囲気の酸素濃度変化に影響を受けることなく、優れた圧力補正が可能となる。
【0011】
ここで、密閉ケース内を測定対象雰囲気と同圧に保つには、密閉ケース自体をガスバリア性のある柔軟なフィルムで作成する、あるいは密閉ケースの一部をガスバリア性のある柔軟なフィルムで構成させることなどにより容易に行うことができる。ただし内部の限界電流式センサ素子はジルコニア製の固体電解質がイオン伝導に適した温度領域に保たれることが必要なことから、ガスバリア性を有するフィルムは比較的耐熱性の高いものである必要がある。このようなものとして、例えば、シリコーン、PTFE(ポリテトラフルオロエチレン)、PET(ポリエチレンテレフタレート)、PBT(ポリブチレンテレフタレート)などからなるフィルムが挙げられる。
なお、本発明においてケース自体の形状は問わない。すなわち箱状のものであっても袋状のものであっても良い。
また、密閉容器内の雰囲気は、できるだけガス濃度測定対象雰囲気に近いものであることが望ましい。このことによりより正確な補正が可能となる。
【0012】
上記のような密閉ケース内に設置される限界電流式センサ素子は、ガス濃度を検出する限界電流式センサ素子と同スペックであるとより良好なガス濃度測定値の補正が可能となるため好ましい。
上記のような限界電流式センサ素子を測定対象雰囲気と同圧に保たれた密閉ケース内に有する圧力センサユニットにより、従来の圧力計を用いた補正に比べて極めて良好な補正が可能となる。
【0013】
ここで本発明の圧力センサユニットについて、例を挙げて説明する。
図4に本発明に係る圧力センサユニットAのモデル断面図を示した。
図中、符号1を付して示されているのは限界電流式センサ素子であり、その電極及びヒータは白金製リード線2に接続されている。このリード線2はセンサ取り付けピン3によって圧力センサユニットA外部と電気的に接合されている。
なおこの圧力センサユニットAの限界電流式センサ素子1周囲は密閉容器となっており、この密閉容器はセンサハウジング下部4a、PTFEからなる耐熱性樹脂薄膜5及びシール材6から構成されている。なお、耐熱性樹脂薄膜5はセンサハウジング上部4bにより保護されている。センサハウジング上部4bには圧力検知孔4b1が設けられている。この圧力検知孔4b1及び耐熱性樹脂薄膜5の働きにより限界電流式センサ素子1周囲の密閉容器内部は、圧力センサユニットA周囲の雰囲気圧力と等しくなるようになっていて、この圧力センサユニットA周囲に設置されたガス濃度測定用限界電流式センサ素子と共に正確なガス測定を可能にする。
【0014】
ここで、圧力センサユニットAの周囲雰囲気の圧力を変化させたときの圧力センサユニットAの出力の様子を図5に示す。図中破線が圧力の変化、実線がセンサ出力を表す。なお、図5での測定・圧力変化等の諸条件はすべて図2及び図3におけるこれら条件と同じである。
図5によりこの圧力センサユニットAの出力が雰囲気圧力の変化に応じて変化しているのが判る。
上記圧力センサユニットAの出力値によるガス濃度測定値の補正は、例えばガス濃度測定用限界電流式センサ素子、圧力センサユニット、OPアンプ、A/Dコンバータ、マイクロプロセッサ等を用いて行うことができる。
すなわち、測定対象雰囲気中の測定対象ガス濃度を一定にして、初期の雰囲気に対する出力を0としたとき、その後の変動量が圧力による変動量と考え、圧力センサユニットAの出力変動値をα、圧力センサユニットAの初期の雰囲気における出力(標準出力)をβ、さらにガス濃度測定用限界電流式センサ素子の検出出力をγとして、圧力補正出力を式(I)により求めることができる。
【0015】
【数1】
γ×(1−α/β) (I)
【0016】
式(I)に従って圧力補正出力を求め、そのときの限界電流式センサ素子の出力の補正を行った結果を図6に示す。なお、図6中破線が圧力の変化を、実線が補正された酸素ガス濃度測定値を表す。
ここで、酸素ガス濃度一定で雰囲気の圧力のみを変化させたときの、従来の半導体式圧力センサを用いて補正した酸素ガス濃度測定結果、及び、本発明に係る圧力センサユニットを圧力補正手段として有するガスセンサによる酸素ガス濃度測定結果を図7に合わせて示した。
【0017】
図7より本発明に係る圧力センサユニットを圧力補正手段として有するガスセンサによって、誤差の少ない正確な測定が可能であることが判る。
なお、上記例は圧力センサユニットとガス濃度測定用限界電流式センサ素子を別々に用いる例を示したが、これら2つを一体化した構造の例について図8を用い説明する。
図8に限界電流式センサ素子を測定対象雰囲気と同圧に保たれた密閉ケース内に有する圧力センサユニットを圧力補正手段として有する一体化ガスセンサBのモデル断面図を示す。
符号1を付して示されているのは、限界電流式センサ素子であり、その電極及びヒータは白金製リード線2に接続されている。このリード線2はセンサ取り付けピン3によって一体化ガスセンサB外部と電気的に接合されている。
なお、この一体化ガスセンサBの限界電流式センサ素子1周囲は密閉容器となっており、この密閉容器はセンサハウジング下部4a、PTFEからなる耐熱性樹脂薄膜5及びシール材6から構成されている。なお、図中耐熱性樹脂薄膜5より下の部分は図4の圧力センサユニットと同構造である。
【0018】
耐熱性樹脂薄膜5はセンサハウジング上部4b’により保護されている。センサハウジング上部4b’は多孔質板7aがシール材6’を介して固定されている。この多孔質板7a及び耐熱性樹脂薄膜5の働きにより限界電流式センサ素子1周囲の密閉容器内部は、一体化ガスセンサNB周囲の雰囲気圧力と等しくなるようになっている。
一方多孔質板7aにはガス濃度測定用限界電流式センサ素子7が設けられており
このセンサ素子7のヒーター及び電極に接続されたリード線8により、一体化ガスセンサB周囲の雰囲気のガス濃度を測定できるようになっている。
このような構造を有する一体化ガスセンサBは、極めてコンパクトで、設置場所をえらばない。また、ガス濃度測定用限界電流式センサ素子の位置と圧力センサユニットの位置とが極めて近いため、より正確な測定値の補正が可能となる。
【0019】
【発明の効果】
本発明のガスセンサは、圧力の影響をほぼ完全に排除することができるため、圧力変動の大きな雰囲気においても正確な測定が可能な優れたガスセンサである。
【図面の簡単な説明】
【図1】本発明に用いる限界電流式センサ素子の一例を示す図である。
【図2】従来技術の限界電流センサ素子による測定値が検知対象の雰囲気の圧力変化の影響を受けることを示す図である。
【図3】従来技術による圧力補正を測定値に対して行った結果を示す図である。
【図4】本発明に係る圧力センサユニットAのモデル断面図である。
【図5】圧力センサユニットAの周囲雰囲気の圧力を変化させたときの圧力センサユニットAの出力の様子を示す図である。
【図6】圧力センサユニットAの出力値を用い、式(I)に従って圧力補正を行った結果を示す図である。
【図7】従来技術による圧力補正を行った場合と、本発明に係る圧力補正を行った場合とを比較して示す図である。
【図8】限界電流式センサ素子を測定対象雰囲気と同圧に保たれた密閉ケース内に有する圧力センサユニットを圧力補正手段として有する一体化ガスセンサBのモデル断面図である。
【符号の説明】
A 本発明に係る圧力センサユニット
B 本発明に係る一体化ガスセンサ
1 限界電流式センサ素子
2 リード線
3 センサ取り付けピン
4a センサハウジング下部
4b センサハウジング上部
4b1 圧力検知孔
5 耐熱性樹脂薄膜
6,6’ シール材
7 ガス濃度測定用限界電流式センサ素子
7a 多孔質板
8 リード線
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a gas concentration measurement technique.
[0002]
[Prior art]
The limiting current type sensor element is mainly used in the field of measuring oxygen concentration in gas. This product has the features that its output (current value) is almost proportional to the oxygen concentration, has excellent responsiveness, and can withstand high temperatures, while eliminating the need for a reference oxygen partial pressure. Has been done.
It is known that in such a limiting current type sensor element, by adjusting the voltage applied to the solid electrolyte that transmits oxygen ions, sensitivity can be given not only to oxygen in gas but also to water vapor. I have.
That is, when a relatively high voltage is applied as a monitoring voltage to a limiting current sensor in an atmosphere containing a large amount of water vapor, such as combustion exhaust gas, the water vapor is decomposed and reduced as shown in the following chemical formula (I) to obtain purified oxygen. The gas increases the output.
[0003]
Embedded image
2H 2 O → 2H 2 + O 2 (I)
[0004]
Since the increased output corresponds to the water vapor concentration, the applied electrode is switched to a relatively low voltage at which the decomposition of water vapor does not occur and a relatively high voltage at which the decomposition of water vapor occurs, or two pairs of electrodes are provided. By applying a high or low voltage, the partial pressure of water vapor can be measured.
[0005]
An example of the limiting current type sensor element used in the present invention will be described with reference to FIG. In this method, a porous substrate is used for controlling the diffusion of gas.
A platinum (porous) cathode and anode having a porosity (air permeability) are provided with a zirconia solid electrolyte interposed therebetween, and a porous alumina substrate is provided so as to cover the anode side. A platinum heater is provided on the other surface of the porous alumina substrate to keep the temperature of the zirconia solid electrolyte at a temperature (600 to 700 ° C.) suitable for oxygen ion conduction. Each electrode and the heater are provided with a lead wire so that electrical connection can be easily made.
[0006]
The value measured by such a limiting current sensor element is affected by a change in the pressure of the atmosphere to be detected. FIG. 2 shows the results of an investigation on the effect of changing the pressure on the measured oxygen concentration. At this time, the oxygen concentration of the detection target is constant.
In FIG. 2, the solid line indicates the measured oxygen concentration, and the broken line indicates the value indicated by the semiconductor pressure gauge.
Thus, it can be seen that the value measured by the limiting current sensor element is greatly affected by the fluctuation in pressure.
Therefore, a study was made to correct the oxygen concentration measurement value based on the pressure value detected by the pressure gauge. The results are shown in FIG. The correction was performed according to the formula (I) described later.
[0007]
It can be understood from FIG. 3 that the oxygen concentration measurement value, which should be a constant value, fluctuates due to the correction. This was considered to be due to the improper correction due to differences in response and sensitivity to pressure fluctuation between the semiconductor pressure gauge used and the limiting current gas sensor element.
In the above example, a semiconductor pressure gauge was used, but other pressure gauges, such as a diaphragm pressure gauge or a strain gauge pressure gauge, could not be properly corrected. Only the same correction could be made.
[0008]
[Problems to be solved by the invention]
SUMMARY OF THE INVENTION It is an object of the present invention to improve the conventional problems described above, that is, to provide an excellent method for correcting a measured value of a gas sensor which is less affected by pressure fluctuation of an atmosphere to be measured.
[0009]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, a gas sensor according to the present invention is configured such that a limiting current type sensor element is used to correct a gas concentration measurement result by a limiting current type sensor element for detecting a gas concentration. This is a gas sensor having a pressure sensor unit housed in a closed case maintained at the same pressure as pressure correction means.
According to a second aspect of the present invention, there is provided a method for correcting a measurement value of a gas sensor, wherein the measurement result of the oxygen gas concentration by the limiting current type sensor element for detecting the gas concentration is determined by the limiting current type sensor element having the same pressure as the measurement target atmosphere. The correction is performed by using a pressure sensor unit housed in a sealed case kept in the pressure sensor.
Further, the pressure sensor unit of the present invention has a configuration in which the limiting current type sensor element is provided in a closed case maintained at the same pressure as the atmosphere to be measured.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
In the configuration of the present invention, the gas diffusion in the limiting current type sensor element for detecting the gas concentration is affected by the fluctuation of the pressure of the atmosphere to be measured. Since the same occurs in the pressure sensor unit provided in the kept sealed case, it is possible to know the accurate gas concentration by correcting the gas concentration measurement result using the output value of the pressure sensor unit. .
In the gas sensor of the present invention, it is necessary to keep the limiting current type sensor element of the pressure sensor unit used as the pressure correcting means in a closed case kept at the same pressure as the atmosphere to be measured. With this configuration, the pressure around the internal limiting current type sensor element is maintained at the same pressure as the gas concentration measurement target atmosphere, but the oxygen concentration is constant. Excellent pressure compensation is possible without receiving the pressure.
[0011]
Here, in order to keep the inside of the closed case at the same pressure as the atmosphere to be measured, the closed case itself is made of a flexible film having a gas barrier property, or a part of the closed case is formed of a flexible film having a gas barrier property. This can be easily performed. However, since the internal limiting current type sensor element requires that the zirconia solid electrolyte be kept in a temperature range suitable for ionic conduction, the film having gas barrier properties must have relatively high heat resistance. is there. Examples of such a film include films made of silicone, PTFE (polytetrafluoroethylene), PET (polyethylene terephthalate), PBT (polybutylene terephthalate), and the like.
In the present invention, the shape of the case itself does not matter. That is, it may be box-shaped or bag-shaped.
Further, it is desirable that the atmosphere in the closed vessel is as close as possible to the atmosphere for measuring the gas concentration. This enables more accurate correction.
[0012]
It is preferable that the limiting current type sensor element installed in the closed case as described above has the same specifications as the limiting current type sensor element for detecting the gas concentration, since it is possible to more appropriately correct the measured gas concentration value.
The pressure sensor unit having the above-described limiting current type sensor element in a closed case kept at the same pressure as the atmosphere to be measured enables extremely excellent correction as compared with the correction using a conventional pressure gauge.
[0013]
Here, the pressure sensor unit of the present invention will be described with an example.
FIG. 4 shows a model sectional view of the pressure sensor unit A according to the present invention.
In the figure, reference numeral 1 denotes a limiting current type sensor element, and its electrode and heater are connected to a lead wire 2 made of platinum. This lead wire 2 is electrically connected to the outside of the pressure sensor unit A by a sensor mounting pin 3.
Note that the periphery of the limiting current type sensor element 1 of the pressure sensor unit A is a closed container, and the closed container includes a lower portion 4a of the sensor housing, a heat-resistant resin thin film 5 made of PTFE, and a sealing material 6. In addition, the heat-resistant resin thin film 5 is protected by the sensor housing upper part 4b. A pressure detection hole 4b1 is provided in the upper part 4b of the sensor housing. By the action of the pressure detection hole 4b1 and the heat-resistant resin thin film 5, the inside of the sealed container around the limiting current type sensor element 1 becomes equal to the atmospheric pressure around the pressure sensor unit A. It enables accurate gas measurement together with the limiting current type sensor element for gas concentration measurement installed in the system.
[0014]
Here, the state of the output of the pressure sensor unit A when the pressure of the surrounding atmosphere of the pressure sensor unit A is changed is shown in FIG. In the figure, the broken line represents the change in pressure, and the solid line represents the sensor output. All the conditions such as measurement and pressure change in FIG. 5 are the same as those in FIGS. 2 and 3.
FIG. 5 shows that the output of the pressure sensor unit A changes according to the change in the atmospheric pressure.
The correction of the gas concentration measurement value based on the output value of the pressure sensor unit A can be performed using, for example, a gas concentration measurement limit current sensor element, a pressure sensor unit, an OP amplifier, an A / D converter, a microprocessor, or the like. .
That is, when the concentration of the gas to be measured in the atmosphere to be measured is constant and the output to the initial atmosphere is set to 0, the subsequent fluctuation is considered to be the fluctuation due to pressure, and the output fluctuation value of the pressure sensor unit A is α, Assuming that the output (standard output) of the pressure sensor unit A in the initial atmosphere (standard output) is β, and the detection output of the limiting current type sensor element for measuring gas concentration is γ, the pressure correction output can be obtained by the equation (I).
[0015]
(Equation 1)
γ × (1-α / β) (I)
[0016]
FIG. 6 shows the result of obtaining the pressure correction output according to the equation (I) and correcting the output of the limiting current type sensor element at that time. In FIG. 6, a broken line indicates a change in pressure, and a solid line indicates a corrected oxygen gas concentration measurement value.
Here, when only the pressure of the atmosphere is changed while the oxygen gas concentration is constant, the measurement result of the oxygen gas concentration corrected using the conventional semiconductor pressure sensor, and the pressure sensor unit according to the present invention as the pressure correction unit FIG. 7 also shows the results of measuring the oxygen gas concentration using the gas sensor.
[0017]
From FIG. 7, it can be seen that the gas sensor having the pressure sensor unit according to the present invention as the pressure correcting means enables accurate measurement with little error.
Although the above example shows an example in which the pressure sensor unit and the limiting current type sensor element for measuring gas concentration are separately used, an example of a structure in which these two are integrated will be described with reference to FIG.
FIG. 8 is a model cross-sectional view of an integrated gas sensor B having a pressure sensor unit having a limiting current sensor element in a sealed case kept at the same pressure as the atmosphere to be measured as a pressure correcting means.
Reference numeral 1 denotes a limiting current type sensor element, and its electrode and heater are connected to a lead wire 2 made of platinum. The lead wire 2 is electrically connected to the outside of the integrated gas sensor B by a sensor mounting pin 3.
Note that the periphery of the limiting current type sensor element 1 of the integrated gas sensor B is a sealed container, and the sealed container includes a lower portion 4a of the sensor housing, a heat-resistant resin thin film 5 made of PTFE, and a sealing material 6. The portion below the heat-resistant resin thin film 5 in the drawing has the same structure as the pressure sensor unit in FIG.
[0018]
The heat-resistant resin thin film 5 is protected by the upper part 4b 'of the sensor housing. A porous plate 7a is fixed to the upper part 4b 'of the sensor housing via a sealing material 6'. By the action of the porous plate 7a and the heat-resistant resin thin film 5, the inside of the sealed container around the limiting current type sensor element 1 is made equal to the atmospheric pressure around the integrated gas sensor NB.
On the other hand, a limiting current sensor element 7 for measuring gas concentration is provided on the porous plate 7a, and the gas concentration of the atmosphere around the integrated gas sensor B is controlled by a lead wire 8 connected to a heater and electrodes of the sensor element 7. It can be measured.
The integrated gas sensor B having such a structure is extremely compact and does not require an installation place. Further, since the position of the gas concentration measuring limit current type sensor element is very close to the position of the pressure sensor unit, more accurate correction of the measured value can be performed.
[0019]
【The invention's effect】
INDUSTRIAL APPLICABILITY The gas sensor of the present invention can eliminate the influence of pressure almost completely, and is therefore an excellent gas sensor capable of performing accurate measurement even in an atmosphere having large pressure fluctuations.
[Brief description of the drawings]
FIG. 1 is a diagram showing an example of a limiting current type sensor element used in the present invention.
FIG. 2 is a diagram showing that a value measured by a conventional limiting current sensor element is affected by a change in pressure of an atmosphere to be detected.
FIG. 3 is a diagram showing a result of performing pressure correction according to a conventional technique on a measured value.
FIG. 4 is a model sectional view of a pressure sensor unit A according to the present invention.
FIG. 5 is a diagram illustrating an output state of the pressure sensor unit A when the pressure of the surrounding atmosphere of the pressure sensor unit A is changed.
FIG. 6 is a diagram showing a result of performing pressure correction according to the formula (I) using an output value of the pressure sensor unit A.
FIG. 7 is a diagram showing a comparison between a case where pressure correction according to the related art is performed and a case where pressure correction according to the present invention is performed.
FIG. 8 is a model cross-sectional view of an integrated gas sensor B having a pressure sensor unit having a limiting current type sensor element in a closed case kept at the same pressure as the atmosphere to be measured as a pressure correcting means.
[Explanation of symbols]
A Pressure sensor unit B according to the present invention B Integrated gas sensor 1 according to the present invention 1 Limit current type sensor element 2 Lead wire 3 Sensor mounting pin 4a Sensor housing lower part 4b Sensor housing upper part 4b1 Pressure detecting hole 5 Heat resistant resin thin film 6, 6 ' Sealing material 7 Limit current sensor element 7a for gas concentration measurement Porous plate 8 Lead wire

Claims (3)

ガス濃度を検出する限界電流式センサ素子によるガス濃度測定結果を補正するために、限界電流式センサ素子が測定対象雰囲気と同圧に保たれた密閉ケース内に収納されてなる圧力センサユニットを圧力補正手段として有することを特徴とするガスセンサ。 In order to correct the gas concentration measurement result by the limiting current type sensor element that detects the gas concentration, the pressure sensor unit that is housed in a closed case where the limiting current type sensor element is kept at the same pressure as the atmosphere to be measured is pressured A gas sensor having correction means. ガス濃度を検出する限界電流式センサ素子による酸素ガス濃度測定結果を、限界電流式センサ素子が測定対象雰囲気と同圧に保たれた密閉ケース内に収納されてなる圧力センサユニットを用いて補正することを特徴とするガスセンサの測定値補正方法。 The measurement result of the oxygen gas concentration by the limiting current sensor element for detecting the gas concentration is corrected using a pressure sensor unit that is housed in a closed case in which the limiting current sensor element is kept at the same pressure as the atmosphere to be measured. A method for correcting a measured value of a gas sensor. 限界電流式センサ素子を測定対象雰囲気と同圧に保たれた密閉ケース内に有することを特徴とする圧力センサユニット。A pressure sensor unit comprising a limiting current type sensor element in a sealed case maintained at the same pressure as the atmosphere to be measured.
JP17328098A 1998-06-19 1998-06-19 Gas sensor, method for correcting measured value of gas sensor, and pressure sensor unit Expired - Fee Related JP3570666B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17328098A JP3570666B2 (en) 1998-06-19 1998-06-19 Gas sensor, method for correcting measured value of gas sensor, and pressure sensor unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17328098A JP3570666B2 (en) 1998-06-19 1998-06-19 Gas sensor, method for correcting measured value of gas sensor, and pressure sensor unit

Publications (2)

Publication Number Publication Date
JP2000009684A JP2000009684A (en) 2000-01-14
JP3570666B2 true JP3570666B2 (en) 2004-09-29

Family

ID=15957534

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17328098A Expired - Fee Related JP3570666B2 (en) 1998-06-19 1998-06-19 Gas sensor, method for correcting measured value of gas sensor, and pressure sensor unit

Country Status (1)

Country Link
JP (1) JP3570666B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4610776B2 (en) * 2001-04-20 2011-01-12 日本特殊陶業株式会社 Gas sensor
JP5519596B2 (en) * 2011-08-08 2014-06-11 日本特殊陶業株式会社 Gas sensor device and concentration measuring method using gas sensor
JP5981819B2 (en) * 2012-09-25 2016-08-31 日本特殊陶業株式会社 Sensor
CN103884750B (en) * 2014-04-11 2016-01-27 中国人民解放军海军医学研究所 The calibration steps of constant potential electrochemical gas sensor under hyperbaric environment
CN106353386B (en) * 2016-09-18 2018-09-11 北方电子研究院安徽有限公司 ZrO2Limiting current formula lambda sensor altimetric compensation method
CN112730606B (en) * 2020-12-31 2022-09-27 青岛精安医疗科技有限责任公司 Ultrasonic oxygen concentration measuring method and system based on pressure detection and oxygen generation system

Also Published As

Publication number Publication date
JP2000009684A (en) 2000-01-14

Similar Documents

Publication Publication Date Title
US4902400A (en) Gas sensing element
JP5373474B2 (en) Combustible gas detector
JP4897354B2 (en) Gas detector
US9429541B2 (en) Gas sensor element, gas sensor and control system of gas sensor
JP3079156B2 (en) Electrochemical force sensor
JP2007108018A (en) Calibration method of gas analyzer
US20130180854A1 (en) Correction coefficient setting method of gas concentration detection apparatus, gas concentration detection apparatus and gas sensor
JP2001124716A (en) Gas sensor
JP2007248356A (en) Flammable gas detector and flammable gas detecting method
JP3570666B2 (en) Gas sensor, method for correcting measured value of gas sensor, and pressure sensor unit
JP2002310988A (en) Gas sensor
US10012611B2 (en) Gas sensor element and gas sensor
JP2018194409A (en) Heat-conduction type gas sensor
KR20190005607A (en) Calibration method for micro gas sensor
JPH10115600A (en) Electrochemical gas sensor and its correction method
JP2021128036A (en) Gas concentration humidity detector
JP5091078B2 (en) Combustible gas detector
JP5102172B2 (en) Gas detector
JP2003065999A (en) Temperature controller and controlling method for gas sensor element
JP2018084478A (en) Gas concentration detection method and solid electrolyte sensor
JP5818576B2 (en) Electrochemical oxygen sensor and gas detector
JP3839392B2 (en) Gas sensor calibration method
JP7194633B2 (en) How to calibrate an oxygen analyzer
US20060254908A1 (en) Electrochemical solid electrolyte sensor for the detection of oxygen, hydrocarbons and moisture in vacuum environments
JP3565520B2 (en) Oxygen concentration sensor

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040608

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20040618

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040618

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040618

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080702

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090702

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100702

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110702

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110702

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120702

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees